
A Proof of Theorem 1
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B Auxiliary Lemmas

First, we make a few statements related to initialization of the process. Lemma 3.4 from [6] directly applies to this problem, and thus
δk ∈ [0, 1] ∀k.
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Proof follows equivalently to Lemma 3.1 from [6], with added caveat that our choice of weights is within κ of maximum value.

Lemma 5. The cost aware geodesic alignment 〈at, at,vk 〉 satisfies
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Proof. The lemma is equivalent to proving Lemma 3.6 in [6] with one caveat. Here our choice of node is vk, which comes from
choosing the cheapest cost node location from the set S = {v ∈ V |〈ak, akv〉 ≥ κ〈ak, akvk 〉} Because of this, we can recover all
results from 〈ak, akvk 〉 with only a constant κ in front, as our choice satisfies 〈ak, akvk 〉 ≥ κ〈ak, akvk 〉.

We apply Lemma 5 to prove the following Theorem that is needed, and mirrors the results from [6].

Theorem 6. Assume a cost of sensor placement C(v) : V → R+ and a slack parameter κ. If we choose the set of points W and
weights aw using Algorithm 1 such that |W | = K, then
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Proof. We mimic the results from [6], incorporating the additional cost parameter. We denote Jk := 1 − 〈 Pwk
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C Proof of Theorem 2
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We can simply replace P̃ = P ` and inherit on P̃ in Theorem 6, in particular that we still have
∑
i

1
n
P̃i =

1
n
1. Thus, we can apply

the guarantees of Algorithm 1 and Theorem 6 to bound ‖βP `w − 1
n
1‖ ≤ η vK√

n
and attain the desired result.


