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Abstract

In this paper, we consider the problem of es-
timating all possible causal effects from ob-
servational data with two types of background
knowledge: direct causal information and non-
ancestral information. Following the IDA
framework, we first provide locally valid ori-
entation rules for maximal partially directed
acyclic graphs (PDAGs), which are widely used
to represent background knowledge. Based on
the proposed rules, we present a fully local algo-
rithm to estimate all possible causal effects with
direct causal information. Furthermore, we con-
sider non-ancestral information and prove that
it can be equivalently transformed into direct
causal information, meaning that we can also
locally estimate all possible causal effects with
non-ancestral information. The test results on
both synthetic and real-world data sets show
that our methods are efficient and stable.

1 INTRODUCTION

Directed acyclic graphs (DAGs) are widely used in causal
inference. When the underlying causal DAG is fully spec-
ified by background knowledge (Meek, 1995) or exper-
imental data (He & Geng, 2008; Hauser & Bühlmann,
2012), the causal effect of a treatment on a target can be
estimated from observational data using the back-door
adjustment criterion (Pearl, 2009). However, with obser-
vational data, one can only learn a completely partially
directed acyclic graph (CPDAG) representing a class of
Markov equivalent DAGs (Spirtes et al., 2000), making
it difficult to identify all causal effects since equivalent
DAGs may entail different causal relations.
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To estimate causal effects from observational data with-
out a fully specified DAG, some researchers focus on the
identifiability of a causal effect (Perković et al., 2015,
2017; Perković et al., 2018; Jaber et al., 2018a,b, 2019).
Since not all causal effects can be uniquely identified, an
alternative approach is to learn a CPDAG first, then enu-
merate all DAGs in the learned Markov equivalence class
and estimate the causal effect for each of those equivalent
DAGs (Maathuis et al., 2009). For any treatment-target
pair, this method returns a multi-set of all possible causal
effects of the treatment on the target. Since enumerat-
ing all DAGs is infeasible when the size of the Markov
equivalence class is large (He et al., 2015), Maathuis et al.
(2009) further proposed a local algorithm called IDA to
estimate the multi-set. Instead of enumerating all DAGs,
IDA only enumerates possible parental sets of the treat-
ment, which is shown to be efficient since enumerating
possible parental sets only requires the local structure
around the treatment (Maathuis et al., 2009).

Incorporating background knowledge into causal infer-
ence has drawn more and more attentions in recent years
(Perković et al., 2017; Henckel et al., 2019; Perković,
2019). In real applications, practitioners usually have
prior knowledge about the causal system. For example, if
the causal system is related to time, we may assume that
the subsequent events are not the causes of the prior events.
In social sciences, it is reasonable to assume that intrinsic
attributes, such as gender and race, are not affected by
other variables. In medical sciences, previous studies may
indicate that some behaviors will definitely cause some
diseases, like smoking causes bronchitis or eating betel
nuts causes oral cancer. Recently, Perković et al. (2017)
extended IDA to deal with the cases where direct causal
information is available. They proposed a semi-local algo-
rithm to enumerate all possible causal effects. However,
the semi-local IDA needs the entire CPDAG instead of the
local structure around the treatment to check the validity
of a possible parental set, which limits the application of
the semi-local IDA to high dimensional systems.



In this paper, we consider the problem of estimating
all possible causal effects from observational data with
background knowledge. Our paper extends the work
of Maathuis et al. (2009) and Perković et al. (2017), and
has the following contributions:

• We provide locally valid orientation rules for max-
imal partially directed acyclic graphs (PDAGs),
which is sufficient and necessary to check whether
a set of variables in a maximal PDAG can be the
parents of a given target.

• Based on the proposed rules, we give a fully local
algorithm to enumerate all possible causal effects
with direct causal information.

• We prove that non-ancestral information can be
equivalently transformed into direct causal informa-
tion, making it possible to locally enumerate all pos-
sible causal effects with non-ancestral information.

2 PRELIMINARIES

In this section, we introduce the notation, definitions and
related work.

2.1 CAUSAL GRAPHICAL MODELS

A graph G = (V,E) is directed (undirected, or partially
directed) if all edges in the graph are directed (undirected,
or a mixture of directed and undirected ones). The skele-
ton of G is an undirected graph obtained from removing
all arrowheads in G. For any V′ ⊂ V, the induced sub-
graph of G over V′ is the graph with vertex set V′ and
edge set E′, where E′ ⊂ E contains all and only edges
between vertices in V′.

Given a graph G,Xi is a parent ofXj andXj is a child of
Xi ifXi → Xj in G, andXi is a sibling ofXj ifXi−Xj

in G. If there is an edge betweenXi andXj , then they are
adjacent. We use pa(Xi,G), ch(Xi,G), sib(Xi,G), and
adj(Xi,G) to denote the sets of parents, children, siblings,
and adjacent vertices of Xi in G, respectively. A graph is
called complete if every two distinct vertices are adjacent.
A path is a sequence of distinct vertices (Xk1

, · · · , Xkj
)

such that any two consecutive vertices are adjacent. If
every two distinct vertices in a graph are connected by a
path, then the graph is called connected. A path is called
partially directed from Xk1

to Xkj
if Xki

← Xki+1
does

not occur in G for any i = 1, . . . , j − 1. A partially di-
rected path is directed (undirected) if all edges on the path
are directed (undirected). A (partially directed, directed,
or undirected) cycle is a (partially directed, directed, or
undirected) path from a vertex to itself. The length of a
path (cycle) is the number of edges on the path (cycle).

Particularly, a cycle with length three is called a triangle.
A vertex Xi is an ancestor of Xj and Xj is a descen-
dant of Xi if there is a directed path from Xi to Xj or
Xi = Xj ; the sets of all ancestors and all descendants of
Xi in a graph G are denoted by an(Xi,G) and de(Xi,G),
respectively. A chord of a path (cycle) is any edge join-
ing two nonconsecutive vertices on the path (cycle). A
path (cycle) without any chord is called chordless1. An
undirected graph is chordal if it has no chordless cycle
with length greater than three. A directed graph is acyclic
(DAG) if there are no directed cycles.

The notion of d-separation induces a set of conditional
independence relations encoded in a DAG (Pearl, 1988).
Two DAGs are Markov equivalent if they induce the same
set of conditional independence relations. For three dis-
tinct vertices Xi, Xj and Xk, if Xi → Xj ← Xk and Xi

is not adjacent to Xk in G, then the triple (Xi, Xj , Xk)
is called a v-structure collided on Xj . Pearl et al. (1989)
have shown that two DAGs are equivalent if and only if
they have the same skeleton and the same v-structures. A
Markov equivalence class or simply equivalence class,
denoted by [G], contains all DAGs equivalent to G. A
Markov equivalence class [G] can be uniquely represented
by a partially directed graph called completely partially
directed acyclic graph (CPDAG) G∗, in which two ver-
tices are adjacent if and only if they are adjacent in G
and a directed edge occurs if and only if it appears in
every DAG in [G] (Pearl et al., 1989). Given a CPDAG
G∗, we use G∗u and G∗d to denote the undirected subgraph
and directed subgraph of G∗, respectively. The former is
defined as the undirected graph resulted by removing all
directed edges in G∗, and the later is the directed graph
obtained by removing undirected edges. Andersson et al.
(1997) proved that G∗ is a chain graph, which means, (1)
the undirected subgraph G∗u of G∗ is the union of disjoint
connected chordal graphs, and (2) every partially directed
cycle is an undirected cycle in G∗. The isolated con-
nected chordal graphs of G∗u are called chain components
of G∗ (Andersson et al., 1997).

A causal DAG model consists of a DAG G and a joint
distribution P over a common set V such that P satisfies
the causal Markov assumption with respect to G, which
requires that P can be factorized as,

P (x1, ..., xn) =

n∏
i=1

P (xi|pa(xi,G)).

In this paper, we also assume that there is no hidden
variable or selection bias, and a CPDAG representing
the Markov equivalence class containing the underlying

1The word ‘chordless’ is mostly used in graph theory (see,
e.g. Blair & Peyton, 1993), while in some papers, such paths
are called ‘unshielded’ (see, e.g. Perković et al., 2017)



causal DAG can be recovered from data.2

2.2 INTERPRETING BACKGROUND
KNOWLEDGE

Background information can be regarded as a set of con-
straints. In this paper, we consider both direct causal
information (Meek, 1995; Perković et al., 2017) and non-
ancestral information. A direct causal claim, denoted
by X → Y , is defined as a constraint which requires
X to be a direct cause of Y . Likewise, a non-ancestral
claim, denoted by X 9 Y , is defined as a constraint
which requires X to be a non-ancestor of Y . A direct
causal information set is a set of direct causal claims, and
a non-ancestral information set is a set of non-ancestral
claims. We use Bd, Bn and B to denote a direct causal
information set, a non-ancestral information set, and an
(arbitrary) background knowledge set, respectively.

For a CPDAG G∗, any DAG obtained by orienting the
undirected edges in G∗ without creating new v-structures
or directed cycles is a member of the equivalence class
represented by G∗ (Pearl et al., 1989; Meek, 1995). Let
B denote a background knowledge set related to the true
underlying causal DAG. With the constraints inB, we may
further reduce the number of possible DAGs including
the true one. More formally, a set of constraints B is
consistent with a given CPDAG G∗ if there is at least
one DAG G in the Markov equivalence class represented
by G∗ such that G satisfies all constraints in B. If B is
consistent with G∗, then the subset of equivalent DAGs
satisfying all constraints in B is called a restricted Markov
equivalence class with respect to G∗ and B.

Representing background knowledge graphically can
bring a lot of convenience. Clearly, given a CPDAG
G∗, a direct causal information set can be equivalently
interpreted by orienting corresponding undirected edges
in G∗, resulting a partially directed graph H. For sim-
plicity, we say H (or orientations of some undirected
edges in G∗) is consistent with G∗ if the corresponding
direct causal information is consistent with G∗, and the
corresponding restricted Markov equivalence class is rep-
resented by H. Meek (1995) proved that, with a series
of orientation rules called Meek’s criteria, some undi-
rected edges in a consistent H may be further directed
(see Algorithm 6 in Appendix B.1 for details), and the
resulting graph is a maximal partially directed acyclic
graph (maximal PDAG), where two distinct vertices X
and Y are adjacent if and only if they are adjacent in G∗,
and X → Y appears if and only if X → Y appears in
every DAG in the restricted Markov equivalence class
represented byH. Conversely, ifH is inconsistent, then

2Note that recovering CPDAG from observational data may
need additional assumptions.

Algorithm 1 The IDA algorithm

Require: A CPDAG G∗, a target variable Y .
Ensure: {ΘX}X∈V, where ΘX stores all possible causal

effects of X on Y .
1: for each variable X ∈ V do
2: set ΘX = ∅,
3: for each S ⊂ sib(X,G∗) such that orienting S→

X and X → sib(X,G∗) \ S does not introduce
any v-structure collided on X do

4: estimate the causal effect of X on Y by adjust-
ing for S∪ pa(X,G∗), and add the causal effect
to ΘX ,

5: end for
6: end for
7: return {ΘX}X∈V.

the resulting graph is not a maximal PDAG.

2.3 CAUSAL INFERENCE

Given a DAG G and two distinct variables X and Y , the
causal effect of X on Y can be interpreted by the post-
intervention distribution of Y intervening on X via do
operator (Pearl, 1995, 2009). With observational data, if
Y /∈ pa(X,G), then the post-intervention distribution can
be calculated from the pre-intervention distribution by:

P (y|do(X = x))

=

∫
P (y|X = x, pa(x))P (pa(x)) d (pa(x)) .

(1)

If Y ∈ pa(X,G), then P (y|do(X = x)) = P (y). Equa-
tion (1) is a special case of back-door adjustment (Pearl,
1995, 2009), and pa(x,G) is a special back-door adjust-
ment set. However, if we only know a CPDAG G∗, the
causal effect of X on Y may not be identifiable from
observational data. To address this problem, Maathuis
et al. (2009) provided a novel framework called IDA. As
shown in Algorithm 1, IDA enumerates all possible causal
effects of X on Y by listing all possible parental sets and
adjusting for each of them. To decide whether a set of
variables is possible to be the parents ofX , Maathuis et al.
(2009) provided a locally valid orientation rule.

Lemma 1 (Maathuis et al., 2009, Lemma 3.1) Given a
CPDAG G∗, a variableX , and S ⊂ sib(X,G∗), orienting
S → X for each S ∈ S and X → C for each C ∈
sib(X,G∗) \ S is consistent with G∗ if and only if new
orientations do not introduce v-structures collided on X .

For simplicity, below we will use A→ B for two disjoint
sets A and B to denote that for any A ∈ A and B ∈ B,
A → B. Thanks to Lemma 1, although IDA needs a
CPDAG as input, it only needs the local structure around



Algorithm 2 The semi-local IDA algorithm

Require: A CPDAG G∗, a consistent direct causal infor-
mation set Bd, a target variable Y .

Ensure: {ΘX}X∈V, where ΘX stores all possible causal
effects of X on Y .

1: Construct the maximal PDAG H from G∗ and Bd
using Meek’s criteria,

2: for each variable X ∈ V do
3: set ΘX = ∅,
4: for each S ⊂ sib(X,H) do
5: orient S → X and X → sib(X,H) \ S in H,

and denote the resulting graph byHS→X ,
6: using Meek’s criteria to check whetherHS→X

is consistent with G∗,
7: ifHS→X is consistent with G∗ then
8: estimate the causal effect of X on Y by ad-

justing for S ∪ pa(X,H), and add the causal
effect to ΘX ,

9: end if
10: end for
11: end for
12: return {ΘX}X∈V.

the treatment to list all possible parental sets and estimate
all possible causal effects. The results are stored in a
multi-set ΘX , which can be regarded as an unordered list.

Recently, Perković et al. (2017) proposed the semi-local
IDA which can semi-locally find all possible parental sets
of a treatment in a maximal PDAG and then estimate
all possible causal effects by adjusting for each of them.
Algorithm 2 shows the schema. Different from IDA, Al-
gorithm 2 uses Meek’s criteria to check the validity of
candidate parents (line 6). However, Meek’s criteria are
global orientation rules and require an entireH as input.

3 INCORPORATING DIRECT CAUSAL
INFORMATION

In this section, we study the locally valid orientation rules
for maximal PDAGs, and present a fully local algorithm
for estimating all possible causal effects with direct causal
background information.

3.1 LOCALLY VALID ORIENTATION RULES
FOR MAXIMAL PDAGS

Let G∗ be a CPDAG learned from data, and Bd denote a
direct causal information set which is consistent with G∗.
As discussed earlier, one can use a maximal PDAGH to
interpret Bd. Therefore, the key step for estimating all
possible causal effects locally is to develop locally valid
orientation rules for maximal PDAGs. The following

(a) CPDAG G∗

(b) Maximal
PDAG H

(c) H1

(d) H2

(e) H3

(f) H4

(g) H5

(h) H6

(i) H7

(j) H8

(k) H9

Figure 1: An example to show that the rule in Lemma 1 is
no longer valid for maximal PDAGs. Figure 1a shows a
CPDAG, and Figure 1b shows the maximal PDAG when
adding A→ B to G∗. Figures 1c to 1h enumerate all pos-
sible parental sets of X without background knowledge.
Figures 1i to 1k enumerate all possible parental sets of X
with direct causal information A→ B.

example demonstrates that the rule in Lemma 1 is no
longer valid. That is, the criterion in Lemma 1 may cause
directed cycles when applied to a maximal PDAG.

Example 1 Consider the graphs in Figure 1. Given a
CPDAG G∗ in Figure 1a, we would like to estimate all
possible causal effects of X on Y using IDA. From G∗
we can see that sib(X,G∗) = {A,B,C}. Clearly, there
are 8 different subsets of sib(X,G∗). However, neither
{A,B,C} nor {A,C} can be a parental set of X based
on Lemma 1, since A → X ← C is a new v-structure.
Hence, there are 6 possible parental sets of X , which are
listed in Figures 1c to 1h. Now, assume that we know A
is a direct cause of B in the underlying DAG. With this
background knowledge, we orientA−B in G∗ asA→ B.
Furthermore, based on Meek’s criteria, we can further
orient B → C and X → C, which results the maximal
PDAGH. In this case, sib(X,H) = {A,B}. Obviously,
setting the parents of X to be ∅, {A}, {B}, or {A,B}
does not introduce a new v-structure, but only three of
them are valid, since letting B be the parent and A be the
child would cause a directed cycle A→ B → X → A.

Example 1 shows that when orienting undirected edges
connected to a treatment in a maximal PDAG, it is not
only necessary to avoid creating new v-structures, but
also important to avoid directed cycles. Given a maximal
PDAGH consistent with a CPDAG G∗, a variable X , and
S ⊂ sib(X,H), we useHS→X to represent the partially
directed graph resulted by orienting S → X and X →



sib(X,H)\S inH. The next theorem shows the sufficient
and necessary conditions for checking whether or not
HS→X is consistent with G∗.

Theorem 1 Let H be a maximal PDAG consistent with
a CPDAG G∗. For any vertex X and S ⊂ sib(X,H), the
following three statements are equivalent.

(1) There is a DAG G in the restricted Markov equiva-
lence class represented byH such that pa(X,G) =
S ∪ pa(X,H) and ch(X,G) = sib(X,H) ∪
ch(X,H) \ S.

(2) Compared with H, HS→X does not introduce any
new V-structure collided on X or any directed trian-
gle containing X .

(3) The induced subgraph ofH over S is complete, and
there does not exist an S ∈ S and aC ∈ adj(X,H)\
(S ∪ pa(X,H)) such that C → S.

The proof of Theorem 1 is provided in Appendix B.1.
An important aspect of Theorem 1 is that, it theoretically
proves that the only directed cycles we need worry about
when orienting undirected edges around a variable X are
those triangles containing X , and the only v-structures
which might be introduced into the graph are those col-
lided on X . Thus, with Theorem 1, we can locally check
whether a set of variables can be the parents of X .

3.2 ESTIMATING CAUSAL EFFECTS

With the help of Theorem 1, we can locally compute all
possible causal effects of a treatment on a target. Algo-
rithm 3 shows the framework. Algorithm 3 first constructs
the maximal PDAGH from G∗ and Bd by using Meek’s
criteria, then for each treatment variable X , it enumerates
all subsets of sib(X,H) and locally checks whether it can
be treated as the parental set of X . The correctness of
Algorithm 3 is guaranteed by Theorem 1.

Compared with the semi-local IDA, DIDA (Algorithm
3) is a fully local algorithm, which means it only needs
the local structure of the treatment when estimating all
possible causal effects of the treatment on the target. Fur-
thermore, one can easily see that IDA is an instance of
DIDA with no background knowledge, since if Bd = ∅,
H is identical to G∗, and orienting undirected edges con-
nected to a given variable in a CPDAG never produces
directed cycles.

4 INCORPORATING
NON-ANCESTRAL INFORMATION

In practice, we may also have background knowledge
about non-ancestral relations among variables. In fact,

Algorithm 3 DIDA: A fully local method for estimating
possible causal effects with direct causal information.

Require: A CPDAG G∗, a consistent direct causal infor-
mation set Bd, a target variable Y .

Ensure: {ΘX}X∈V , where ΘX is the multi-set of possi-
ble causal effects of X on Y .

1: Construct the maximal PDAG H from G∗ and Bd
using Meek’s criteria,

2: for each variable X ∈ V do
3: set ΘX = ∅,
4: for each S ⊂ sib(X,H) such that orienting S →

X and X → sib(X,H) \ S does not introduce any
V-structure collided on X or any directed triangle
containing X do

5: estimate the causal effect of X on Y by adjust-
ing for S ∪ pa(X,H), and add the causal effect
to ΘX ,

6: end for
7: end for
8: return {ΘX}X∈V .

non-ancestral information is more common than direct
causal information, since the later is a special case of the
former, with the additional information that two variables
are adjacent in the true DAG. However, incorporating non-
ancestral information into causal inference is not easy. In
this section, we prove that a non-ancestral information
set can be equivalently transformed into a direct causal
information set. Thus, non-ancestral information, like
direct causal information, can be interpreted graphically
via maximal PDAGs.

4.1 EQUIVALENT BACKGROUND
KNOWLEDGE

In this part, we give theoretical foundations as well as an
algorithm for transforming non-ancestral information. We
begin our discussion with a new concept called equivalent
background knowledge.

Definition 1 (Equivalent Background Knowledge)
Given a CPDAG G∗, two background knowledge sets B1
and B2 are equivalent with respect to G∗, if the restricted
Markov equivalence class with respect to G∗ and B1 is
identical to the restricted Markov equivalence class with
respect to G∗ and B2.

Definition 1 means that two background knowledge sets
are equivalent if and only if they put the same constraints
on an equivalence class. Note that, the equivalence of
background knowledge depends on G∗. Generally, two
equivalent background knowledge sets with respect to one
CPDAG may not be equivalent anymore with respect to



Algorithm 4 Construct equivalent direct causal informa-
tion
Require: A CPDAG G∗, a consistent non-ancestral in-

formation set Bn.
Ensure: An equivalent direct causal information set Bd.

1: Set Bd = ∅,
2: for each constraint X 9 Y in Bn do
3: find the critical set C of X with respect to Y in G∗,

and add C → X to Bd for each C ∈ C,
4: end for
5: return Bd.

another CPDAG.

In the following, we will prove that a non-ancestral infor-
mation set is equivalent to a certain direct causal infor-
mation set with respect to a given CPDAG. Another new
concept is needed here.

Definition 2 (Critical Set) Let G∗ be a CPDAG. X and
Y are two distinct vertices in G∗. The critical set of X
with respect to Y in G∗ consists of all adjacent vertices of
X lying on at least one chordless partially directed path
from X to Y .

Note that Y itself may be in the critical set. Critical sets
are important in transforming non-ancestral information
to direct causal information, as stated in the following
lemma.

Lemma 2 Let G∗ be a CPDAG. For any two distinct ver-
tices X and Y in G∗, X is not an ancestor of Y in the
underlying DAG if and only if every vertex in the critical
set of X with respect to Y in G∗ is a direct cause of X in
the underlying DAG.

The proof of Lemma 2 is in Appendix B.2. With Lemma 2,
we can construct an equivalent direct causal information
set from a given non-ancestral information set. Algorithm
4 shows the procedure. Notice that, the main step of
Algorithm 4 is to find the critical set, which can be done
by using width-first-search (Perković et al., 2017).

The correctness of Algorithm 4 is guaranteed by Theo-
rem 2, where the proof is given in Appendix B.3. It is
worth noting that Algorithm 4 (and Theorem 2) is not
only for consistent non-ancestral information, but also for
the mixture of consistent non-ancestral and direct causal
information, as the later is a special case of the former.
Thus, if the input background knowledge of Algorithm
4 is a consistent direct causal information set, then the
output is identical to the input minus a collection of in-
formation that does not introduce any constraint, e.g., the
information X 9 Y while Y → X is already present in
the CPDAG.

Algorithm 5 NIDA: A fully local method for estimating
possible causal effects with non-ancestral information

Require: A CPDAG G∗, a consistent non-ancestral in-
formation set Bn, a target variable Y .

Ensure: {ΘX}X∈V , where ΘX is the multi-set of possi-
ble causal effects of X on Y .

1: Construct the equivalent direct causal information Bd
by calling Algorithm 4, with input G∗ and Bn,

2: compute {ΘX}X∈V by calling DIDA (Algorithm 3),
with input G∗, Bd, and Y ,

3: return {ΘX}X∈V .

Theorem 2 Let G∗ be a CPDAG. For any consistent non-
ancestral information set Bn, the direct causal informa-
tion set Bd constructed according to Algorithm 4 is equiv-
alent to Bn.

4.2 TRANSFORMING NON-ANCESTRAL
INFORMATION AND ESTIMATING
CAUSAL EFFECTS

Section 4.1 shows that a consistent non-ancestral infor-
mation set can be equivalently transformed into a direct
causal information set. Therefore, we can graphically
interpret non-ancestral information via maximal PDAGs.
Once we obtain a maximal PDAG, the possible causal
effects of a treatment on a target can be estimated locally
based on DIDA (Algorithm 3). The above procedure is
summarized in Algorithm 5.

Similar to Algorithm 4, NIDA is also valid when the
input is a direct causal information set. From this point
of view, DIDA is a special case of NIDA. However, if
one is certain that the type of background knowledge
is direct causal information, we suggest to use DIDA
directly, since calling Algorithm 4 in NIDA may bring
unnecessary costs.

Example 2 We use an example to show how NIDA works.
Consider the graphs in Figure 2 as well as the treatment
X . Figure 2a shows the CPDAG G∗ learned from data.
Suppose we also have the background knowledge which
states that A is not an ancestor of Y and X is not an
ancestor of C. Notice that, X is not an ancestor of C
is also a piece of direct causal information, i.e., C is a
direct cause of X , since X and C are adjacent in G∗.
The background knowledge is marked on Figure 2b. Fig-
ure 2c shows the partially directed graph H1 resulted
by converting the output of Algorithm 4 to a PDAG, that
is, for any X → Y in Bd, if X − Y in G∗, then we ori-
ent X − Y as X → Y . Besides C → X , C − A and
B −A are oriented as C → A and B → A respectively
since A − B → Y and A − C → Y are chordless par-



(a) CPDAG G∗

(b) Background Knowledge

(c) PDAG H1

(d) Maximal PDAG H2

(e) H3

(f) H4

(g) H5

(h) H6

Figure 2: An example to illustrate how NIDA (Algorithm 5) works.

tially directed paths. Figure 2d further gives the maximal
PDAG extending H1 based on Meek’s criteria. Since
sib(X,H2) = {A,B}, there are four candidate parental
sets of X , namely, {A,B}, {A}, {B}, and ∅. However,
setting {A} to be X’s parental set will introduce a di-
rected triangle, see Figure 2h. Thus, the only three possi-
ble parental sets are illustrated in Figure 2e-2g.

5 EXPERIMENTS

The algorithms proposed in this paper enable us to fully
locally estimate possible causal effects with two different
types of background knowledge. In this section, with
both synthetic and real-world data, we empirically show
that the local nature of our algorithms can indeed reduce
the computational costs. In Section 5.1, we compare
DIDA and NIDA to IDA and the semi-local IDA, with
direct causal information and non-ancestral information,
respectively. Note that, the semi-local IDA is not directly
applicable to non-ancestral information, thus we com-
bined it with Algorithm 4. In Section 5.2, we apply our
methods to the Arabidopsis thaliana data set. Since DIDA
is a special case of NIDA, we only use NIDA in this part.

5.1 SIMULATIONS

Our simulations were conducted as follows. In the
first scenario, we first sampled a random DAG G with
N = 100 vertices and expected neighborhood size e ∈
{1, 2, ..., 10}, then randomly picked a treatment X and a
target Y , and generated a consistent direct causal informa-
tion set Bd(G) by randomly choosing p ∈ {0, 10, ..., 100}
percent of directed edges in G as background knowledge.
Notice that in our simulations, a chosen direct causal
claim may put no constraint on the Markov equivalence
class. This procedure was repeated 100 times, resulting
100 (G,Bd(G)) pairs for each setting. (There are totally
10× 11 settings.) Next, for each (G,Bd(G)) pair, we ran-
domly generated a multivariate Gaussian distribution with

edge weights uniformly sampled from [0.5, 2] indepen-
dently and independent standard normal noises (Maathuis
et al., 2009), and sampled 1000 observations from this
distribution. Finally, we transformed each sampled DAG
to the corresponding CPDAG, added background knowl-
edge to the CPDAG, and estimated possible causal ef-
fects of the chosen treatment on the chosen target. In the
second scenario, we consider non-ancestral background
knowledge. The non-ancestral background information
set with respect to a given DAG G was generated by
randomly choosing p ∈ {0, 10, ..., 100} percent of non-
ancestral relations according to G, i.e., variable pairs like
(X,Y ) where Y is not an ancestor of X . Except for
sampling background knowledge, other procedures were
similar to those in the first scenario. We note that, fol-
lowing Perković et al. (2017), the input CPDAG for each
setting in both scenarios is the true CPDAG rather than
the estimated one, since we do not want to bring any esti-
mation bias caused by learning graphs to the evaluation
of different methods. Besides, it is difficult to incorporate
background knowledge to a incorrect CPDAG since they
may conflict to each other.

Figure 3 shows the average CPU time of IDA, the semi-
local IDA and DIDA (NIDA), with direct causal informa-
tion (Figure 3a) and non-ancestral information (Figure
3b). As expected, it takes more time to estimate the multi-
set of possible effects when the graph is dense. Since IDA
is directly applied to the CPDAGs without considering
background knowledge, the average CPU time of IDA
is stable when the percentage of background knowledge
varies. Similar to IDA, the average CPU time of DIDA
(NIDA) is also stable, as DIDA (NIDA) is fully local and
adding background knowledge does not change the neigh-
borhood size. Although the figure suggests that DIDA
(NIDA) is slightly faster than IDA, we find this difference
is insignificant, as shown in Figure 4. On the other hand,
the average CPU time of the semi-local IDA decreases
when the percentage of background knowledge increases.
When no background knowledge is given, the semi-local



(a) With Direct Causal Information

(b) With Non-Ancestral Information

Figure 3: The average CPU time (secs.) of IDA, the semi-local IDA and DIDA (NIDA), with direct causal information
and non-ancestral information. IDA is directly applied to the CPDAGs without adding any background knowledge. en
is an abbreviation for ‘expected neighborhood size’.

IDA is usually slower than both IDA and DIDA (NIDA),
but as the percentage of background knowledge increases,
the number of undirected edges in the maximal PDAG
decreases, which makes the CPU time of the semi-local
IDA converge to that of DIDA (NIDA).

Another important feature indicated by Figure 3 is that,
non-ancestral information is more informative than direct
causal information. Fix an expected neighborhood size,
one can see that the average time of the semi-local IDA
given non-ancestral information decreases faster than that
given direct causal information. This means that with the
same percentage of background knowledge, there are less
undirected edges in the maximal PDAG resulted from
adding non-ancestral information. Figure 5 in Appendix
A also supports this claim, where we report the average
number of possible effects of one treatment on one target.
This interesting feature is supported by Lemma 2 and
Theorem 2. A direct causal claim can at most orient one
edge, while a non-ancestral claim can potentially orient
more than one undirected edge.

We also analyze the distribution of the CPU time. As an
example, Figure 4 shows the estimated densities with the
expected neighborhood size e ∈ {2, 8} and the percent-
age of direct causal information p ∈ {0, 0.5}. From the
figures we know that the CPU time distributions of IDA
and DIDA are unimodal, while that of the semi-local IDA

is usually multimodal. Another important result is that,
the CPU time distributions of all three methods have one
common peak near zero. When the graph becomes dense
or more background knowledge is given, the other peaks
of the semi-local IDA become flat. Finally, the CPU time
distribution of the semi-local IDA becomes unimodal.

5.2 REAL-WORLD DATA

We now apply NIDA to the Arabidopsis thaliana data
set (Opgen-Rhein & Strimmer, 2007). The Arabidopsis
thaliana data set can be directly loaded from R package
GeneNet (Schäfer et al., 2006). The data set consists of
11 samples of 800 genes, and each variable approximately
follows a Gaussian distribution. We used a hybrid method
to learn a CPDAG from the Arabidopsis thaliana data set
(see Appendix A for more details). The final CPDAG
contains 32 undirected edges and 266 directed edges, and
there are 185 genes in the network after removing all sin-
gletons. The background knowledge was obtained from
the ARTH150 network.3 The ARTH150 network is a DAG
with 107 nodes and 150 directed edges, which describes
the causal relations among a subset of 800 genes in the
Arabidopsis thaliana data set. We constructed Bn by
adding all Y 9 X such that X is an ancestor of Y in the

3The network can be found at http://www.bnlearn.
com/bnrepository/.

http://www.bnlearn.com/bnrepository/
http://www.bnlearn.com/bnrepository/


(a) e = 2, p = 0

(b) e = 2, p = 0.5

(c) e = 8, p = 0

(d) e = 8, p = 0.5

Figure 4: The estimated densities of CPU time (secs.) of different approaches, with the expected neighborhood size
e ∈ {2, 8} and the percentage of direct causal information p ∈ {0, 0.5}.

ARTH150 network. Clearly, Bn is a non-ancestral infor-
mation set. The total number of non-ancestral relations
in Bn is 525. After adding the background knowledge to
the CPDAG, the maximal PDAG contains 16 undirected
edges and 282 directed edges.

All methods were applied to all 185×184 pairs of distinct
variables (X,Y ) in the learned maximal PDAG to esti-
mate the possible effects of each X on each Y . Similar
to the simulation results, the CPU time distributions of
IDA and NIDA are unimodal while the CPU time distri-
bution of the semi-local IDA is multimodal. In fact, the
maximal time of the semi-local IDA is 65.48 seconds,
while the maximal time of IDA and NIDA is 3.68 and
3.02 seconds respectively. Since the maximal PDAG only
contains 16 undirected edges, the semi-local IDA and
NIDA perform similarly on average. However, NIDA is
more stable across all situations, no matter how large the
set of possible causal effects is.

6 CONCLUDING REMARKS

Estimating causal effects from observational data has been
widely studied. However, in practice, one may also have
prior knowledge about the causal system. This additional
information may have great influence on causal inference.
In this paper, we consider the problem of estimating all
possible causal effects from observational data with di-
rect causal information and non-ancestral information.
We provide locally valid orientation rules for maximal
PDAGs, which extend Maathuis et al. (2009, Lemma 3.1).
Based on the rules, we propose a fully local algorithm

to estimate all possible causal effects of a treatment on a
target. We further consider non-ancestral information and
prove that a non-ancestral information set can be equiv-
alently transformed into a direct causal information set,
making it possible to estimate possible causal effects with
non-ancestral information locally. Experiments show that
our algorithms are efficient and stable.

There are some interesting future directions. First, how to
represent incoherent background knowledge with maxi-
mal PDAGs is an important problem in real applications.
To solve the problem, we may need additional information
such as the confidence level of each claim, and perhaps
use the Answer Set Programming (ASP) to find a maximal
PDAG that minimizes the confidence level of the input
claims which the maximal PDAG does not satisfy (Zha-
lama et al., 2019). Moreover, it is worth considering the
causal system containing hidden variables and selection
biases (Richardson & Spirtes, 2002; Zhang, 2008). How-
ever, as discussed in Perković et al. (2017), interpreting
background knowledge graphically in this case is still
challenging. Another possible extension is to consider
other forms of background knowledge, such as ancestral
relations or structural priors.
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Henckel, L., Perković, E., and Maathuis, M. H. Graphi-
cal criteria for efficient total effect estimation via ad-
justment in causal linear models. arXiv e-prints, art.
arXiv:1907.02435, Jul 2019.

Jaber, A., Zhang, J., and Bareinboim, E. A graphical
criterion for effect identification in equivalence classes
of causal diagrams. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18, pp. 5024–5030. International
Joint Conferences on Artificial Intelligence Organiza-
tion, 7 2018a.

Jaber, A., Zhang, J., and Bareinboim, E. Causal identifica-
tion under Markov equivalence. In Proceedings of the
Twenty-Sixth Conference on Uncertainty in Artificial
Intelligence. AUAI press, 2018b.

Jaber, A., Zhang, J., and Bareinboim, E. Causal identifica-
tion under Markov equivalence: Completeness results.
In Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pp. 2981–2989. PMLR,
09–15 Jun 2019.

Maathuis, M. H., Kalisch, M., and Bühlmann, P. Es-
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