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Abstract

Bidding in simultaneous auctions is challeng-
ing because an agent’s value for a good in one
auction may depend on the uncertain outcome
of other auctions: the so-called exposure prob-
lem. Given the gap in understanding of gen-
eral simultaneous auction games, previous works
have tackled this problem with heuristic strate-
gies that employ probabilistic price predictions.
We define a concept of self-confirming prices,
and show that within an independent private
value model, Bayes-Nash equilibrium can be
fully characterized as a profile of optimal price-
prediction strategies with self-confirming predic-
tions. We exhibit practical procedures to com-
pute approximately optimal bids given a proba-
bilistic price prediction, and near self-confirming
price predictions given a price-prediction strat-
egy. An extensive empirical game-theoretic
analysis demonstrates that self-confirming price-
prediction strategies are effective in simultane-
ous auction games with both complementary and
substitutable preference structures.

1 Introduction

One of the most attractive features of automated trading
is the ability to monitor and participate in many markets si-
multaneously. Compared to human traders, software agents
can take in data from multiple sources at very high through-
put rates. In principle, software agents can also process
massive quantities of information relevant to trading deci-
sions in short time spans. In practice, however, dealing
with multiple markets poses one of the greatest strategic
challenges for automated trading. When markets interact,
a strategy for bidding in one market must consider the im-
plications of and ramifications for what happens in others.

Markets are interdependent when an agent’s preference for
the outcome in one depends on results of others. For in-

stance, when value for one good is increased by obtaining
another, the goods are complements. Dealing with multi-
ple markets under complementary preferences presents an
agent with the classic exposure problem: before it can ob-
tain a valuable bundle, the agent must risk getting stuck
with a strict subset of the goods, which it may not have
wanted at the prevailing prices. Exposure is a potential is-
sue for substitute goods as well, as the agent risks obtaining
goods it does not want given that it obtains others.

The pitfall of exposure is a primary motivation for combi-
natorial auctions [Cramton et al., 2005], where the mech-
anism takes responsibility for allocating goods respecting
agents’ expressed interdependencies. Combinatorial auc-
tions are often infeasible, however, due to nonexistence
of an entity with the authority and capability to coordi-
nate markets of independent origin. Consequently, inter-
dependent markets are inevitable. Nonetheless, there is at
present very little fundamental understanding of agent bid-
ding strategies for these markets. Specifically, how should
an agent’s bidding strategy address the exposure problem?

We address this question in what is arguably the most ba-
sic form of interdependent markets: simultaneous one-shot
sealed-bid (SimOSSB) auctions. Despite the simplicity of
this mechanism and the practical importance of the expo-
sure issue, there is little available guidance in the auction
theory literature on the strategic problem of how to bid in
SimOSSB auctions. We aim to fill this gap by providing
computationally feasible methods for constructing bidding
strategies for the SimOSSB-auction environment, which
we justify with both theory and evidence from simulation-
based analysis. Specifically, we (i) characterize Bayes-
Nash equilibria of SimOSSB auctions as best responses
to price predictions (§3); (ii) provide bounds on approx-
imate Bayes-Nash equilibria in terms of the accuracy of
price predictions and the degree of optimality of responses
(§4); (iii) introduce methods to construct bidding strategies
that respect the equilibrium form (§5,6); and (iv) demon-
strate through a comprehensive empirical game-theoretic
analysis the efficacy of these strategies compared to a wide
variety of heuristics from the literature (§7).



2 Previous Work

Theoretical results about general simultaneous auction
games are few and far between. The leading auction theory
textbook [Krishna, 2010] treats sequential but not simul-
taneous auctions, and most of the literature that addresses
simultaneity does so only in the context of ascending [Pe-
ters and Severinov, 2006] or multi-unit auctions.

In the first work to derive an equilibrium of a simultaneous-
auction game, Engelbrecht-Wiggans and Weber [1979]
tackle an example with perfect substitutes, where each
agent is restricted to bid on at most two items. Their analy-
sis was performed in the large-limit of auctions and agents,
and exhibited a mixed equilibrium where the agents diver-
sify their bids even though the items are indistinguishable.
Krishna and Rosenthal [1996] studied a second-price setup
with two categories of bidders: local bidders who have
value for a single item, and global bidders who have su-
peradditive values for multiple items. The authors charac-
terize an equilibrium that is symmetric with respect to the
global bidders, and show, somewhat surprisingly, that an
increase in the number of bidders often leads to less ag-
gressive bidding. Rosenthal and Wang [1996] tackled a
first-price setup, assuming synergies and common values.
Szentes and Rosenthal [2003] studied two-bidder auctions
with three identical objects and complete information.

Recently, Rabinovich et al. [2011] generalized fictitious
play to incomplete information games with finite actions
and applied their technique to a class of simultaneous
second-price auctions. They computed approximate equi-
libria in environments with utilities expressible as linear
functions over a one-dimensional type space.

Complementing these theoretical treatments, researchers
have designed trading strategies applicable to simultane-
ous auctions, which address the exposure problem through
heuristic means. In the Trading Agent Competition (TAC)
Travel game [Wellman et al., 2007], agents face an expo-
sure problem for hotels—they must obtain a room each
night for the client or the whole trip is infeasible. Expe-
rience from TAC and other domains has demonstrated the
importance of price prediction for bidding in interdepen-
dent markets [Wellman et al., 2004]. Given probabilistic
predictions of prices across markets, agents can manage
exposure risk, choosing bids that trade off the profits and
losses of the possible bundles of goods they stand to win.

Greenwald and Boyan [2004] framed the problem of bid-
ding across interdependent markets given probabilistic
price predictions. Follow-on work [Greenwald et al., 2009,
Wellman et al., 2007] formalized this bidding problem
in decision-theoretic terms and established properties of
optimal bidding assuming that bids do not affect other-
agent behaviors. Further experimental comparison was per-
formed by Greenwald et al. [2010]. These works intro-

duced a taxonomy of heuristic bidding strategies [Wellman,
2011], which we employ here.

Self-confirming price-prediction (SCPP) bidding strategies
were first explored in the context of simultaneous ascend-
ing auctions (SimAAs) [Cramton, 2005]. For the SimAA
environment, SCPP strategies were found to be highly ef-
fective at tackling the exposure problem [Wellman et al.,
2008]. To our knowledge, no other general price-prediction
methods have been proposed for SimOSSB auctions, other
than learning from historical observations.

3 Price-Prediction Strategies and
Equilibrium

We consider a market withm goods, X = {1, . . . ,m}, and
n agents. Agent i’s value for a bundle X ∈ 2X is given
by vi(X), where vi(X) ∈ [0, V̄ ]. We assume free dis-
posal: if X ⊆ X ′, then vi(X) ≤ vi(X

′). The m goods
are allocated to the agents via SimOSSB auctions, one per
good. That the mechanism is simultaneous means that each
agent i submits a bid vector bbbi = (b1i , . . . , b

m
i ) ∈ Rm+ be-

fore a specified closing hour. That the auctions are one-
shot means that all auctions compute and report their results
upon the closing hour. That the bids are sealed means that
agents have no information about the bids of other auction
participants until the outcome is revealed.

The second-price sealed-bid (SPSB) auction is an OSSB
auction in which the winning bidder pays the second-
highest bid rather than its own (highest) bid. The envi-
ronments studied in our empirical game-theoretic analysis
below employ the SPSB mechanism. For simplicity of de-
scription we focus on SPSB throughout, although our the-
oretical results hold as well for first-price sealed-bid auc-
tions, or indeed any auction mechanism where the outcome
to agent i (whether it gets the good and the price it pays) is
a function of i’s own bid and the highest other-agent bid.

Our investigation employs the familiar independent private
values (IPV) model (see, for example, [Krishna, 2010]),
where each agent i’s values are drawn independently from
a probability distribution that is common knowledge. Un-
der IPV, it is a dominant strategy for an agent to bid its
true value in a single SPSB auction. This result does not
generalize to simultaneous SPSB auctions, however, un-
less the agent’s value over bundles happens to be addi-
tive. When agents’ values for different goods interdepend
(e.g., through complementarity or substitutability), bidding
truthfully in simultaneous auctions is not even an option, as
the value for an individual good is not well-defined.

To deal effectively with interdependent markets, an agent’s
bid in each auction must reflect its beliefs about the out-
comes of others. We consider beliefs in the form of pre-
dictions about the prices at which the agent might obtain
goods in the respective auctions. Bidding strategies that are



explicitly cast as functions of some input price prediction
are termed price-prediction (PP) strategies.

We denote by pj ∈ R+ a price for good j. The vector
ppp = 〈p1, . . . , pm〉 associates a price with each good. We
represent price predictions as probability distributions over
the joint price space. We use the symbol Π for such predic-
tions in the form of cumulative probability distributions,

Πppp(qqq) = Pr(ppp ≤ qqq), (1)

where ppp ≤ qqq holds iff pj ≤ qj for all j. We generally omit
the subscript ppp as understood.

We have previously argued [Wellman et al., 2007] that price
prediction is a key element of agent architecture for com-
plex trading environments. Here, we support a stronger
claim for the case of SimOSSB auctions: given IPV, PP
strategies are necessary and sufficient for optimal bidding.

Let w(bbb, qqq) = {j | bj > qj} denote the set of goods an
agent would win by bidding bbb when the highest other-agent
bids are qqq.1 Agent i’s utility for a bid given others’ bids can
thus be written as

ui(bbb, qqq) = vi(w(bbb, qqq))−
∑

j∈w(bbb,qqq)

qj . (2)

Definition 1 (Optimal PP Bidders). An optimal PP bidding
strategy s∗(Π) submits bids that maximize expected utility
given a price prediction Π,

s∗(Π) ∈ arg max
bbb

Eqqq∼Π[ui(bbb, qqq)]. (3)

In games of incomplete information, agent i’s strategy pro-
duces actions (here, bids) as a function of i’s type. Un-
der IPV, knowing other agents’ values tells agent i nothing
about its own value. The distribution of outcomes given i’s
bid bbbi depends only on bbbi and the marginal distribution of
other-agent bids. Agent i’s expected utility is thus condi-
tionally independent of other-agent valuations given their
bids [Wellman et al., 2011]. In particular, i’s best response
to a profile of other-agent strategies depends only on the
distribution of their bids [Rabinovich et al., 2011].

Let bk∗−i denote the highest bid submitted for good k by an
agent other than i. Since agent i’s utility depends only on
what it wins and what it pays, the distribution of highest
other-agent bids (i.e., the distribution of bk∗−i) is a sufficient
statistic for the other-agent bid distributions. This distribu-
tion can be expressed in the form of a price prediction (1).

Therefore, a best response to other-agent bidding strate-
gies takes the form of an optimal PP bidding strategy (3),

1In the case of ties, the winner is chosen uniformly from
among the high bidders. Our analysis ignores ties, which are rare
given our setup of real-valued bids and rich valuation functions.
Our theoretical results require that the highest other-agent bid is a
sufficient statistic for outcome, which is true as long as one’s bid
does not tie for best with two or more other bidders.

where the input PP is the distribution of highest other-
agent bids induced by those other-agent strategies. Since a
Bayes-Nash equilibrium (BNE) is a profile of mutual best-
response strategies, any profile of optimal PP strategies,
where the PP for each equals the distribution of highest bids
induced by the other agents’ optimal PP strategies, consti-
tutes a BNE. Moreover, any BNE can be characterized as a
profile of optimal PP strategies, or mixtures thereof.

Theorem 1. Suppose a SimOSSB auction game, with in-
dependent private values, where the outcome of each auc-
tion to agent i depends only on i’s bid and the highest
other-agent bid in that auction. Then the strategy profile
sss = (si, s−i) is a Bayes-Nash equilibrium if and only if,
for all i, si is equivalent to an optimal PP bidding strat-
egy with input Πi(qqq) = Pr((b1∗−i, . . . , b

m∗
−i ) ≤ qqq | s−i), or

equivalent to a mixture of such optimal PP strategies.

Price predictions that support strategic equilibrium are
themselves in a form of equilibrium. The bidding strate-
gies employ price predictions that are actually borne out
as correct (i.e., the distributions generated by the strategies
are as predicted) assuming that everyone follows the given
strategies. This situation can be viewed as a form of ratio-
nalizable conjectural equilibrium (RCE) [Rubinstein and
Wolinsky, 1994], where each agent’s conjecture is about the
distribution of highest other-agent bids. In this instance, the
RCE is also a BNE, since the conjecture provides sufficient
information to determine a best response.

An auction game with IPV is symmetric if all agents have
the same probability distribution over valuations. In earlier
work on simultaneous ascending auctions [Wellman et al.,
2008], we considered the symmetric IPV case and referred
to price predictions in this kind of equilibrium relationship
as self-confirming. Let Γ be an instance of a symmetric
IPV SimOSSB auction game, and s a bidding strategy that
employs price predictions (whether optimally or not).

Definition 2 (Self-Confirming Price Prediction (SCPP)).
The prediction Π is self-confirming for PP strategy s in Γ
iff Π is equal to the distribution of the highest other-agent
prices (b1∗−i, . . . , b

m∗
−i ) when all agents play s(Π).

The following theorem specializes Theorem 1 for the sym-
metric case, employing the language of SCPPs.

Theorem 2. In symmetric IPV SimOSSB auctions, a sym-
metric pure BNE comprises optimal PP bidders employ-
ing self-confirming price predictions. Hence, existence of
pure symmetric BNE in such games entails existence of self-
confirming price predictions.

In summary, for SimOSSB auctions under IPV, we can re-
strict attention to optimal PP strategies employing price
predictions that are in equilibrium with one another (which
for the symmetric case, means SCPPs). In the remainder of
this paper, we demonstrate that PP strategies are amenable
to effective approximation, are a convenient abstraction on



which to design and implement trading strategies, and ex-
hibit a high degree of robustness across environments.

4 Approximate Price Prediction

We have shown that an optimal PP strategy is a best re-
sponse to the strategies of other agents if price predictions
Π exactly reflect the other-agent bid distributions. Since it
is unrealistic to expect perfect price prediction, we exam-
ine the consequences of employing PP strategies that use
inaccurate price predictions Π′.

We quantify the inaccuracy of Π′ in two ways. The first
is a multivariate form of the Kolmogorov-Smirnov (KS)
statistic: KS (Π,Π′) ≡ supqqq|Π(qqq) − Π′(qqq)|. Second,
we define the bundle probability distance, BP(Π,Π′, bbb),
with respect to a bid bbb:

∑
X⊆X |Prqqq∼Π(w(bbb, qqq) = X) −

Prqqq∼Π′(w(bbb, qqq) = X)|/2.

We first bound the difference between perceived and ac-
tual expected utility when incorrectly using Π′ instead of
Π. Let us denote the payment for bbb given highest other-
agent bids qqq by ψ(bbb, qqq), so that for SPSB we have ψ(bbb, qqq) =∑
j∈w(bbb,qqq) qj . Overall expected utility is the difference be-

tween expected value of winnings and payment:

Eqqq[ui(bbb, qqq)] = Eqqq[vi(w(bbb, qqq))]− Eqqq[ψ(bbb, qqq)]. (4)

To bound the difference between perceived and actual ex-
pected utility, we separately consider winnings and pay-
ment. The following bounds the amount a bidder can un-
derestimate its expected payment by using Π′.

Lemma 3. Let δKS = KS (Π,Π′) and ‖bbb‖1 ≡
∑m
j=1 b

j .
Then for all bbb,

Eqqq∼Π[ψ(bbb, qqq)] ≤ Eqqq∼Π′ [ψ(bbb, qqq)] + 2δKS (‖bbb‖1), (5)

Proof. See Appendix A.1 in the online supplement.

We similarly bound the amount a bidder can overestimate
its expected value of winnings by using Π′. A variant dis-
tribution Π can degrade expected value of winnings only
by decreasing the probability of winning valuable bundles.
By constraining BP distance, we can ensure, for any set of
bundles, that the total probability of winning a bundle from
that set at bbb decreases by at most δBP . This means that the
expected value of winnings can suffer by at most δBP V̄ .

Lemma 4. Let δBP = BP(Π,Π′, bbb). Then

Eqqq∼Π[vi(w(bbb, qqq))] ≥ Eqqq∼Π′ [vi(w(bbb, qqq))]− δBP V̄ . (6)

Combining the lemmas, we have the following bound.

Theorem 5. Let δKS = KS (Π,Π′) and δBP =
BP(Π,Π′, bbb). Then for all i,

Eqqq∼Π[ui(bbb, qqq)] ≥ Eqqq∼Π′ [ui(bbb, qqq)]− δBP V̄ − 2δKS‖bbb‖1.

We can use these bounds to limit how far an optimal PP
strategy with inaccurate price predictions Π′ can be from
equilibrium. Let us denote by b̄ the maximum payment,
that is, the L1-norm of the greatest possible bid vector. The
value of b̄ is bounded above bymV̄ for any rational bidding
strategy under any valuation distribution, but typically it
will be far less than that.

Theorem 6. Suppose that for all agents i, strategy ŝi is a
best response to other-agent highest-bid distribution Π̂−i,
and that Πŝ−i

is the other-agent bid distribution actually
induced by ŝ−i. If for all i, KS (Π̂−i,Πŝ−i

) ≤ δKS , and
for all bbb, BP(Π̂−i,Πŝ−i

, bbb) ≤ δBP , then ŝss constitutes an
ε-Bayes-Nash equilibrium, for ε = 2δBP V̄ + 4δKS b̄.

Proof. See online Appendix A.2.

5 Heuristic PP Bidding Strategies

Having shown that optimal PP bidding strategies are theo-
retically ideal in that they comprise a BNE, we turn our at-
tention to practical PP bidding strategies. Building on prior
work [Wellman et al., 2007, Chapter 5], we explore a broad
range of heuristic bidding strategies. The most salient of
these are described here.

5.1 Marginal Values and Optimal Bundles

Interdependence dictates that the value of any individual
good must be assessed relative to a bundle of goods. This
idea is captured by the notion of marginal value.

Definition 3 (Marginal Value). Agent i’s marginal value,
µi(x,X), for good x with respect to a fixed bundle of other
goods X is given by: µi(x,X) ≡ vi (X ∪ {x})− vi (X).

Given a fixed vector of prices, ppp = 〈p1, . . . , pm〉, let
σi(X,ppp) denote agent i’s surplus from obtaining the set of
goods X at those prices:

σi(X,ppp) ≡ vi(X)−
∑

j|xj∈X

pj . (7)

Definition 4 (Acquisition [Boyan and Greenwald, 2001]).
Given price vector ppp, the acquisition problem selects an
optimal bundle of goods to acquire: X∗ = ACQi(ppp) ≡
arg maxX⊆X σi(X,ppp).

Faced with perfect point price predictions, an optimal bid-
ding strategy would be to compute X∗ = ACQi(ppp) and
then to buy precisely those goods in X∗. By definition,
this strategy yields the optimal surplus at these prices:
σ∗i (ppp) ≡ σi(ACQi(ppp), ppp).

To assess goods with respect to (typically imperfect) point
price predictions, we extend the concept of marginal value.
Let ppp[pj ← q] be a version of the price vector ppp with



the jth element revised as indicated: ppp[pj ← q] =
〈p1, . . . , pj−1, q, pj+1, . . . , pm〉.
Definition 5 (Marginal Value at Prices). Agent i’s
marginal value µi(xj , ppp) for good xj at prices ppp is given
by: µi(xj , ppp) ≡ σ∗i (ppp[pj ← 0])− σ∗i (ppp[pj ←∞]).

Here, σ∗i (ppp[pj ← 0]) represents the optimal surplus at
the given prices, assuming good xj is free. Similarly,
σ∗i (ppp[pj ←∞]) represents the optimal surplus at the given
prices, if xj were unavailable. The difference is precisely
the marginal value of good xj with respect to the prices
of other goods. Note that Definition 5 generalizes Defini-
tion 3, under the interpretation that goods in X have zero
price, and all other goods have infinite price.

StraightMV The heuristic strategy StraightMV em-
ploys this concept directly, and simply bids marginal value
for all goods: StraightMVj = µ(xj , ppp).

5.2 Bidding with Price Distributions

A point price estimate fails to convey the uncertainty in-
herent in future prices. Probability distributions over prices
provide a more general representation, expressing degrees
of belief over the possible prices that might obtain.

The expected value method [Birge and Louveaux, 1997]
approximates a stochastic optimization by collapsing prob-
ability distributions into point estimates through expecta-
tion. Let p̂ppΠ = 〈p̂1, . . . , p̂m〉, where p̂j = Eppp∼Π[pj ] is the
expectation of pj under given price prediction Π.

Any bidding strategy defined for point price predictions
can be adapted to take as input distribution price predic-
tions through this expected value method, simply by using
p̂ppΠ for the point price prediction. For example, we define
StraightMU as the strategy that takes as input a distribu-
tion prediction, and bids as StraightMV at the mean prices.
“MU” stands for “marginal utility”, but its usage here is
simply to distinguish the name from its corresponding point
strategy ending with “MV”.

We implemented two approaches to calculating p̂ppΠ. The
first samples from Π, and the second computes the exact
expectation of a piecewise approximation of Π. For the
sampling method, accuracy depends on the number of sam-
ples k drawn; thus we indicate a version of the strategy by
appending “k” to the name. For example, StraightMU8
takes the mean of eight samples from Π, and employs
StraightMV with that average price vector as input.

AverageMU Whereas StraightMU bids the marginal
value of the expected price, the PP strategy AverageMU
bids the expected marginal value: AverageMUj =
Eppp∼Π[µ(xj , ppp)]. Our implementation samples from the
price distribution, calculates marginal values for each sam-
ple, and averages the results.

5.3 Explicit Optimization

Finally, we consider strategies that explicitly attempt to op-
timize bids given a distribution price prediction, as do the
optimal PP bidders introduced above (Definition 1).

BidEval One heuristic optimization approach is to gen-
erate candidate bid vectors, and evaluate them according to
the price prediction. The BidEval strategy uses other bid-
ding heuristics to propose candidates, and estimates each
candidate’s performance by computing its expected utility
given the price prediction. It then selects the candidate bid
vector with the greatest expected utility. There are many
variations of BidEval, defined by:

• the method used to generate candidates. When this
method is a named bidding strategy, we indicate this in
parentheses; for instance, BidEval(SMU8) generates
candidates using StraightMU8. Strategy BidEvalMix
employs a mix of previously described bidding strate-
gies to generate candidates.

• number of candidates generated. Methods based on
sampling naturally produce a diverse set of candidates.
For example, each invocation of StraightMU8 em-
ploys a new draw of eight samples from Π to estimate
p̂ppΠ, thus we generally obtain different bids.
• whether the candidates are evaluated by exact compu-

tation on a piecewise version of Π, or by sampling. If
by sampling, then how many samples are used.

LocalBid The LocalBid strategy (see Alg. 1) employs
a local search method in pursuit of optimal bids. Start-
ing with an initial bid vector proposed by another heuris-
tic strategy, LocalBid makes incremental improvements
to that bid vector for a configurable number of iterations.
Those incremental improvements are made good-by-good,
treating all other goods’ bids as fixed. Assuming bids for all
goods except j are fixed, the agent effectively faces a sin-
gle auction for good j, with the winnings for other goods
determined probabilistically. For a single SPSB auction, it
is a dominant strategy to bid one’s expected marginal value
for good j, which is given by Eppp∼Π[v(w(bbb,ppp) ∪ {j}) −
v(w(bbb,ppp) \ {j})], under these circumstances.

Algorithm 1 LocalBid
Input: prediction Π, heuristic strategy s, #iterations K
Output: bid vector bbb

Initialize bbb← s(Π)
for k = 1 to K do

for j = 1 to m do
bj ← Eppp∼Π[v(w(bbb,ppp) ∪ {j})− v(w(bbb,ppp) \ {j})]

return bbb

LocalBid is an iterative improvement algorithm: the ex-
pected utility of bbb is nondecreasing with each update. Fur-
ther, if LocalBid converges, it returns a bid vector that is



consistent (unlike AverageMU), in the sense that each el-
ement of the vector is the average marginal value for its
corresponding good given the rest of the bid.

In an empirical comparison of bid optimization algorithms,
we found that the LocalBid method was highly effective. In
one representative environment, LocalBid achieved 98.8%
optimality (see Figure 1), whereas a version of BidE-
val produced bids with expected value 94.5% of optimal.
In that same environment, the bids generated by Aver-
ageMU64 were 66.1% as profitable as the optimal bid.
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Figure 1: Expected profit for LocalBid versus optimal, for
5000 sample valuations in SimSPSB environment U[5,5].
Points above the diagonal are suboptimal instances.

6 Self-Confirming Price Predictions

Now that we have a suite of strategies that employ price
predictions, we turn to the question of how to generate such
predictions. We propose here to employ self-confirming
price predictions (SCPPs) (Definition 2), originally intro-
duced and evaluated in the context of simultaneous as-
cending auctions [Osepayshvili et al., 2005]. A high-level
description of our iterative procedure for computing self-
confirming price predictions is shown in Alg. 2.

Algorithm 2 Self-Confirming Price Search
Input: PP strategy PP, parameters F 0, L, G, κt, τ
Output: price prediction F

Initialize F ← F 0

for t = 1 to L do
F ′ ← outcome of G runs with all playing PP(F )
if KSmarg(F, F ′) < τ then

return F
F ← κtF

′ + (1− κt)F
return F

We extend the flexibility of the existing SCPP-derivation
procedure by considering two interpretations of the “out-
come” prices resulting from each instance of the game. In

one, the resulting price is the actual transaction price of the
good (price), as in the earlier SimAA study. In the second,
we take the highest other-agent bid (HB) as the result.

To measure the difference between distributions at succes-
sive iterations, we adopt the Kolmogorov-Smirnov statis-
tic. Since we maintain our prediction in terms of marginal
distributions, our comparison takes the maximum of the
KS statistic separately for each good: KSmarg(F, F ′) ≡
maxj KS (Fj , F

′
j).

Our initial prediction F 0 considers all integer prices in
the feasible range equally likely. At each iteration, we
run G instances of game Γ, with all agents playing the
distribution-prediction strategy PP(F ). We tally the prices
resulting from each instance, and update the price predic-
tion as a weighted average of this tally F ′ and the previous
prediction F . When KSmarg(F, F ′) falls below threshold,
we halt and return F . Or, if this distance never falls below
threshold, then the procedure terminates and returns the re-
sult after L iterations.

Although not guaranteed to converge, we found that for
the heuristics of the previous section the iterative proce-
dure generally produced approximately marginally self-
confirming distribution predictions. For example, in one
environment with a range of strategies we ran the proce-
dure with G = 106 and L = 100, achieving an accuracy
KSmarg < 0.01 in all cases. Due to space constraints, we
relegate a full description and evaluation of this procedure
to the extended version of this paper.

7 Empirical Game-Theoretic Analysis

The heuristic strategies introduced in §5 represent plausible
but not generally optimal approaches to bidding in simulta-
neous auctions. Even the strategies based on explicit opti-
mization (§5.3) fall short of ideal due to inaccuracy in price
prediction and non-exhaustive search of bid candidates. To
evaluate the performance of these strategies, we conducted
an extensive computational study, simulating thousands of
strategy profiles—millions of times each—in five different
simultaneous SPSB environments. Analysis of the game
model induced from simulation data provides evidence for
the efficacy and robustness of approximately optimal PP
strategies across these environments.

7.1 Approach

The methodology of applying game-theoretic reasoning to
simulation-induced game models is called empirical game-
theoretic analysis (EGTA) [Wellman, 2006]. In EGTA,
we simulate profiles of an enumerated strategy set play-
ing a game, and estimate a normal-form game from the ob-
served payoffs. The result is a simulation-induced game
model, called the empirical game. By applying standard
game-theoretic solution concepts to the empirical game,



we can draw conclusions about the strategic properties of
the strategies and profiles evaluated. Although the strategy
space in the empirical game is necessarily a severely re-
stricted subset of the original, by including a broad set of
strategies representing leading ideas from the literature, we
can produce relevant evidence bearing on the relative qual-
ity of heuristic strategies in the simulated environments.

Our EGTA study of SimSPSB followed these steps.

1. Define an environment: numbers of goods and agents,
and valuation distributions.

2. Specify a set of heuristic strategies. For PP strate-
gies, this includes deriving self-confirming distribu-
tion price predictions to be input to these strategies,
based on the environment defined in Step 1. The full
set of strategies included in our EGTA study is de-
scribed in online Appendix B.

3. Simulate select profiles among these strategies, sam-
pling from the valuation distributions for each simu-
lation instance (at least one million per profile, most
profiles two million or more). Calculate mean payoffs
for each strategy in each profile.

4. Analyze the empirical game defined by these mean
payoffs to identify Nash equilibria, dominance rela-
tionships, regret values, and other analytic constructs.

In actuality, Steps 2–4 were applied in an iterative and inter-
leaved manner, with intermediate analysis results inform-
ing the selection of strategies to explore and profiles to
sample. The exploration and sample selection were guided
manually, generally driven by the objective of confirming
or refuting equilibrium candidates among the profiles al-
ready evaluated. The process for each environment was
terminated when all of the following conditions were met:
(1) a broadly representative set of heuristic strategies were
covered, (2) all symmetric mixed profiles evaluated were
either confirmed or refuted as equilibria, and (3) all strate-
gies showing relative success in at least one environment
were evaluated against the equilibria in all other environ-
ments. Overall, the analysis commanded some tens of
CPU-years over a roughly six-month period.

7.2 Environments

We evaluated five simultaneous SPSB environments, in-
volving 3–8 agents bidding on 5 or 6 goods. The environ-
ments span two qualitatively different valuation distribu-
tions, from highly complementary to highly substitutable.
Both of these assume IPV and symmetry, so that each agent
receives a private valuation drawn independently from the
same distribution.

7.2.1 Scheduling Valuations

The first valuation distribution we employ in this study
is based on a model of market-based scheduling [Reeves
et al., 2005]. Goods represent time slots of availability for
some resource: for example, a machine, a meeting room, a
vehicle, or a skilled laborer. Agents have tasks, which re-
quire this resource for some duration of time to complete.

Specifically, the goods X = {x1, . . . , xm} comprise a set
of m time slots available to be scheduled. Agent i’s task
requires λi time slots to accomplish, and the agent values
a set of time slots according to when they enable comple-
tion of the task. If agent i acquires λi time slots by time
t, it obtains value V ti . Completion value with respect to
time is a nonincreasing function: for all i, if t < t′ then
V ti ≥ V t

′

i . If it fails to obtain λi slots, the agent accrues no
value (V∞i = 0). Let X ⊆ X denote a set of slots. The
expression |{xj ∈ X | j ≤ t}| represents the number of
these that are for time t or earlier. The overall valuation
function for agent i is vi(X) = V

T (X,λi)
i , where

T (X,λ) = min ({t s.t. |{xj ∈ X | j ≤ t}| ≥ λ} ∪ {∞})

is the earliest time by which X contains at least λ slots.

For each agent, a task length λi is drawn uniformly over
the integers {1, . . . ,m}. Values associated with task com-
pletion times are drawn uniformly over {1, . . . , 50}, then
pruned to impose monotonicity [Reeves et al., 2005]. The
valuations induced by this scheduling scenario exhibit
strong complementarity among goods. When λ > 1, the
agent gets no value at all for goods in a bundle of fewer
than λ. On the other hand, there is some degree of substi-
tutability across goods when there may be multiple ways of
acquiring a bundle of the required size.

We denote environments using this valuation by U [m,n],
with m and n the numbers of goods and agents, and “U”
indicating the uniform distribution over task lengths.

7.2.2 Homogeneous-Good Valuations

The second valuation distribution expresses the polar op-
posite of complementarity: goods are perfect substitutes,
in that agents cannot distinguish one from another. Agents’
marginal values for units of this good are weakly decreas-
ing. Specifically, valuation is a function of the num-
ber of goods obtained, constructed as follows. Agent i’s
value for obtaining exactly one good, vi({1}), is drawn
uniformly over {0, . . . , 127}. Its value for obtaining
two, vi({1, 2}), is then drawn from {vi({1}), vi({1}) +
1, . . . , 2vi({1})}. In other words, its marginal value for
the second good is uniform over {0, . . . , vi({1})}. Subse-
quent marginal values are similarly constrained not to in-
crease. Its marginal value for the kth good is uniform over
{0, . . . , vi({1, . . . , k − 1})− vi({1, . . . , k − 2})}.

We denote environments using this valuation by H[m,n],



with “H” an indicator for homogeneity.

7.3 Regret

We evaluate the stability of a strategy profile by regret, the
maximal gain a player could achieve by deviating from the
profile. Formally, let Γ = {n, S, u(·)} be a symmetric
normal-form game with n players, strategy space S (the
same for each player, since the game is symmetric), and
payoff function u : S × Sn−1 → R. The expression
u(si, s−i) represents the payoff to playing strategy si in a
profile where the other players play strategies s−i ∈ Sn−1.

Definition 6 (Regret). The regret ε(sss) of a strategy profile
sss = (s1, . . . , sn) is given by

ε(sss) = max
i

max
s′i∈S

(u(s′i, s−i)− u(si, s−i)) .

A Nash equilibrium profile has zero regret, and more gen-
erally regret provides a measure of approximation to Nash
equilibrium. Using this regret definition, profile sss is an
ε(sss)-Nash equilibrium.

Regret is a property of profiles. Evaluation of a particu-
lar strategy is inherently relative to a context of strategies
played by other agents. Jordan et al. [2007] proposed rank-
ing strategies according to their performance when other
agents are playing an equilibrium.

Definition 7 (NE regret [Jordan, 2010]). Let sssNE be a
Nash equilibrium of game Γ. The regret of strategy si ∈ S
relative to sssNE , u(sNE

i , sNE
−i )−u(si, s

NE
−i ), is an NE regret

of si in Γ.

NE regret represents the loss experienced by an agent for
deviating to a specified strategy from a Nash equilibrium
of a game. The rationale for this measure comes from the
judgment that all else equal, Nash equilibria provide a com-
pelling strategic context for evaluating a given strategy. For
games with multiple NE, a given strategy may have multi-
ple NE-regret values.

7.4 Results

Table 1 summarizes the extent of simulation coverage of
the five SPSB environments investigated.2 The empirical
games comprise 600–14,000 profiles, over 29–34 strate-
gies. Evaluated profiles constitute a small fraction (as lit-
tle as 0.03%) of the entire profile space over these strate-

2The extended version includes an online data supplement
with full payoff data for the empirical games. The results we re-
port here subsume those of a preliminary study [Yoon and Well-
man, 2011]. That study set the groundwork for the current investi-
gation by developing the infrastructure for simulation and deriva-
tion of self-confirming price predictions, and tuning parameters
(e.g., number of evaluating samples) for several of the strategies.
However, the preliminary results reflected sparser coverage of rel-
evant profiles and a weaker overall set of strategy candidates.

Table 1: Strategies and profiles simulated for the environ-
ments addressed in our EGTA study.

Environment # Strategies # Profiles % Profiles
U [6, 4] 34 1165 1.76
U [5, 5] 30 5219 1.88
U [5, 8] 29 9096 0.03
H[5, 3] 32 608 10.16
H[5, 5] 34 13197 2.62

gies. Nevertheless, these are sufficient to confirm symmet-
ric Nash equilibria for each game. Whereas it is impossible
to rule out additional equilibria without exhaustive evalua-
tion, we have either confirmed or refuted every evaluated
symmetric mixed profile (i.e., every subset of strategies
for which all profiles are evaluated). Since this includes
every strategy in conjunction with those most effective in
other contexts, we doubt that there are any other small-
support symmetric equilibria, and expect few if any alter-
native symmetric equilibria among the explored strategies.

As it happens, our process identified exactly one symmet-
ric mixed-strategy NE in each game. Of the 44 distinct
strategies explored across environments, only seven were
supported in equilibrium in any environment. Variants of
SCLocalBid, a strategy that explicitly optimizes with re-
spect to self-confirming prices, predominate in equilibrium
in four out of five environments. LocalBid and the BidE-
valMix strategies also explicitly optimize, but with respect
to price predictions that are self-confirming for different
strategies (see Appendix B). AverageMU64 HB performs
remarkably well in the “U” environments, and is the sole
non-optimizing heuristic to appear in equilibria.

Whether a strategy is in equilibrium or not is a crude bi-
nary classification of merit. We measure relative degrees
of effectiveness by NE regret (Definition 7), as reported in
Table 2. The table depicts the NE-regret values for 12 top
strategies: all those ranked fourth or better in at least one
environment. The values are indicated on a horizontal scale
for each game environment, ranging from zero (indicating
the strategy is in the support of equilibrium) to the high-
est NE regret value among the listed strategies. We also
verified via a bootstrap technique that the results are statis-
tically robust: for each identified equilibrium the one-tailed
90% confidence bound on regret is at the far left end (1%
of the range) of the NE regret scale shown.

These results provide solid support for the SCLocalBid
strategy. For the one environment it fails to participate in
equilibrium, its NE regret is still quite low, thus we find it
to be a strong all-around strategy. This situation contrasts
starkly with prior findings for bidding in simultaneous as-
cending auctions [Wellman et al., 2008], where the best
strategies for complementary (scheduling valuation) envi-
ronments were awful in substitutes (homogeneous good)



Table 2: NE regret for top strategies across five environments.

NE Regret

AverageMU64_HB
AverageMU64Z_HB

BidEvaluatorMix_E8S32K8_HB
BidEvaluatorMixA

BidXEvaluatorMix3_K16_HB
BidXEvaluatorMixA_K16_HB

LocalBidSearch_K16_HB
SCBidEvaluatorMixA_K16_HB
SCBidXEvaluatorMixA_K16_HB

SCLocalBidSearch_K16_HB
SCLocalBidSearch_K16Z_HB
SCLocalBidSearchS5K6_HB

0.0 0.1 0.2 0.3 0.4 0.5

U[6,4]

0.0 0.1 0.2 0.3 0.4 0.5

U[5,5]

0.0 0.1 0.2 0.3

U[5,8]

0 2 4 6 8 10 12

H[5,3]

0 2 4 6 8 10

H[5,5]
SC Local SC BidEval Local BidEval AvgMU

environments, and vice versa. The fact that SCLocalBid
performs so well aligns with our key theoretical finding, in
support of optimal PP bidders with self-confirming price
predictions. As the LocalBid search method is most effec-
tive in optimizing bids, it is consistent with our theory to
find that both examples of strategies in this class are lead-
ers among explicit optimizing strategies.

All the remaining top strategies are in the BidEval class
(also explicit optimizers), except for AverageMU64. In
contrast to the others, however, AverageMU64’s quality
is limited to one of the valuation distributions—the strat-
egy performs poorly in homogeneous-good environments.
This observation is consistent with the results reported by
Boyan and Greenwald [2001], where an example environ-
ment with perfect substitutes was contrived to demonstrate
the shortcomings of marginal-utility-based bidding. Given
such examples, it is perhaps unsurprising that the heuris-
tic strategies based on marginal value have a difficult time
competing with explicit optimizers. If anything it is the
observed success of AverageMU64 that is striking, but
this outcome is consistent with past experimental results in
an environment that exhibits substantial complementarity
[Stone et al., 2003]. Still, compared to optimal PP bidders,
AverageMU lacks robustness across valuation classes.

Finally, all the top strategies but one employ the highest-
bid (HB) statistic in deriving self-confirming price distribu-
tions, as opposed to the actual transaction price. This, too,
is aligned with what the theory would dictate. The lone ex-
ception in Table 2 is BidEvaluatorMixA, which performed
impressively in one of the homogenous-good environments
but not so well in the rest.

8 Conclusion

Our theoretical and experimental findings point to two key
ingredients for developing effective bidding strategies for
SimOSSB auctions with independent private values. The
first is an algorithm for computing approximately opti-

mal bid vectors given a probabilistic price prediction. We
have found that a simple local search approach (LocalBid)
achieves a high fraction of optimality, and that this trans-
lates into superior performance in strategic simulations
(§7). The second ingredient is a method for computing self-
confirming price predictions for a given price-prediction
bidding strategy and a specification of a simultaneous-
auction environment. We have found a simple iterative esti-
mation procedure (§6) to be effective at finding price distri-
butions that are approximately marginally self-confirming
for a range of strategies and environments.

Our theoretical results say that if these ingredients can
achieve their tasks perfectly, we have a solution (i.e., a
Bayes-Nash equilibrium) to the corresponding simultane-
ous auction game. Approximations to the ideal in these
ingredients yield approximate game solutions. Our compu-
tational experiments indicate that following this approach
produces results that are as good or better than any other
general method proposed for bidding in SimOSSB auc-
tions. The evidence takes the form of a comprehensive em-
pirical game-theoretic analysis, covering both complemen-
tary and substitutable valuation classes and a broad swath
of heuristic strategies from the literature.

There is still room for improvement in our proposed meth-
ods, as well as opportunity to subject our conclusions to
further empirical scrutiny. More sophisticated stochastic
search techniques may improve upon our best bid optimiza-
tion algorithms, and allow them to scale to larger environ-
ments with more complex valuations. Similarly, we do not
consider our simple iterative method to be a last word on
finding self-confirming price distributions. In particular,
we expect that substantial improvement could be obtained
by accounting for some joint dependencies in price predic-
tions. Finally, further testing against alternative proposals
or in alternative environments would go some way to bol-
stering or refuting our positive conclusions.
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