A Proof of Theorem 1

Because P is a bistochastic matrix, and we know $P^{*}=\frac{1}{\sqrt{n}} \mathbb{1}$, we can lower bound

$$
\begin{aligned}
1 \geq P(w)^{T} P^{*} & =\sum_{i} w_{i} \frac{P_{i}^{T}}{\left\|P_{i}\right\|} \frac{1}{\sqrt{n}} \mathbb{1} \\
& =\frac{1}{\sqrt{n}} \sum_{i} \frac{w_{i}}{\left\|P_{i}\right\|} \\
& \geq \frac{1}{\min \left\|P_{i}\right\| \sqrt{n}}
\end{aligned}
$$

Similarly, $C(S) \leq C_{m a x}^{k}$. Now given $\lambda \leq \frac{1-\kappa}{C_{\text {max }}^{k} \min \left\|P_{i}\right\| \sqrt{n}}$, we compute

$$
\begin{aligned}
\max _{w} P(w)^{T} P^{*}-\lambda C(S) & \geq \max _{w} P(w)^{T} P^{*}-\frac{1-\kappa}{\min \left\|P_{i}\right\| \sqrt{n}} \\
& \geq \max _{w} P(w)^{T} P^{*}\left(1-\frac{1-\kappa}{\min \left\|P_{i}\right\| \sqrt{n}} \frac{1}{P(w)^{T} P^{*}}\right) \\
& \geq \max _{w} P(w)^{T} P^{*}\left(1-\frac{1-\kappa}{\min \left\|P_{i}\right\| \sqrt{n}} \min \left\|P_{i}\right\| \sqrt{n}\right) \\
& \geq \kappa \max _{w} P(w)^{T} P^{*} .
\end{aligned}
$$

B Auxiliary Lemmas

First, we make a few statements related to initialization of the process. Lemma 3.4 from [6] directly applies to this problem, and thus $\delta_{k} \in[0,1] \forall k$.
Lemma 4. $\left\langle P w_{1}, \frac{1}{n} \mathbb{1}\right\rangle \geq \frac{\kappa}{\sqrt{n} \sum_{i}\left\|P_{i}\right\|}$
Proof follows equivalently to Lemma 3.1 from [6], with added caveat that our choice of weights is within κ of maximum value.
Lemma 5. The cost aware geodesic alignment $\left\langle a_{t}, a_{t, v_{k}}\right\rangle$ satisfies

$$
\left\langle a_{k}, a_{k, v_{k}}\right\rangle \geq \kappa \tau \sqrt{J_{t}} \vee f(t),
$$

for

$$
f(x)=\kappa \frac{\sqrt{1-x} \sqrt{1-\beta^{2}} \epsilon+\sqrt{x} \beta}{\sqrt{1-\left(\sqrt{x} \sqrt{1-\beta^{2}} \epsilon-\sqrt{1-x} \beta\right)^{2}}}
$$

and

$$
\beta=0 \wedge \min \left\langle\ell_{n}, \frac{1}{\sqrt{n}} \mathbb{1}\right\rangle \text { s.t. }\left\langle\ell_{n}, \frac{1}{\sqrt{n}} \mathbb{1}\right\rangle>-1 .
$$

Proof. The lemma is equivalent to proving Lemma 3.6 in [6] with one caveat. Here our choice of node is v_{k}, which comes from choosing the cheapest cost node location from the set $S=\left\{v \in V \mid\left\langle a_{k}, a_{k v}\right\rangle \geq \kappa\left\langle a_{k}, a_{k v_{k}}\right\rangle\right\}$ Because of this, we can recover all results from $\left\langle a_{k}, a_{k v_{k}}\right\rangle$ with only a constant κ in front, as our choice satisfies $\left\langle\bar{a}_{k}, a_{k v_{k}}\right\rangle \geq \kappa\left\langle a_{k}, a_{k v_{k}}\right\rangle$.

We apply Lemma 5 to prove the following Theorem that is needed, and mirrors the results from [6].
Theorem 6. Assume a cost of sensor placement $C(v): V \rightarrow \mathbb{R}_{+}$and a slack parameter κ. If we choose the set of points W and weights a_{w} using Algorithm 1 such that $|W|=K$, then

$$
\left\|P w-\frac{1}{n} \mathbb{1}\right\| \leq \frac{\eta v_{K}}{\sqrt{n}},
$$

where $v_{K}=O\left(\left(1-\kappa^{2} \epsilon^{2}\right)^{K / 2}\right)$ for some ϵ and $\eta=\sqrt{1-\kappa^{2} \max _{i \in V}\left\langle\frac{P_{i}}{\left\|P_{i}\right\|}, \frac{1}{\sqrt{n}} \mathbb{1}\right\rangle^{2}}$.

Proof. We mimic the results from [6], incorporating the additional cost parameter. We denote $J_{k}:=1-\left\langle\frac{P w_{k}}{\left\|P w_{k}\right\|}, \frac{1}{\sqrt{n}} \mathbb{1}\right\rangle$. If we substitute this into the formula for δ_{t}, we get

$$
J_{k+1}=J_{k}\left(1-\left\langle a_{t}, a_{k v_{k}}\right\rangle^{2}\right) .
$$

Applying our bound from Lemma 5, we get

$$
J_{k+1} \leq J_{k}\left(1-\kappa^{2} \tau^{2} J_{k}\right)
$$

By applying the standard induction argument used in [6], we get

$$
J_{k} \leq B(k):=\frac{J_{1}}{1+\kappa^{2} \tau^{2}(k-1)} .
$$

Because $B(k)$ still goes to 0 , and $f(B(k)) \rightarrow \kappa \epsilon$, there exists a k^{*} such that $f(B(k)) \geq \kappa \tau \sqrt{B(k)}$, and since f is monotonic decreasing, $f\left(J_{t}\right)>f(B(k))$. Using Lemma 5, we finish with

$$
J_{k} \leq B\left(k \wedge k^{*}\right) \prod_{s=k^{*}+1}^{k}\left(1-f^{2}(B(s))\right)
$$

We note that $\frac{1}{n} J_{k}=\left\|\beta^{*} P(w)-P^{*}\right\|^{2}$, so this means

$$
\left\|\beta^{*} P w-\frac{1}{n} \mathbb{1}\right\| \leq \frac{\eta C_{K}}{\sqrt{n}},
$$

for constant C_{K} combining the denominator in $B(k)$ and the product of $\prod_{s=k^{*}+1} k 1-f^{2}(B(s))$, and $\sqrt{J_{1}}=\eta$. Notice that $f(B(k)) \rightarrow \kappa \epsilon$ shows a rate of decay of $v=\sqrt{1-\kappa^{2} \epsilon^{2}}$.

C Proof of Theorem 2

We note that [27] proves multiple bounds on $\left|\frac{1}{n} \sum_{v \in V} f(v)-\sum_{s \in S} w_{s} f(s)\right|$. The main bound in the paper comes from using the fact that they assume $\sum_{s} w_{s}=1$, which allows them to break up the inner product $\left\|P \sum_{s} w_{s} \delta_{s}-\frac{1}{n} \mathbb{1}\right\|$ into its subsequent terms $\left(\left\|P \sum_{s} w_{s} \delta_{w}\right\|^{2}-\frac{1}{n}\right)^{1 / 2}$. We step away from this assumption and will instead work directly with the norm $\left\|P \sum_{s} w_{s} \delta_{s}-\frac{1}{n} \mathbb{1}\right\|=$ $\left\|P w-\frac{1}{n} \mathbb{1}\right\|$.
By the same logic as in [27], we know

$$
\left|\frac{1}{n} \sum_{v \in V} f(v)-\sum_{s \in S} w_{s} f(s)\right| \leq \frac{\|f\|_{P_{\lambda}}}{\lambda^{\ell}} \min _{\beta, w}\left\|\beta P^{\ell} w-\frac{1}{n} \mathbb{1}\right\| .
$$

We can simply replace $\widetilde{P}=P^{\ell}$ and inherit on \widetilde{P} in Theorem 6, in particular that we still have $\sum_{i} \frac{1}{n} \widetilde{P}_{i}=\frac{1}{n} \mathbb{1}$. Thus, we can apply the guarantees of Algorithm 1 and Theorem 6 to bound $\left\|\beta P^{\ell} w-\frac{1}{n} \mathbb{1}\right\| \leq \frac{\eta v_{K}}{\sqrt{n}}$ and attain the desired result.

