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A Proof of Theorem 1

Proof. Let us denote the inner product in a reproducing kernel Hilbert spaceH (RKHS) by 〈·, ·〉H. Since the empirical
Fisher divergence (11) can be expressed as

Ĵ(r) =
1

n

n∑
i=1

[
1

2
〈r, k(·, zi)〉2H + 〈r, ∂′yk(·, zi)〉H

]
, (28)

where k is the kernel function in H, the representer theorem for derivatives [Zhou, 2008] ensures that the model r
should take the following optimal form:

r(z) =

n∑
i=1

[
αik(z, zi) + βi∂

′
yk(z, zi)

]
, (29)

where z = (y,x>)>, ∂′yk(z, zi) := ∂
∂y′ k(z, z

′)|z′=zi with z′ = (y′,x′>)> (i.e., ∂′y denotes the partial derivative
with respect to the second variable of the kernel function k), and αi and βi are coefficients to be estimated. Computing
the partial derivative of (29) with respect to y yields

∂yr̂(z) =

n∑
i=1

[
αi∂yk(z, zi) + βi∂y∂

′
yk(z, zi)

]
, (30)

where ∂y := ∂
∂y .

Next, we define the (i, j)-th element in matrices,K,G andH , by

[K]ij = k(zi, zj), [G]ij = ∂′yk(zi, zj) and [H]ij = ∂y∂
′
yk(zi, zj).

Then, r = (r(z1), r(z2), . . . , r(zn))
> and ∂yr = (∂yr(z1), ∂yr(z2), . . . , ∂yr(zn))

> are compactly expressed as

r =Kα+Gβ (31)

∂yr = G>α+Hβ. (32)

Regarding the RKHS norm,

‖r‖2H = α>Kα+ 2

n∑
i=1

n∑
j=1

αiβj∂
′
yk(zi, zj) +

n∑
i=1

n∑
j=1

βiβj∂y∂
′
yk(zi, zj)

= α>Kα+ 2α>Gβ + β>Hβ, (33)



Substituting (31), (32) and (33) into (28) yields

J̃(r) : = Ĵ(r) +
λ

2
‖r‖2H

=
1

2n
‖Kα+Gβ‖2 + 1

n
1>n (G

>α+Hβ) +
λ

2
(α>Kα+ 2α>Gβ + β>Hβ).

Taking the derivatives of J̃ with respect to α and β yields

∂J̃(r)

∂α
=

1

n
K(Kα+Gβ) +

1

n
G1n + λKα+ λGβ

=
1

n
K {(K + nλIn)α+Gβ}+G

{
1

n
1n + λβ

}
∂J̃(r)

∂β
=

1

n
G>(Kα+Gβ) +

1

n
H1n + λHβ + λG>α

=
1

n
G> {(K + nλIn)α+Gβ}+H

{
1

n
1n + λβ

}
.

The optimality condition is given by

(K + nλIn)α+Gβ = 0,
1

n
1n + λβ = 0.

Thus, the optimal coefficients can be computed as

α̂ =
1

nλ
(K + nλIn)

−1G1n, β̂ = − 1

nλ
1n.

Substituting α̂ and β̂ into (29) completes the proof.

B Leave-one-out cross-validation

Here, we show that the LOOCV score can be efficiently computed by following Kanamori et al. [2012]. The notations
in Section A are inherited

Let us denote the collection of data samples except zl := (yl,x
>
l )
> by Dl (i.e., D \ zl). K-LSLD from Dl is given by

r̂(l)(z) :=

n∑
i=1
i6=l

[
α̂
(l)
i k(z, zi) + β̂

(l)
i ∂′yk(z, zi)

]
,

where

α̂(l) :=
1

(n− 1)λ
(K(l) + (n− 1)λIn−1)

−1G(l)1n−1, β̂
(l) := − 1

(n− 1)λ
1n−1.

In the equations above,K(l) andG(l) areK andG except zl, respectively. Then, the LOOCV score can be computed
as

LOOCV =
1

n

n∑
l=1

[
1

2
{r̂(l)(zl)}2 + ∂yr̂

(l)(zl)

]
.

However, to naively compute this LOOCV score, we need to compute the inverse of n − 1 by n − 1 matrix for all
â(l), l = 1, . . . , n, which is time-consuming.

To cope with this problem, we derive an equivalent form of r̂(l). α̂(l) can be regarded as the solution of the optimization
problem,

α̂(l) = argmin
α∈Rn−1

[
1

2
α>(K(l) + (n− 1)λIn−1)α−

1

(n− 1)λ
1>n−1G

(l)α

]
.



Here, we solve an alternative optimization problem as

α̃(l) := argmin
α∈Rn

[
1

2
α>(K + (n− 1)λIn)α−

1

(n− 1)λ
(1n − el)>Gα

]
s.t. α̃

(l)
l = 0, (34)

where el is the unit vector with the l-th element being 1. Note that α̃(l) ∈ Rn is an n-dimensional vector, while
α̂(l) ∈ Rn−1 is an (n− 1)-dimensional one. With α̃(l) = (α̃

(l)
1 , . . . , α̃

(l)
n )>, r̂(l) can be equivalently expressed as

r̂(l)(z) =

n∑
i=1

[
α̃
(l)
i k(z, zi) + β̃

(l)
i ∂′yk(z, zi)

]
, (35)

where

β̃(l) = (β̃
(l)
1 , . . . , β̃(l)

n )> := − 1

(n− 1)λ
(1n − el). (36)

Applying the method of Lagrange multipliers to (34) yields the following solution:

α̃(l) = (K + (n− 1)λIn)
−1
{

1

(n− 1)λ
G(1n−1 − el) + tlel

}
, (37)

where tl is fixed such that α̃(l)
l = 0. Eq.(37) clearly shows that in order to obtain α̃(l) for all l = 1, . . . , n, it is

sufficient to compute the inverse of the n by n matrix only once, which significantly reduces the cost to compute the
LOOCV score compared with the naive way discussed above.

Next, we show a compact and analytic form of the LOOCV score. To this end, we define

A := (α̃(1), . . . , α̃(n)) and B := (β̃(1), . . . , β̃(n)).

Then, from (36) and (37),A andB can be computed as

A = L(S − T ) and B = − 1

(n− 1)λ
E, (38)

where L := (K + (n− 1)λIn)
−1, S := 1

(n−1)λGE,

[E]ij :=

{
0 i = j,

1 i 6= j,
and [T ]ij :=

{
[LS]ii/[L]ii i = j,

0 i 6= j.

Finally, the LOOCV score can be computed analytically as

LOOCV =
1

n

{
1

2
r̃>r̃ + 1>n ∂yr̃

}
, (39)

where

r̃ := (r̂(1)(z1), r̂
(2)(z2), . . . , r̂

(n)(zn))
> = (K �A> +G�B>)1n

∂yr̃ := (∂yr̂
(1)(z1), ∂yr̂

(2)(z2), . . . , ∂yr̂
(n)(zn))

> = (G> �A> +H �B>)1n.

The symbol � denotes element-wise multiplication.

C Proof of Theorem 2

With the assumption that α̂l = 0 for all l, we express D̂r̂[θ2|θ1] as

D̂r̂[θ2|θ1] =
1

n

n∑
i=1

∫ 1

0

r̂(θ(t)>km(xi),xi)km(xi)
>(θ2 − θ1)dt

=
1

n

n∑
i,l=1

[∫ 1

0

yl − θ(t)>km(xi)
nλσ2

y

ϕ

{
(θ(t)>km(xi)− yl)2

2σ2
y

}
km(xi)

>(θ2 − θ1)dt
]

︸ ︷︷ ︸
(?)

kx(xi,xl), (40)



By the substitution Yl =
yl−θ>(t)km(xi)

σy
, the integral (?) in (40) is computed as

(?) = − 1

nλ

∫ Y
(2)
l

Y
(1)
l

Ylϕ

(
Y 2
l

2

)
dYl =

1

nλ

[
φ

{
(θ>2 k(xi)− yl)2

2σ2
y

}
− φ

{
(θ>1 k(xi)− yl)2

2σ2
y

}]
, (41)

where we used dYl

dt = (θ2−θ1)>km(xi)
σy

from the path (24), Y (1)
l =

yl−θ>1 km(xi)
σy

and Y (2)
l =

yl−θ>2 km(xi)
σy

.

Then, substituting (41) into (40) yields

D̂r̂[θ2|θ1] =
1

n2λ

n∑
i,l=1

kx(xi,xl)

[
φ

{
(θ>2 km(xi)− yl)2

2σ2
y

}
− φ

{
(θ>1 km(xi)− yl)2

2σ2
y

}]

≥ 1

n2λ

n∑
i,l=1

kx(xi,xl)ϕ

{
(θ>1 km(xi)− yl)2

2σ2
y

}{
(θ>1 km(xi)− yl)2

2σ2
y

− (θ>2 km(xi)− yl)2

2σ2
y

}
=

1

2

{
θ>1 H(θ1)θ1 − θ>2 H(θ1)θ2 − 2(θ1 − θ2)>h(θ1)

}
,

where we applied a well-known inequality for convex functions as

φ(t2)− φ(t1) ≥ ϕ(t1)(t1 − t2),

where ϕ(t) := − d
dtφ(t).

By θ1 ← θτ and θ2 ← θτ+1, we have

D̂r̂[θ
τ+1|θτ ] ≥ 1

2

{
θτ>H(θτ )θτ − θτ+1>H(θτ )θτ+1 − 2(θτ − θτ+1)>h(θτ )

}
=

1

2

{
θτ>H(θτ )θτ − θτ+1>H(θτ )θτ+1 − 2(θτ − θτ+1)>H(θτ )θτ+1

}
=

1

2

{
θτ>H(θτ )θτ + θτ+1>H(θτ )θτ+1 − 2θτ>H(θτ )θτ+1

}
=

1

2
(θτ − θτ+1)>H(θτ )(θτ − θτ+1),

where we used the relation h(θτ ) = H(θτ )θτ+1 in (20) on the first line. Since H(θ) is assumed to be positive
definite, the proof is completed.

D Regression methods in Section 5.1

Section 5.1 estimates the conditional mode by the following kernel model:

fθ(x) = θ
>km(x) =

n∑
i=1

θikm(x,xi),

where θ = (θ1, θ2, . . . , θn)
> is the vector of parameters, km(x) = (km(x,x1), . . . , km(x,xn)) and km(x,y) is a

kernel function. We employed the Gaussian kernel for km(x,y) where the width parameter was fixed at the median
of the pairwise distance ‖xi − xj‖ (i.e., the median trick) as done in Gretton et al. [2012]. The following regression
methods were applied to the same artificial datasets:

• Kernel ridge regression (KRR): fθ(x) was estimated under the squared-loss with the RKHS norm regularization
as follows:

min
θ

[
1

n

n∑
i=1

(yi − fθ(xi))2 + λ‖fθ‖2H

]
.

The regularization parameter λ was determined by the five-hold cross-validation.



• Least absolute deviations (LAD): The absolute deviation was used as the loss function:

min
θ

[
1

n

n∑
i=1

|yi − fθ(xi)|+ λ‖fθ‖2H

]
.

As in [Feng et al., 2017, Algorithm 1], the iteratively reweighted least squares (IRLS) algorithm was applied to
optimize the parameters. The five-hold cross-validation was performed to select the regularization parameter.

• Huber loss (Huber): fθ(x) = θ>km(x) was estimated with the Huber loss by minimizing

min
θ

[
1

n

n∑
i=1

L(yi − fθ(xi)) + λ‖fθ‖2H

]
,

where with a positive parameter γ,

L(t) =

{
t2

2γ , |t| ≤ γ,
|t| − γ/2, |t| > γ,

Following [Feng et al., 2017, Algorithm 1], again, IRLS was used to optimize the model parameters. The five-
hold cross-validation was performed to select γ and λ using the LAD loss1.

• Variational heteroscedastic Gaussian process regression (VHGPR) [Lázaro-Gredilla and Titsias, 2011]: We used
the MATLAB code, which is available at http://www.tsc.uc3m.es/˜miguel/downloads.php.

• Modal regression with kernel density estimation (MRKDE): A variant of DMR-K with kernel density estimation
(KDE) following the naive two-step approach. As done in Yao et al. [2012], KDE was performed to estimate
the joint density pyx(y,x) where the Gauss kernel was employed and the width parameters in the kernel were
determined by the standard least-squares cross-validation [Wasserman, 2006]. A similar update rule as DMR-K
was derived and used similarly as in Algorithm 1. Details are given in Section E.

• Direct modal regression with kernels (DMR-K): A proposed method based on reproducing kernels. Regarding
K-LSLD, the Gaussian kernel was used both for kx and ky, and the width parameter in each kernel is determined
by the leave-one-out cross-validation method in Section 3, while we fixed the regularization parameter at n−0.9

by following Kanamori et al. [2012]. Then, fθ(x) was estimated according to Algorithm 1.

Regarding both MRKDE and DMR-K, we initialized the parameters θ by LAD.

E Details of MRKDE

E.1 Risk with the joint probability density function

Since the conditional and joint densities yield the same maximizer with respect to the output variable, the modal
regression function fM can be defined from the joint density pyx(y,x) as

fM(x) = argmax
t

py|x(t|x) = argmax
t

pyx(t,x). (42)

Thus, the following risk alternative to the modal regression risk can be used for modal regression:

RJ(f) :=

∫
pyx(f(x),x)px(x)dx.

The following inequality, which follows from (42), ensures that the maximizer ofRJ(f) is fM:

RJ(f) ≤
∫
pyx(fM(x),x)px(x)dx.

1The same strategy has been used in Debruyne et al. [2008] that parameter estimation and model selection are performed by the
Huber and LAD loss, respectively.



With a parametrized model fθ(x) as in the kernel model, the empirical version ofRJ can be obtained as

R̂J(θ) :=
1

n

n∑
i=1

pyx(fθ(xi),xi).

In practice, we need to estimate the joint density pyx(y,x) to approximate R̂J(θ). Below, we employ kernel density
estimation (KDE) for the joint density pyx(y,x) as done in Yao et al. [2012] and derive an update rule similar as
DMR-K.

E.2 Update rule based on a fixed-point method

Let us define KDE with the Gaussian kernel for joint density estimation by

p̂KDE(y,x) =
1

nZ

n∑
l=1

exp

(
− (y − yl)2

2h2y

)
exp

(
−‖x− xl‖

2

2h2x

)
,

where Z = (2π)(dx+1)/2hyh
dx
x , and hy and hx are positive width parameters. Then, p̂KDE(y,x) enables us to approx-

imate R̂J(θ) as

R̃KDE(θ) :=
1

n

n∑
i=1

p̂KDE(fθ(xi),xi).

Computing the gradient of R̃KDE(θ) with respect to θ yields

∂

∂θ
R̃KDE(θ) =

1

n

n∑
i=1

∂

∂θ
fθ(xi)

∂

∂y
p̂KDE(y,x) =

1

n2h2yZ
{hKDE(θ)−HKDE(θ)θ} , (43)

where fθ(x) = θ>km(x),

HKDE(θ) =

n∑
i=1

n∑
l=1

exp

(
− (θ>km(xi)− yl)2

2h2y

)
exp

(
−‖xi − xl‖

2

2h2x

)
km(xi)km(xi)

>,

hKDE(θ) =

n∑
i=1

n∑
l=1

yl exp

(
− (θ>km(xi)− yl)2

2h2y

)
exp

(
−‖xi − xl‖

2

2h2x

)
km(xi).

Setting the right-hand side on (43) to equal to zero leads to the following update rule:

θ ←H−1KDE(θ)hKDE(θ). (44)

Eq.(44) is iteratively used to update θ as in Algorithm 1.

F Other results on artificial data

In addition to (M1) and (M2), we performed the same experiments as Section 5.1 under the following true modal
regression function:

(M3) f∗(x) = 1
dx

∑dx
j=1 x

(j).

Fig.1 plots estimates of f∗ by all methods in dx = 1 over all types of noises. Regarding the Gaussian noise, all
methods perform well. LAD and Huber give better estimates than KRR and VHGPR for the outlier noise, but does
not work to the skewed noise. This would be because LAD and Huber assume symmetric noises. Overall, MRKDE
and DMR-K perform fairly well to all types of noises. Table 3 is the results for (M3) over various data dimensions
and noises, and shows the superior performance of DMR-K on a wide-range of noises and data dimensions as already
demonstrated in the main text.
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Figure 1: Estimates of f∗(x). The top, middle and the bottom rows are the plots when f∗ is (M1), (M2), and (M3),
respectively.

G Validity of the performance score (27)

Feng et al. [2017] indicated that the meaning of the maximizer of the surrogate risk R̃σ changes depending on the
width parameter σ as follows [Feng et al., 2017, Table 2]:

• The maximizer is a conditional mode estimator as σ → 0 and n→∞

• The maximizer is a (robustified) conditional mean estimator as σ, n→∞

In accord with this theory, Table 4 with a large width parameter (σ = 1.0) shows LS and LAD outperform DMR-
NN and DMR-K because these methods estimate the conditional mean and median asymptotically, while DMR-
NN often works better than LS and LAD when the width parameter is small (Table 5, σ = 0.01). Our choice of
σ = n

−1/5
te = (0.2n)−1/5 in the main text2 is in fact a middle of Tables 4 and 5, and approximately 0.09 ≤ σ ≤ 0.27

among all datasets. Thus, it seems to be a fairly good choice because the standard deviations in Table 5 are often large
and the results for too small σ might be unreliable.
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Table 3: Averages of estimation errors over 30 runs for (M3). The numbers in parentheses indicate standard deviations.
The best and comparable methods judged by the t-test at the significance level 1% are described in boldface.

KRR LAD VHGPR Huber MRKDE DMR-K
Gauss noise
dx = 1 0.04(0.02) 0.06(0.02) 0.03(0.01) 0.05(0.02) 0.10(0.02) 0.05(0.03)
dx = 5 0.07(0.01) 0.09(0.01) 0.05(0.01) 0.07(0.01) 0.19(0.02) 0.06(0.02)
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dx = 10 0.50(0.02) 0.36(0.03) 0.49(0.03) 0.39(0.03) 0.32(0.03) 0.23(0.02)
Nonstationary noise
dx = 1 0.31(0.02) 0.22(0.02) 0.31(0.02) 0.22(0.02) 0.17(0.03) 0.15(0.01)
dx = 5 0.32(0.01) 0.20(0.02) 0.31(0.02) 0.20(0.02) 0.16(0.01) 0.15(0.01)
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Table 4: Averages of the performance score (27) over 20 runs when σ = 1.0. The numbers in parentheses indicate
standard deviations. The best and comparable methods judged by the t-test at the significance level 5% are described
in boldface. Note that larger numbers indicate better results.

LS LAD DMR-NN DMR-K
space-ga (dx = 6, n = 3107)
0.3560(0.0027) 0.3563(0.0031) 0.3574(0.0024) 0.3182(0.0056)
abalone (dx = 8, n = 4177)
0.3437(0.0029) 0.3449(0.0026) 0.3428(0.0033) 0.3193(0.0051)
cpusmall (dx = 12, n = 8192)
0.3939(0.0003) 0.3939(0.0003) 0.3941(0.0002) 0.3710(0.0019)
cadata (dx = 8, n = 20640)
0.3673(0.0006) 0.3683(0.0009) 0.3668(0.0011) 0.3349(0.0052)
energy (dx = 24, n = 19735)
0.3504(0.0023) 0.3633(0.0014) 0.3594(0.0015) 0.3448(0.0012)
superconductivty (dx = 81, n = 21263)
0.3844(0.0006) 0.3845(0.0007) 0.3761(0.0027) 0.2654(0.0500)
slice loc. (dx = 384, n = 53500)
0.3987(0.0001) 0.3988(0.0000) 0.3989(0.0000) -
sgemm (dx = 14, n = 241600)
0.3982(0.0001) 0.3980(0.0001) 0.3980(0.0001) 0.3726(0.0006)
yearpred. (dx = 90, n = 515345)
0.3305(0.0006) 0.3361(0.0004) 0.3160(0.0181) 0.1904(0.1441)

Table 5: Averages of the performance score (27) over 20 runs when σ = 0.01.

LS LAD DMR-NN DMR-K
space-ga (dx = 6, n = 3107)
0.8118(0.1974) 0.9480(0.1743) 0.9678(0.2138) 0.6135(0.1857)

abalone (dx = 8, n = 4177)
0.8727(0.1594) 0.9133(0.2500) 0.9544(0.1899) 0.6874(0.1889)

cpusmall (dx = 12, n = 8192)
3.4789(0.2821) 3.8954(0.3286) 3.5118(0.3599) 2.7954(0.2835)

cadata (dx = 8, n = 20640)
1.3059(0.0766) 1.5643(0.0862) 1.6245(0.1159) 0.7764(0.0751)

energy (dx = 24, n = 19735)
1.1987(0.1110) 2.6351(0.1918) 2.8134(0.1349) 2.2965(0.2029)

superconductivty (dx = 81, n = 21263)
3.3490(0.2462) 5.0061(0.3092) 5.2782(0.4759) 1.3480(0.3183)

slice loc. (dx = 384, n = 53500)
14.5556(1.0671) 20.7024(0.5988) 24.5490(1.2943) -
sgemm (dx = 14, n = 241600)
10.8187(0.7424) 14.0139(0.9916) 12.7494(0.7955) 1.9253(0.1047)
yearpred. (dx = 90, n = 515345)
0.7629(0.0242) 0.9252(0.0196) 0.9348(0.0926) 0.3590(0.3075)


