Structured Convex Optimization under Submodular Constraints

Kiyohito Nagano
Dept. of Complex and Intelligent Systems
Future University Hakodate
k_ nagano@fun.ac. jp

Abstract

A number of discrete and continuous opti-
mization problems in machine learning are
related to convex minimization problems un-
der submodular constraints. In this paper,
we deal with a submodular function with a
directed graph structure, and we show that a
wide range of convex optimization problems
under submodular constraints can be solved
much more efficiently than general submod-
ular optimization methods by a reduction to
a maximum flow problem. Furthermore, we
give some applications, including sparse op-
timization methods, in which the proposed
methods are effective. Additionally, we eval-
uate the performance of the proposed method
through computational experiments.

1 Introduction

A submodular function is a fundamental tool in dis-
crete optimization, machine learning and other re-
lated fields and has been recognized as an interest-
ing subject of research. A submodular function is
known to be a discrete counterpart of a convex func-
tion (Lovéasz [I7]). Especially, the submodular func-
tion minimization problem is an elemental problem,
and many combinatorial problems arising in machine
learning, such as clustering [25], [24], image segmenta-
tion [31] and feature selection [2], can be reduced to
this problem.

For example, Narasimhan, Joic and Bilmes [25] showed
that clustering problems with some specific natural cri-
teria, such as the minimum description length, can be
solved as the problem of minimizing a symmetric sub-
modular function. Also, Bach [2] recently showed that
many of the known structured-sparsity inducing norms
can be interpreted as continuous relaxations, called the
Lovasz extensions, of submodular functions. Based on

Yoshinobu Kawahara

The Institute of Scientific and Industrial Research

Osaka University
kawahara@ar.sanken.osaka-u.ac. jp

this correspondence relationship, proximal operators,
which are required for learning with structured regu-
larization, can be computed as minimum-norm-point
problems on submodular polyhedra.

Similarly to convex functions, submodular functions
can be exactly minimized in polynomial time. The
fastest known algorithm of Orlin [27] runs in O(n°EO+
n®) time, where n is the size of the ground set and EO
is the time for function evaluation. On the other hand,
the minimum norm point algorithm (Fujishige [9]) is
usually much faster in practice [10], although it has
worse time complexity. However, the existing algo-
rithms for the general submodular minimization prob-
lem, even including the minimum norm point algo-
rithm, do not scale sufficiently to large problems from
a practical point of view.

Meanwhile, it is known that submodular function min-
imization problems can be solved more efficiently when
the submodular functions have particular structure.
For symmetric submodular functions, Queyranne [29)
gave a minimization algorithm that runs in O(n*EO).
Also recently, Stobbe and Krause [31] introduced a
decomposable submodular function and developed the
Smoothed Lovész Gradient (SLG) algorithm, which
is based on the smoothing technique of Nesterov [26]
and the discrete convexity of a submodular function.
In addition, Jegelka et al. [14] introduced a generalized
graph cut function, which generalizes a large subfam-
ily of submodular functions, and proposed an efficient
network flow based minimization algorithm.

In this paper, we consider a separable convex opti-
mization problem over a base polyhedron, which is a
discrete structure determined by a submodular func-
tion. Separable convex optimization under submodu-
lar constraints is related to various discrete and contin-
uous optimization problems, including network anal-
ysis methods [23], sparse learning methods [2], and
approximation algorithms for NP-hard combinatorial
optimization problems [I3]. For a general submodular
function, separable convex optimization problems can

be solved within the same running time as submodular
function minimization [6, 21], that is, O(n°EO + n®)
time. Thus, such algorithms are impractical when the
size of the ground set is large. Even though the mini-
mum norm point algorithm [9] and its weighted version
[22] would solve such quadratic minimization problem
much faster, it does not have good time complexity
bounds and still does not scale to large problems.

We show that if a submodular function has a spe-
cific graph structure, the convex optimization prob-
lem can be solved efficiently with the aid of a gen-
eral framework of the decomposition algorithm [J, 22]
and network flow algorithms [11], 12} 28]. We develop
a parametrized directed graph structure that deter-
mines a parametric submodular function minimization
problem, and show that the decomposition algorithm
can be performed successfully by computing the max-
imal minimum cuts iteratively. Furthermore, we men-
tion that several machine learning applications can be
solved in this convex optimization problem. We re-
mark that the proposed method can deal with a rela-
tively general submodular function and various sepa-
rable convex objective functions.

The remainder of the paper is organized as follows.
In Section 2, we provide the definitions of basic con-
cepts and give a definition of a convex optimization
problem under submodular constraints. In Section 3,
we give examples of submodular functions that have
good graph structures. In Section 4, we show some
optimization problems related to separable convex op-
timization problems under submodular constraints. In
Section 5, we describe a general decomposition algo-
rithm for solving separable convex optimization prob-
lems, and in Section 6, we further show that structured
convex optimization problems under submodular con-
straints can be solved efficiently with the aid of net-
work flow algorithms. Finally, we show some empirical
results of computational experiments in Section 7, and
give concluding remarks in Section 8.

2 Submodular functions and convex
optimization problems

We give basic definitions of a submodular function and
related concepts (for details on the theory of submodu-
lar functions, see [9] [30]). Then, we give the definition
of a convex optimization problem under submodular
constraints.

2.1 Submodular functions and related
polyhedra

Let V = {1, ..., n} be a given set of n elements, and
let g : 2V — R be a real-valued function defined on

all the subset of V. Such a function g is called a set
function with a ground set V. The set function g :
2V — R is called submodular if

g(S)+g(T) > g(SUT)+¢g(SNT), VS, T CV. (1)

A set function g is called supermodular if —g is sub-
modular. A set function is called modular if it al-
ways satisfies (II) with equality. A set function is called
nondecreasing if g(S) < g(T) for any S,T C V with
S C T. For an n-dimensional vector a € R™ with
components a;, 1 € V, and a subset S C V, we denote
a(S) =) ,cq ai- For convenience, we let a(@) = 0. A
set function a : 2" — R corresponding to the vector a
is a modular function.

Submodular function minimization

A submodular function minimization problem is a fun-
damental unifying discrete optimization problem. For
a submodular function g : 2¥ — R, the submod-
ular function minimization problem asks for finding
a subset S C V that minimizes f(S). This prob-
lem is known to be solvable in polynomial time, and
the fastest known polynomial time algorithm [27] that
runs in O(nRSEO + nf) time, where EO is the time of
one function evaluation of g. The algorithms for gen-
eral submodular function minimization are impractical
when n = |V] is large. In addition, the minimum norm
point algorithm [9] is known to be usually much faster
in practice, although it has worse time complexity.

Let Argming C 2 denote the family of all minimiz-
ers of g. That is, Argming = {S* C V : f(5*) =
ming f(S)}. For S*, T* € Argming, the submodu-
larity of g implies that S* UT™*, S*NT™* € Argming.
Thus, there exist the (unique) minimal minimizer and
the (unique) maximal minimizer of g. Many submod-
ular function minimization algorithms can be modi-
fied to find the maximal minimizer and/or the minimal
minimizer (see, e.g., [21]).

Base polyhedron

For a submodular function g : 2V — R with g(@) = 0,
the submodular polyhedron P(g) C R™ and the base
polyhedron B(g) C R™ are given by

P(g) = {w e R" : 2(5) < g(5) (VS S V)},
B(g) = {z € P(g) : 2(V) = g(V)}.

Figure [illustrates examples of the base polyhedra.
B(g) is determined by 2™ —2 inequalities and one equal-
ity. We see that B(g) is nonempty and bounded. The
base polyhedron B(g) is included in the nonnegative
orthant RZ if and only if g is nondecreasing.

n=3

Figure 1: Examples of base polyhedra

2.2 Convex optimization under submodular
constraints

Throughout this paper, we suppose that set function
f:2Y — R is submodular and satisfies f(2@) = 0. Let
w; : R — R be a convex function for each i € V. We
consider the separable convex function minimization
problem over the base polyhedron :

min w; ().

z€B(f) zg/ () (2)
It is known that a number of optimization problems of
this form are equivalent.

Theorem 1 (Nagano and Aihara [22]). Suppose that
f 2V — R is a nondecreasing submodular function
with f(@) = 0. Let b € R™ be a positive vector, and
let wy : R — R be a differentiable and strictly convex
function. The following problems ([[la) — ([lf) have the
same (optimal) solution:

n 22
problem ([la) min Z B
xzeB(f) i=1 bi

n

problem (Ilb)

xzeB(f

problem ([Ilc) mBaC(c Z bp forp<0 with p#£—1;
xTe

roblem (Ild) max b;Inxz;;

P @d) z€B(f) Z:1

problem ([[le) min Z(a:zln—"—kbi—mi);
z€B(f) =1

problem ([Ilf) min lego(L).
xzeB(f)

In view of Theorem [II, we focus on the case where the
objective function is quadratic. For a positive vector
b € R", we mainly deal with problem (Ila). By using
the following two observations, w.l.o.g., we can assume
that the submodular function f is nondecreasing.

Lemma 2. For any f € R, x* is optimal for
2
min{}", f)i 1z € B(f)} if and only if =* + b is opti-

mal for min{}", 3= : € B(f + b)}.

VA{iD—F(V
Lemma 3. Set B = max{0, %}

max
=1,.

Then f+ Bb is a nondecreasmg submodular Sfunction.

Problem ([la) is known as the lexicographically opti-
mal base problem [8]. If b is the all-one vector, problem
([@a) becomes the minimum norm base problem. For
a general submodular function, problem ([{la) can be
solved within the same running time as the submodu-
lar function minimization [6, 21], that is, O(n®EO+nf)
time, where EO is the time of one function evaluation.
Thus, such algorithms are impractical when n = |V| is
large. Although the minimum norm point algorithm
[9] and its weighted version [22] can solve problem (Il a)
much faster, it has worse time complexity and still does
not scale to large problems.

In this paper, we point out that if the function f has a
good graph structure, problem (Ila) can be solved ef-
ficiently with the aid of network flow algorithms. Fur-
thermore, we show a number of applications of the
convex optimization problem (Ila).

3 Structured submodular functions
and minimization problems

Many basic submodular functions can be represented
by using graphs. In such cases, a minimum cut algo-
rithm, which runs much faster in practice, is useful to
solve submodular optimization problems.

In this section, we will see some examples of submod-
ular functions with directed graph structures, which
are important from the viewpoint of applications.

3.1 Minimizing graph cut functions

In this subsection, we will see that an s-¢ cut function
ket and a generalized graph cut function + of [14],
both of which are submodular, can be minimized ef-
ficiently with the aid of network flow algorithms. In
particular, we will see that the maximal minimizer can
be computed efficiently in both cases. In the general
algorithm described in Section B the maximal mini-
mizer of a submodular function has to be computed.

Minimum cut problem

We start with the minimum s-¢ cut problem. Let G =
{st U {t} UV, &) be a directed graph, where s is a
special source node, t is a special sink node, V is a set of
other nodes, and £ is a set of directed edges. For each
e € &, a nonnegative capacity value c(e) is assigned.
An s-t cut is an ordered bipartition (Vi, Vs) of the
node set of G such that s € V; and t € V5. Clearly,
any s-t cut can be expressed as ({s}US, {t}U(V\S))
for some S C V. For an s-t cut ({s}US, {t}U(V\S9)),
its capacity rg_; is defined by

=2 {cle) reedgt({stus)r ()

Kst(9)

for each S C V, where §g"* (V') is a set of edges leav-
ing V' €V in G. The minimum cut problem asks for
finding an s-t cut of G that minimizes the capacity.
The set function kg4 : 2Y — R, which is called an
s-t cut function, is known to be submodular. There-
fore, the minimum cut problem is a special case of a
submodular function minimization problem.

The minimum cut problem is closely related to the
maximum flow problem, which is a fundamental prob-
lem in combinatorial optimization [I]. It can be solved
quite efficiently. For example, it can be solved in

O(|V|I€] log(|V|?/I€])) time [12] or O(|V||€]) time [28].

As kg4 is submodular, there exists the maximal min-
imizer Sfax Of kg_p. The s-t cut ({s} U Siax, {t} U
(V\ Sthax)) is called the mazimal minimum s-t cut.
Once a maximal flow is computed, we can obtain the
maximal minimum s-¢ cut in additional O(|V| + |€])
time (we just need to consider the set of nodes reach-
able to the sink ¢ and its complement in the residual
network [I]). The minimal minimum s-t cut can be
defined and computed in a similar way.

Lemma 4. The mazimal minimizer of the s-t cut
function kgt : 2¥ — R defined in @) can be computed
in O(|V||E]log(|VI?/|E])) time, or, O(|V|IE|) time.

Generalized graph cut functions

Next we give a definition of the generalized graph cut
function 7 : 2V — R of Jegelka et al. [14], which gen-
eralizes a large subfamily of submodular functions.

Let G = ({s} U{t} UV,€E) be a directed graph with
nonnegative edge capacities c¢(e) > 0 (e € £). Suppose
that the set V is partitioned as V = V U U, where
V ={1,..., n} is a set of nodes, each of which may
become a source, and U is a set of auxiliary nodes (U
can be empty). Figure 2l illustrates an example of the
graph G = ({s}U{t} UV UU,E). A generalized graph
cut function [T4] v : 2V — R is defined by

Y(8) = min > {c(e) : e € 6" ({s}USUW)} (4)

for each S C V. If U is empty, the function 7 coincides
with the function kg_; defined in ([B]). The submodu-
larity of v can be derived from the classical result of
Megiddo [20] on network flow problems with multiple
terminals (for details, see the appendix of this paper).

Let us consider the minimization of v : 2¥ — R. By
the definition of +y, the value v* := mingcy v(95) is
equal to the capacity of a minimum s-t cut in G. For
any minimum s-t cut ({s}UP, {t}U(VUU\P))ingG,
we have v(PNV) =~* and thus PNV is a minimizer
of v : 2V = R. Therefore, a minimizer of v can be
computed by solving the minimum s-t cut problem on
G={stu{t}uvuru,é).

Figure 2: A directed graph G = ({s} U{t} UV UT,¢)
that generates a generalized graph cut function v :
2V 5 R

Conversely, let S* C V be a minimizer of v, and let
W* be a subset W C U that attains the minimum
in the right hand side of (@) with respect to S = S*.
Then S*UW™* C V minimizes the s-t cut function (see
[14)).

Therefore, given the maximal minimum s-¢ cut ({s} U
Prnax: {1 U (VUU \ Phuax)), the subset Pra NV is
the maximal minimizer of ~.

Lemma 5. The maximal minimizer of the generalized
graph cut function v : 2V — R defined in @) can be
computed in O(|V||E]log(|V|?/|E])) time, or, O(|V||E])
time, where V =V UU.

3.2 Transformed graph cut functions

We define a transformed graph cut function, and we
show that the function can be regarded as an s-t cut
function defined in Subsection 3.1l In Subsection E.1],
we will see that the convex minimization problem (Il a)
under the constraints of this function is related to the
densest subgraph problem.

Let G = (V, E) be a directed graph with node set
V ={1, ..., n} and edge set E. Given nonnegative
edge capacities c(e) (e € E), a cut function x : 2V — R
defined by (S) = > {c(e) : e € 62" (S)} for each S C
V is submodular. Let a € R™. Then, a transformed
graph cut function K, : 2V — R defined by

Ke =K+ a

is also submodular.

Let us see that the function k, : 2¥ — R can be
regarded as an s-t cut function on a new graph G,.

Define Ay ={i€V:a;>0and A_={icV:q; <
0}. By adding new nodes s, t and new edges £, UE_
to G, we construct a new directed graph G, = ({s} U
{t}UV, EUELUE_), where By = {(i,t): i € Ay} and
E_ ={(s,4) :i € A_}. The capacities of new edges
are determined as follows: we set c(i, t) = a; (> 0) for
each (i, t) € E, and set ¢(s, i) = —a; (> 0) for each
(s, 4) € E_. Figure Bl shows the construction of Gg,.

For an s-t cut ({s}US, {t}U(V'\S)) of G,, its capacity

Figure 3: Construction of the directed graph G,

is equal to

a(A-\5))

K(S)+a(SNAL)+ (-
(A-)

= k(S) +a(S) —
= £¢q(S) + const.

Thus, k, can be regarded as an s-t cut function on G,.

3.3 Decomposable submodular functions

Decomposable submodular function (see [31]) are one
of the most important special case of generalized graph
cut functions [I4]. For more examples of generalized
graph cut functions, refer to Jegelka et al. [14].

A decomposable submodular function 7 : 2V — R is a
set function that can be represented as a sum of a mod-
ular set function and submodular set functions arising
from concave functions. As to Stobbe and Krause [31],
we will focus on the case where each concave function
is a threshold potential. That is, we consider the fol-
lowing decomposable submodular function 7 : 2V — R
defined by

r(8) = —d(S) + 3 minfyy, w(S)) (3)

j=1

for each S C V., where d € R" is a positive vec-
tor, w', ..., w" € R are nonnegative vectors, and

Y1,y - Y > 0.

Now we observe that the function 7 defined in (Bl can
be represented as a generalized graph cut function de-
fined in Subsection Bl Consider a directed graph
Gr = ({stu{ttuvubl,¢), where V. = {1,..., n},
U={u1, ..., u},and & ={(s,7) :i € V}U{(4, u;) :
ieV,u; € UU{(uj, t) :u; € U}. The edge capaci-
ties are determined as

c(s, 1) = d;, YieV,
c(i, uj) = w{, VieV, Yu; €U,
c(uj, t) = y;, Yu; € U.
Figure @ illustrates the directed graph G,. We can ob-

serve that G, generates the decomposable submodular
function 7.

Figure 4: Directed graph G, associated with a decom-
posable submodular function 7 with n =4 and kK = 3

The function 7 corresponds to the sum of truncated
functions described in [I4], and the construction of G,
is widely used in computer vision [I5].

4 Applications

It is known that the convex optimization problem ()
under submodular constraints is related to some dis-
crete and continuous optimization problems. In this
section, we show some examples in which the submod-
ular functions have graph structures considered in Sec-
tion B

4.1 Finding dense subgraphs

Let G = (V, E) be an undirected graph with node set
V ={1,..., n} and undirected edge set E. Given non-
negative edge capacities c(e) (e € E) and an integer
k, the densest k-subgraph problem asks for finding a
k-subset S C V that maximizes 0(S), where 6(S) is
the sum of weights of edges in the subgraph induced
by S. The function 6 : 2¥ — R is a supermodular
function with (@) = 0, and the minimum norm base
problem

min 3 x? 6
weB(—g)z; ‘ (6)

plays an important role to find dense subgraphs of G
[23].

We show that —6 is a transformed graph cut function
(Subsection B2]). Let m € R™ be a vector defined by
m; = Y. {c({i,i'}) : {i,i'} € E} for each i € V,
and let ® be a cut function of G, that is, R(S) =
S{e{i, i'}) : {i,7} € E,iinSandd inV\S}
(8 C V). Then we have

—0(S) = 5R(S) — 3m(S)

(SIS

for each S C V. It is easy to see that the function

% : 2¥ — R can be regarded as a cut function of a

directed graph. Thus, —0 is a transformed graph cut
function.

4.2 Proximal methods

Regularized learning is a fundamental formulation for
many supervised problems. Let {(z;,4;)}}Y, be a set
of samples, 3 € R™ a model parameter vector and
I(z,y; B) a (differentiable) convex loss. Then, the op-
timization for regularized learning is represented as

N
min Wziyis B) + X Q(B),

where (8) is a regularization term and A is the regu-
larization parameter. If Q(3) is non-differentiable on
3, which is usually true for structured regularization,
the proximal method is a popular approach to solve
this optimization problem [3]. As is well known, its
update procedure at each iteration can be reduced to
the calculation of the following problem:

1
min 718 - sl3 +A-2(8), (7
where s € R™. Recently, Bach [2] showed that many
of the popular structured norms can be represented
as continuous relaxations, called Lovasz extensions, of
submodular functions. And in this case, Problem ([
can be transformed to

min{S, 21t € B(g — A~\s),

where g is a submodular function whose Lovasz exten-
sion is € (8 is solved as At). Note that many of popular
structured norms can be expressed as the Lovasz ex-
tensions of generalized graph cut functions, such as cut
functions (that correspond to fused-regularization)[4]
and coverage functions (that correspond to overlap-
ping group-regularization).

4.3 Minimum ratio problems

For a nonnegative submodular function ¢ : 2¥ — R
with ¢g(@) = 0 and a positive vector b € R™, consider
the minimum ratio problem which asks for a subset
S € 2V \ {@} minimizing ¢(S)/b(S). This kind of
optimization problems have to be solved iteratively,
e. g., in the primal-dual approximation algorithm for a
submodular cost covering problem [13].

Suppose that we have the optimal solution x* to
min{> " , %2 sz € B(f)}. Let & = miney gg—* and
let 51 ={i eV: % = & }. Then the subset S;
is an optimal solution to the minimum ratio problem
(see [9]). Therefore, by solving the separable quadratic
minimization problem over B(g), an optimal solution
to the minimum ratio problem can be obtained. If
the function g has a graph structure, the running time
of the approximation algorithm of [I3] could be im-
proved.

5 A general framework for separable
convex minimization under
submodular constraints

In this section, we describe the decomposition algo-
rithm, which is a general framework to solve the sepa-
rable convex minimization problem under submodular
constraints. Before describing the decomposition al-
gorithm, we give a parametric formulation of problem

@a).

For the validity of the decomposition algorithm de-
scribed here, e.g., refer to Fujishige [9], and Nagano
and Aihara [22].

5.1 A parametric formulation

Let f:2Y — R be a general nondecreasing submodu-
lar function and b € R™ a positive vector. Recall that
the set function b associated to b is modular.

For a parameter o > 0, define f, : 2V — R by f, =
f — ab, which is submodular. Let us see how problem
([@a) can be reduced to the parametric submodular
minimization problem: minimize f, for all a > 0. It
is known that there exist £ + 1 subsets,

(@=)SoCSC---CS (=V),
and ¢ + 1 subintervals of R>g = {a € R: a > 0},

Ry =0, 1), Ry = [aq, a2), ...,
Rj = [O[], aj+1)7 ey R@ = [Q[€7 +OO),

such that, for each j € {0, ..., ¢}, the subset S; is
the unique maximal minimizer of f, = f — ab for all
a € R;. The vector £* € R" determined by, for each
ieV withie S;j1\S; (Ge{l,....0}),

% S; —f(S;
7 = IR Re (8)

is the unique optimal solution to the quadratic mini-
mization problem (Ila). The equation (§) implies that

problem ([{la) can be immediately solved if the collec-
tion S* = {Sy, S1, ..., S¢} is computed.

5.2 The decomposition algorithm

By successively minimizing f, = f — ab for some
appropriately chosen a > 0, the decomposition al-
gorithm finds S; one by one, and finally the chain
Sy € S1 C --- C Sy and the optimal solution x* to
problem ({la) are obtained.

The decomposition algorithm DA is recursive. Sup-
pose that we are given two subsets S;, S5 € S* with
0 < j < j < n. The algorithm DA(S;, S;/) finds the
collection

S*(S;, Sj) :={S €8 : 5, CSCS;y}

It can be verified that oj;y; < %
b 3
Therefore, we can decide if (j+1=j") or (j+1 < j')
F(S)=1(S5)
5(5,\5;) -

< Qg r.

by minimizing f, with a =

The decomposition algorithm DA can be described as
follows (see, e.g., [22] for the detailed analysis of the
algorithm).

Algorithm DA(T, T")
Input : Subsets T, T" € §* with T C T".
Output: The collection S*(T, T").
. _ [(T)H—f(T)
imal minimizer T" of f, := f — ab.
2: UT'=T, return {T, T'}.
3: IfT cT’'cT,letS; and Sy be the collec-
tions returned by DA(T,T") and DA(T",T’),
respectively. Return & U Ss.

. Compute the unique max-

First of all, we know that Sy = @ and S, = V, al-
though we do not know how large £ is. Clearly, we have
§*(@, V) = 8§*. Therefore, by performing DA(&, V),
the collection §* can be obtained. Using (&), we can
immediately obtain the optimal solution of problem

@a).

In the decomposition algorithm DA(&, V'), we mini-
mize the functions f, : 2¥ — R at most 2n — 1 times.

6 Efficient algorithms for structured
convex minimization problems

Let v : 2¥ — R be a generalized graph cut function
defined as in (), which is generated from a directed
graph G = ({s} U{t} UV UU,¢&). Consider the convex
optimization problem ({la) with f =7,

min i = (9)

Recall that b € R™ is a positive vector. We show that
problem (@) can be solved efficiently using the frame-
work of the decomposition algorithm DA of Section

For nonnegative parameters o and [, let us see that
the set functions v — ab and v + 3b are both general-
ized graph cut functions. By adding new edges e; =
(s, 1) (1 € V) with edge capacities c(e;) = ab; (i € V)
to G, we construct a new directed graph G_, (see Fig-
ure [(a)). By adding new edges e = (i, t) (i € V)
with edge capacities c(ej) = 8b; (i € V) to G, we
construct a new directed graph ggb (see Figure[l (b)).
Since + is defined as in (@), the functions v — ab and
v + Bb are generated by G_, and QEIN respectively.

Using Lemmas [2] and Bl and the fact that v+ 8b is a

Figure 5: Directed graphs G_, and g;;b

generalized graph cut function, we can assume that
is nondecreasing in problem (@).

Now we can apply the decomposition algorithm
DA(@, V) to problem ([@). In step 1 of the algorithm
DA, we just have to compute the maximal minimum
s-t cut in G_, for some appropriately chosen o > 0
to find the maximal minimizer of v — ab. Since we
minimize the functions v — ab at most 2n — 1 times,
we obtain the following theorem with the aid of the
minimum s-¢ cut algorithm [2§].

Theorem 6. For a generalized graph cut function ~y :
2V — R generated from G = ({s} U{t} UV UU,E),
problem @) can be solved in O(n(n + |U|)|E]) time,
where n = |V|.

We can obtain a different time complexity by using the
parametric minimum cut algorithm (Gallo et al. [I1]).
The parametric minimization problem

minimize v — ab for all a >0
corresponds to the parametric minimum cut problem
find minimum s-t cuts in G, for all a > 0.

To solve this parametric cut problem, we can utilize
the parametric minimum cut algorithm [I1] (see also
[16]). We remark that the directed graph G satisfies
the monotonicity in & > 0 in the meaning of [11]. As
a result, we have the following time complexity.

Theorem 7. For a generalized graph cut function 7 :
2V — R generated from G = ({s} U{t} UV UU,E),
problem @) can be solved in O((n+|U|)|E]|log %)

time, where n = |V|.

The algorithm of Theorem[7] which is much faster than
that of Theorem [6] from a theoretical point of view, is
rather complicated to implement.

In view of Theorem [II we can solve the convex min-
imization problem under constraints with respect to
the structured submodular function -,

min w;(x;
meB('y)ig/ (=)

in O(n(n+[U])|€]) or O((n+|U])|€|log “HIL) time
for a number of separable convex objective functions.

7 Experimental results

We investigated the empirical performance of the pro-
posed scheme using synthetic and real-world datasets.
In Section[ZIl we compare the proposed method in the
application to proximal methods for structured regu-
larized least-squares regression, with the state-of-the-
art algorithms. In Section [.2] we apply the proposed
algorithm to the densest subgraph problem for large
real web-network data. The experiments below were
run on a 2.3 GHz 64-bit workstation using Matlab with
Mex implementations. And we used SPAMS (SPArse
Modeling Software) [I§] for the implementations of the
proximal methods for the first experiment.

7.1 Comparison in proximal methods

In the first experiment, we compared the proposed al-
gorithm in the application to proximal methods with
the state-of-the-art algorithms. As for the regulariza-
tion term, we used fused-regularization Qgseq(3) and
group regularization (with lo-norm) Qgroup(3) (for a
given set of groups G), respectively represented as

Qtused(B) = X071 18i — Bira| and
Qgroup(ﬁ) = degdg”ﬁguom

where d4 is the weight of the group g. As the com-
parison partners, we used the proximal methods for
the above regularization; the one based on the ho-
motopy algorithm for Qgyseda(B) [(Homo.) and the
one by Mairal et al. [I9] for Qgroup(8) (NFA), as well
as the minimum-norm-point algorithm (MNP) for the
calculation of the proximal operator. Since both reg-
ularizations can be represented as the decomposable
submodular function, we applied the parametric flow
algorithm for computing the proximal operators (DA).

We generated data as follows. First for the evaluation
with fused regularization, one feature is first selected
randomly and the next one is selected with probability
0.4 from each neighboring feature or with probability
0.2/(N — 2) from the remaining ones and repeat this
procedure until k features are selected. For group reg-
ularization, the features are covered by 20-200 overlap-
ping groups of size 15. The causal features are chosen
to be the union of 2 of these groups. Here, we assign
weights d;, = 2 to those causal groups and d, = 1
to all other groups. We then simulate N data points
(x(),y(0), with y(i) = B'x(i) + ¢ ¢ ~ N(0,0%),
where 3 is 0 for non-causal features and normally dis-
tributed otherwise.

Table 1: Comparison of running time (seconds) for the
proposed and existing methods.

n N k [DA MNP Homo.
500 500 20 | 0.024 5.083 0.084
500 1,000 20 | 0.062 146.969 0.531
500 5,000 20 | 1.085 — 32.676
1,000 500 20 | 0.019 3.891 0.058
1,000 1,000 20 | 0.059 98.310 0.266
1,000 5,000 20 | 1.064 — 12.372
n N k [DA MNP NFA
500 500 ~20 | 0.021 8.910 0.015
500 1,000 ~20 | 0.056 280.117 0.052
500 5,000 ~20 | 1.091 — 1.112
1,000 500 ~20 | 0.020 6.108 0.015
1,000 1,000 ~20 | 0.054 198.010 0.051
1,000 5,000 ~20 | 1.003 — 0.896

Since all methods calculate the same objectives in prin-
ciple, here we report only the comparison of the em-
pirical running time. Tables [l show the running time
by the algorithms for reaching the duality-gap within
1074, averaged over 20 datasets each. We can see
that the algorithms based on the parametric-flow algo-
rithm, including ours, run much faster than the others.
Note that our scheme can be applied to more general
form of structured regularization (Eq. (&) for the graph
cut implementation) than Qe (B8) and Qgroup(B).

7.2 Densest subgraphs in web graphs

In the second experiment, we applied the proposed al-
gorithm to the densest subgraph problem using public
web-graph and social-network datasets [5]. The char-
acteristics of each data set are shown in Table 2 Al-
though the minimum-norm-point algorithm was ap-
plied to the same problem on one of the datasets (cnr-
2000) in [23], the data was sub-sampled to 5,000 nodes
due to its computational cost. However, in this experi-
ment, we used the full datasets for the analyses, which
was possible because our framework runs much more
efficiently than the algorithm in [23].

The running time for applying our method to each
dataset is shown in Table 2l as well as the number of
optimal solutions found by the algorithm. Our method
could find exactly optimal-solutions for several k for
these large datasets in practical time. Note again that,
if k is fixed beforehand, the densest subgraph problem
with the size constraint is NP-hard and thus there is
no efficient algorithm. Also, the graphs in Figure
show plot examples of intensity I(S) versus the sizes
of subsets k found by the algorithm. The tendency
seems to be that our methods can find more optimal
solutions if graphs are denser.

Table 2: Resulting running-time and the number of
optimal subsets found by the algorithm as well as the
characteristics of datasets.

Data | # Node # Arc Time [s] # Set
cnr-2000 325,557 3,216,152 20.55 22
uk-2007 100,000 3,050,615 19.70 49
in-2004 1,382,908 16,917,053 225.90 5,971
eu-2500 862,664 19,235,140 278.50 4,933
wordassoc. 10,617 72,172 0.15 2
amazon-2008 735,323 5,158,388 127.51 1,882
dblp-2010 326,186 1,615,400 19.68 985
dblp-2011 986,324 6,707,236 96.60 979

. cnr-2000 uk-2007
100,000 200,000 m 4 20,000 40,000 60,000 80,000 100,000
Number of Nodes Number of Nodes
amazon-2008 dblp-2010

5 .
x 10 X 10°

0
=

Intensity
Intensity

w

100,000200,000300,000 400,000 500,000 600,000 700,000
Number of Nodes

100,000 200,000 300,000
Number of Nodes

Figure 6: Example plots of I(S) versus k for enr-2000,
uk-2007, amazon-2008 and dblp-2010.

8 Concluding remarks

We have shown that when a submodular function f has
a directed graph representation the separable convex
minimization problem under submodular constraints
can be solved pretty efficiently compared to general
submodular optimization methods. It is known that
quite a lot of submodular functions have graph struc-
tures (refer to Jegelka, Lin, and Bilmes [I4]). The
proposed methods are based on the general theory of
submodular functions and (parametric) maximum flow
algorithms. In addition, we remark that the proposed
methods can deal with various essentially equivalent
objective functions for the problem.

Appendix: Submodularity of generalized
graph cut functions

In order to make this paper self-contained, we give a
proof of the submodularity of a generalized graph cut
function [14], v : 2V — R defined in ().

We set 5 > 0 as the sum of all edge capacities of G.
Let 1 € R" be the all-one vector and let 1 : 2V — R be
a set function defined by 1(S) = | S| for each S C V.
The directed graph QE‘I (see Section [6]) generates the
set function v + 1. For each S C V, let 4/(S) be the
minimum capacity of a cut separating {s}US from the
sink ¢ in Q:{l. By the result of Megiddo [20] on network
flow problems with multiple terminals, the set function
~ 2V — R is submodular. For each S C V, we have

7'(9) = nggiunv\s) S{cle) e € 53;1 ({s}uSUW)}
= wolm o (Z{c(e) De € 03 ({s}USUW)}

+ B8]+ BW N (V\ 9)])
B1S| + min S {e(e) : e € 63" ({s}USUIW))
= BIS| +7(9),

where the third equality holds because f is sufficiently
large. Since v/ = v 4 S1 is submodular, the function
~ is also submodular.

Acknowledgments

This research was partially supported by Aihara
Project, the FIRST program from JSPS, JST ERATO
Kawarabayashi Large Graph Project, JST PRESTO
PROGRAM (Synthesis of Knowledge for Information
Oriented Society), and the Cooperative Research Pro-
gram of “Network Joint Research Center for Materials
and Devices”.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Net-
work Flows: Theory, Algorithms, and Applications.
Prentice Hall, 1993.

[2] F. Bach. Structured sparsity-inducing norms through
submodular functions. In Advances in Neural Infor-
mation Processing Systems 23 (NIPS 2010), pages
118-126, 2010.

[3] A. Beck and M. Teboulle. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183-202,
2009.

[4] A. Chambolle and J. Darbon. On total variation mini-
mization and surface evolution using parametric max-

imal flows. International Journal of Computer Vision,
84(3), 2009.

[5] P. Boldi et al. Laboratory for Web Algorithmics.
http://law.di.unimi.it/datasets.php.

[6] L. Fleischer and S. Iwata. A push-relabel frame-
work for submodular function minimization and ap-
plications to parametric optimization. Discrete Appl.
Math., 131:311-322, 2003.

http://law.di.unimi.it/datasets.php

[7]

8]

[9]

(10]

(11]

(12]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

J. Friedman, T. Hastie, H. Holfling, and R. Tibshi-
rani. Pathwise coordinate optimization. Annals of
statistics, 1(2):302-332, 2007.

S. Fujishige. Lexicographically optimal base of a poly-
matroid with respect to a weight vector. Mathematics
of Operations Research, 5:186-196, 1980.

S. Fujishige. Submodular Functions and Optimization.
Elsevier, 2nd edition, 2005.

S. Fujishige, T. Hayashi, and S. Isotani. The
minimum-norm-point algorithm applied to submod-
ular function minimization and linear programming.
Technical report, Research Institute for Mathemati-
cal Sciences Preprint RIMS-1571, Kyoto University,
Kyoto, Japan, 2006.

G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast
parametric maximum flow algorithm and applications.
SIAM Journal on Computing, 18:30-55, 1989.

A. V. Goldberg and R. E. Tarjan. A new approach
to the maximum flow problem. Journal of the ACM,
35:921-940, 1988.

S. Iwata and K. Nagano. Submodular function min-
imization under covering constraints. In Proceedings
of the 50th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2009), pages 671-680,
2009.

S. Jegelka, H. Lin, and J. Bilmes. On fast approximate
submodular minimization. In Advances in Neural In-
formation Processing Systems 24 (NIPS 2011), pages
460-468, 2011.

Pushmeet Kohli, Lubor Ladicky, and Philip H.S. Torr.
Robust higher order potentials for enforcing label con-
sistency. International Journal of Computer Vision,
82:302-324, 2009.

V. Kolmogorov. A faster algorithm for computing the
principal sequence of partitions ofa graph. Algorith-
mica, 56:394-412, 2010.

L. Lovasz. Submodular functions and convexity. In
A. Bachem, M. Grotschel, and B. Korte, editors,
Mathematical Programming — The State of the Art,
pages 235-257. Springer-Verlag, 1983.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, R. Jenat-
ton, and G. Obozinski. SPArse Modeling Software.
http://spams-devel.gforge.inria.fr/|

J. Mairal, R. Jenatton, G. Obozinski, and F. Bach.
Convex and network flow optimization for structured
sparsity. Journal of Machine Learning Research,
12:2681-2720, 2011.

N. Megiddo. Optimal flows in networks with multiple
sources and sinks. Mathematical Programming, 7:97—
107, 1974.

K. Nagano. A faster parametric submodular function
minimization algorithm and applications. Technical
report, METR 2007-43, University of Tokyo, Tokyo,
Japan, 2007.

(22]

23]

24]

(25]

(26]

(27]

(28]

29]

30]

(31]

K. Nagano and K. Aihara. Equivalence of convex min-
imization problems over base polytopes. Japan jour-
nal of industrial and applied mathematics, 29:519-534,
2012.

K. Nagano, Y. Kawahara, and K. Aihara. Size-
constrained submodular minimization through mini-
mum norm base. In Proceedings of the 28th Interna-
tional Conference on Machine Learning (ICML 2011),
pages 977-984, 2011.

K. Nagano, Y. Kawahara, and S. Iwata. Minimum
average cost clustering. In Advances in Neural In-
formation Processing Systems 23 (NIPS 2010), pages
1759-1767, 2010.

M. Narasimhan, N. Jojic, and J. Bilmes. Q-clustering.
In Advances in Neural Information Processing Sys-
tems 18 (NIPS 2005), pages 979-986, 2005.

Yu. Nesterov. Smooth minimization of non-smooth
functions. Mathematical Programming, 103:127-152,
2005.

J. B. Orlin. A faster strongly polynomial time algo-
rithm for submodular function minimization. Mathe-
matical Programming, 118:237-251, 2009.

J. B. Orlin. Max flows in O(nm) time or less. In Pro-
ceedings of the 45th ACM Symposium on the Theory
of Computing (STOC 2013), 2013. To appear.

M. Queyranne. Minimizing symmetric submodular
functions. Mathematical Programming, 82:3—12, 1998.

A. Schrijver. Combinatorial Optimization — Polyhe-
dra and Efficiency. Springer-Verlag, 2003.

P. Stobbe and A. Krause. Efficient minimization of
decomposable submodular functions. In Advances
in Neural Information Processing Systems 23 (NIPS
2010), pages 22082216, 2010.

http://spams-devel.gforge.inria.fr/

	Introduction
	Submodular functions and convex optimization problems
	Submodular functions and related polyhedra
	Convex optimization under submodular constraints

	Structured submodular functions and minimization problems
	Minimizing graph cut functions
	Transformed graph cut functions
	Decomposable submodular functions

	Applications
	Finding dense subgraphs
	Proximal methods
	Minimum ratio problems

	A general framework for separable convex minimization under submodular constraints
	A parametric formulation
	The decomposition algorithm

	Efficient algorithms for structured convex minimization problems
	Experimental results
	Comparison in proximal methods
	Densest subgraphs in web graphs

	Concluding remarks

