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This bound holds for all players and thus we finish the proof.

B Proof of Lemma 2
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The second inequality holds by using Property 1 of � and the induction assumption.

If s /2 Si, it is simple to have

max
⇡i2⇧i

V
(⇡i,⇡

k
�i)

i,h
(s)

ri(s,⇡
k(s, h), h) +

X

s02S

P (s0|s,⇡k(s, h), h) max
⇡i2⇧i

V
(⇡i,⇡

k
�i)

i,h+1 (s0)

r̄ki (s,⇡
k(s, h), h) + P̄ k(s,⇡k(s, h), h)>V k

i,h+1 + bkh(s,⇡
k(s, h))

V k

h (s).

The second inequality holds using Proposition 1. Therefore, we finish our proof with induction.

C supplementary results for Section 6.1

C.1 Failure events

For episode k, we denote wk

h
(s) to be the probability of reaching state s at depth h following policy ⇡k. Also, we

denote nk

h
(s, a) denote the count of visiting state-action pair (s, a) at depth h.Then we define some notations for the
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Lemma 3. (Probabilities for failure events) For �0 2 (0, 1), the bellow inequalities hold
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Proof. This lemma is highly relative to the appendices E.2 of UBEV. Below corollaries are all presented in [Dann
et al., 2017].
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Then we define the union of all these failure events as
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We can get the conclusion that P(F )  � with lemma 3 and letting �0 = �/(4N +5). That is the supplement set of F ,
denoted as F c, happens with a probability at least 1� �.

C.2 Property 1 requirement

We choose the bonus function as
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Therefore, our design of �UPAC satisfies Property 1.

C.3 Nice and Friendly episodes

Then we define the nice episodes:
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Next we define friendly episodes:
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This is exactly the same as the definition in UBEV.

With Lemma E.2 in [Dann et al., 2017] we can bound the number of episodes that are not nice or friendly on F c.
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Then we can concentrate on nice and friendly episodes.

Lemma 6. (Property of nice episodes) Let r � 1. Let D � 1 be a poly-logarithmic function of relevant parameters.
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This lemma can be directly proved with Lemma E.3 of [Dann et al., 2017].
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This lemma can be derived from Lemma E.8 of [Dann et al., 2017].

C.4 The Sample Complexity for One Player

Now we give below lemma:
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Recall that we consider deterministic policies here. Thus the second term can be bounded by H2Swmin = 1
2✏.



Thus we just need to upper bound the first term. Recall that
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Combine them and we get
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Then we let r = 2, D = ln(6SA/�0) and ✏0 = ✏/(4H
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Therefore, by choosing �0 = �/(4N + 5), we finish our proof.

C.5 Proof of theorem 1

Here we give the proof of our main theorem. Our target is give the sample complexity of L✏. Since all players are
involved in L✏, we solve this problem by bounding each player separately.
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It is easy to see that in UBVP, players are symmetric, and thus the result for one can be adapted to the others. Now
we consider player i, i 2 [N ]. Now we define �k
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Further we notice that applying lemma 6 to the right hand side of �k
i

. This process in fact is independent of the choice
of players. That is, this holds for all players at the same time. Hence the sample complexity in lemma 8 is exactly
the sample complexity of L✏. It might be strange that the number of player N only appears in the polylog term. A
rethinking can remind us that the number of states S in fact include the complexity of player numbers implicitly,
because S is the number of states for all players.

Therefore we finish the proof of first part of theorem 1.

For the second part of the theorem, since the analysis is relies on the exact values of player i. We cannot removes the
term N . Thus from Lemma 7 and Lemma 5, we can get that on good event F c:
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Therefore we finish the proof.

D supplementary results for Section 6.2

Recall that we design two � functions as:

�HPR

1 =8HL
q
1/nk(s, a, h),

�HPR

2 =

s
8LV ars0⇠P̄ (s,a,h)V

k

i,h+1(s
0)

nk(s, a, h)
+

14HL

3nk(s, a, h)
+HL

q
1/nk(s, a, h) +

s
8
P

s0 P̄ (s, a, s0, h)C(s0)

nk(s, a, h)
,

where C(s0) = min{104H3S2AL2/nk(s, a, s0, h), H2
} and L = ln(5HSATN/�).

We add a term HL
p
1/nk(s, a, h) to bonus 1 and 2 in [Azar et al., 2017] to get the two bonus functions. We add this

extra term because we assume reward functions are random functions. Thus we need extra term to upper bound the
gap caused by ri.

E Experiment Implementations

Here we give detailed implementations for our empirical results. We give implementations of methods and games.

E.1 Methods

With 5 baselines, we implement 6 methods. We list them below.



Figure 3: Two-player zero-sum FTSG

Figure 4: Cooperative FTSG

• UBVP: we implement UBVP with bonus function �H

1 PR. Considering that our game only gain rewards at
terminal nodes, we can refine this bonus function to be

p
ln(SAt/�)/nk(s, a, h). We set � = 0.1.

• MCTS [Coulom, 2006]: we implement MCTS in a way similar to UCT. For each node, the upper bounds for Q
values are constructed by the averaged value and a bonus term. We choose the same bonus function as UBVP.

• NashQ [Hu and Wellman, 2003]: for FTSGs, we implement NashQ by letting each player choose its maximal Q
values. We use ✏-greedy as its exploration strategy and we choose ✏ = 0.1.

• CFR-PSRL [Zhou et al., 2020]: this is also a model-based methods which combines the technique of PSRL. In
this method, each player has an exploration strategy to interact with the environment. Each game, there is only
one player conducts its exploration strategy. We update all policies when each player has explored for 10 times.
Notice that we need to use the average policy, so CFR-PSRL define its policy on histeries, rather than states.
However, it can maintain the posterior based on states.

• MCCFROS [Lanctot et al., 2009]: similar to ✏-greedy, MCCFROS also has a probability p to uniform sample
actions. We set this p to be 0.1 for all histories.

• FSPFQI [Heinrich et al., 2015]: for FSPFQI we still define policies on states. We keep a deque of size 100 to be
the policy pool. We also use ✏-greedy as the exploration strategy for FSPFQI. We choose ✏ = 0.1.

E.2 Games

Here we give detailed description of our games.

• Two-player zero-sum FTSG: we choose H = 4 for this game, as shown in Fig. 3. At depth 1 and 3, player 0 takes
actions and at depth 2 and 4, player 1 takes actions. There is only one state for depth 1 and all other 3 depths has
2 states. Therefore this game has 7 different states in total. Each player have two actions, a1 and a2 to choose.
For depth h 2 [3], each state-action pair (s, a) has a non-zero probability to reach either states of depth h+1. For



depth 4, after player 1 chooses one action, a reward R 2 {0, 1} is sampled from a fixed Bernoulli distribution.
Player 0 gets R and player 1 gets �R.

• Cooperative FTSG: we choose horizon H = 8 for this game. There are two players in total and they take actions
alternatively. Initially player 0 at state s0 takes actions. At each state, current player has two actions a1 and a2
to choose. The transition of this game is deterministic and the game is expanded as a binary tree. Thus there are
28 � 1 = 255 states in total. The rewards are returned at terminal states. In this game, the two players has the
same rewards, so they need to cooperate to get the highest reward. That is, they need to find the SPE solution.
The rewards are also sampled from Bernoulli distributions. If at s0, player 0 chooses a2, the expected reward
for each player will always be 0.5. If player 0 chooses a1, they are possible to reach 64 terminal nodes and get
128 trajectories. Among the 128 trajectories, there is only one has an expected reward of 0.6, while others have
expected reward 0.4. We give an example of H = 3 game in Fig. 4. Notice that this game can be solved as an
MDP. We use it as an extreme example to show whether algorithms can reach SPEs. Specifically, we considers
exploitability of SPEs and thus we change Expl(T ) to be 0.6T �

P
T

t=1 V
t

0,1.

• Three-player FTSG: we choose H = 6 for this game. At depth 1 and 4, player 0 takes actions; at depth 2 and 5,
player 1 takes actions; at depth 3 and 6, player 2 takes actions. There is only one state for depth 1 and all other 3
depth has 2 states. Therefore this game has 11 different states in total. Each player have two actions, a1 and a2 to
choose. For depth h 2 [5], each state-action pair (s, a) has a non-zero probability to reach either states of depth
h + 1. For depth h, after player 2 chooses one action, a reward vector R 2 {0, 1}3 is sampled from three fixed
Bernoulli distributions. Each player gets one reward. This game has similar structures as Fig. 3 except that there
are 6 depths and terminal state-action pairs return a vector of rewards.


