A Proof of Theorem 1

Because P is a bistochastic matrix, and we know $P^* = \frac{1}{\sqrt{n}}\mathbb{1}$, we can lower bound

$$1 \ge P(w)^T P^* = \sum_i w_i \frac{P_i^T}{\|P_i\|} \frac{1}{\sqrt{n}} \mathbb{1}$$
$$= \frac{1}{\sqrt{n}} \sum_i \frac{w_i}{\|P_i\|}$$
$$\ge \frac{1}{\min \|P_i\| \sqrt{n}}$$

Similarly, $C(S) \leq C_{max}^k$. Now given $\lambda \leq \frac{1-\kappa}{C_{max}^k \min \|P_i\| \sqrt{n}}$, we compute

$$\max_{w} P(w)^{T} P^{*} - \lambda C(S) \geq \max_{w} P(w)^{T} P^{*} - \frac{1-\kappa}{\min \|P_{i}\|\sqrt{n}}$$
$$\geq \max_{w} P(w)^{T} P^{*} \left(1 - \frac{1-\kappa}{\min \|P_{i}\|\sqrt{n}} \frac{1}{P(w)^{T} P^{*}}\right)$$
$$\geq \max_{w} P(w)^{T} P^{*} \left(1 - \frac{1-\kappa}{\min \|P_{i}\|\sqrt{n}} \min \|P_{i}\|\sqrt{n}\right)$$
$$\geq \kappa \max_{w} P(w)^{T} P^{*}.$$

B Auxiliary Lemmas

First, we make a few statements related to initialization of the process. Lemma 3.4 from [6] directly applies to this problem, and thus $\delta_k \in [0, 1] \forall k$.

Lemma 4. $\langle Pw_1, \frac{1}{n}\mathbb{1}\rangle \geq \frac{\kappa}{\sqrt{n}\sum_i \|P_i\|}$

Proof follows equivalently to Lemma 3.1 from [6], with added caveat that our choice of weights is within κ of maximum value. Lemma 5. The cost aware geodesic alignment $\langle a_t, a_{t,v_k} \rangle$ satisfies

$$\langle a_k, a_{k,v_k} \rangle \ge \kappa \tau \sqrt{J_t} \vee f(t),$$

for

$$f(x) = \kappa \frac{\sqrt{1 - x}\sqrt{1 - \beta^2 \epsilon} + \sqrt{x\beta}}{\sqrt{1 - \left(\sqrt{x}\sqrt{1 - \beta^2} \epsilon - \sqrt{1 - x\beta}\right)^2}}$$

and

$$\beta = 0 \wedge \min \langle \ell_n, \frac{1}{\sqrt{n}} \mathbb{1} \rangle \text{ s.t. } \langle \ell_n, \frac{1}{\sqrt{n}} \mathbb{1} \rangle > -1$$

Proof. The lemma is equivalent to proving Lemma 3.6 in [6] with one caveat. Here our choice of node is v_k , which comes from choosing the cheapest cost node location from the set $S = \{v \in V | \langle a_k, a_{kv} \rangle \ge \kappa \langle a_k, a_{kv_k} \rangle \}$ Because of this, we can recover all results from $\langle a_k, a_{kv_k} \rangle$ with only a constant κ in front, as our choice satisfies $\langle a_k, a_{kv_k} \rangle \ge \kappa \langle a_k, a_{kv_k} \rangle$.

We apply Lemma 5 to prove the following Theorem that is needed, and mirrors the results from [6].

Theorem 6. Assume a cost of sensor placement $C(v) : V \to \mathbb{R}_+$ and a slack parameter κ . If we choose the set of points W and weights a_w using Algorithm 1 such that |W| = K, then

$$\|Pw - \frac{1}{n}\mathbb{1}\| \le \frac{\eta v_K}{\sqrt{n}},$$

where $v_K = O((1 - \kappa^2 \epsilon^2)^{K/2})$ for some ϵ and $\eta = \sqrt{1 - \kappa^2 \max_{i \in V} \left\langle \frac{P_i}{\|P_i\|}, \frac{1}{\sqrt{n}} \mathbb{1} \right\rangle^2}$.

Proof. We mimic the results from [6], incorporating the additional cost parameter. We denote $J_k := 1 - \langle \frac{Pw_k}{\|Pw_k\|}, \frac{1}{\sqrt{n}} \mathbb{1} \rangle$. If we substitute this into the formula for δ_t , we get

$$J_{k+1} = J_k (1 - \langle a_t, a_{kv_k} \rangle^2).$$

Applying our bound from Lemma 5, we get

$$J_{k+1} \le J_k \left(1 - \kappa^2 \tau^2 J_k\right)$$

By applying the standard induction argument used in [6], we get

$$J_k \le B(k) := \frac{J_1}{1 + \kappa^2 \tau^2 (k - 1)}.$$

Because B(k) still goes to 0, and $f(B(k)) \to \kappa \epsilon$, there exists a k^* such that $f(B(k)) \ge \kappa \tau \sqrt{B(k)}$, and since f is monotonic decreasing, $f(J_t) > f(B(k))$. Using Lemma 5, we finish with

$$J_k \le B(k \land k^*) \prod_{s=k^*+1}^k (1 - f^2(B(s)))$$

We note that $\frac{1}{n}J_k = \|\beta^* P(w) - P^*\|^2$, so this means

$$\|\beta^* P w - \frac{1}{n} \mathbb{1}\| \le \frac{\eta C_K}{\sqrt{n}},$$

for constant C_K combining the denominator in B(k) and the product of $\prod_{s=k^*+1} k 1 - f^2(B(s))$, and $\sqrt{J_1} = \eta$. Notice that $f(B(k)) \to \kappa \epsilon$ shows a rate of decay of $v = \sqrt{1 - \kappa^2 \epsilon^2}$.

C Proof of Theorem 2

We note that [27] proves multiple bounds on $\left|\frac{1}{n}\sum_{v\in V}f(v)-\sum_{s\in S}w_sf(s)\right|$. The main bound in the paper comes from using the fact that they assume $\sum_s w_s = 1$, which allows them to break up the inner product $\|P\sum_s w_s\delta_s - \frac{1}{n}\mathbb{1}\|$ into its subsequent terms $(\|P\sum_s w_s\delta_w\|^2 - \frac{1}{n})^{1/2}$. We step away from this assumption and will instead work directly with the norm $\left\|P\sum_s w_s\delta_s - \frac{1}{n}\mathbb{1}\right\| = \|Pw - \frac{1}{n}\mathbb{1}\|$.

By the same logic as in [27], we know

$$\left|\frac{1}{n}\sum_{v\in V}f(v) - \sum_{s\in S}w_sf(s)\right| \le \frac{\|f\|_{P_{\lambda}}}{\lambda^{\ell}}\min_{\beta,w}\|\beta P^{\ell}w - \frac{1}{n}\mathbb{1}\|.$$

We can simply replace $\tilde{P} = P^{\ell}$ and inherit on \tilde{P} in Theorem 6, in particular that we still have $\sum_{i} \frac{1}{n} \tilde{P}_{i} = \frac{1}{n} \mathbb{1}$. Thus, we can apply the guarantees of Algorithm 1 and Theorem 6 to bound $\|\beta P^{\ell}w - \frac{1}{n}\mathbb{1}\| \leq \frac{\eta v_{K}}{\sqrt{n}}$ and attain the desired result.