
Crowdsourcing Control: Moving Beyond Multiple Choice

Christopher H. Lin Mausam Daniel S. Weld
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195

{chrislin,mausam,weld}@cs.washington.edu

Abstract

To ensure quality results from crowdsourced
tasks, requesters often aggregate worker re-
sponses and use one of a plethora of strate-
gies to infer the correct answer from the
set of noisy responses. However, all current
models assume prior knowledge of all pos-
sible outcomes of the task. While not an
unreasonable assumption for tasks that can
be posited as multiple-choice questions (e.g.
n-ary classification), we observe that many
tasks do not naturally fit this paradigm, but
instead demand a free-response formulation
where the outcome space is of infinite size
(e.g. audio transcription). We model such
tasks with a novel probabilistic graphical
model, and design and implement LazySu-
san, a decision-theoretic controller that dy-
namically requests responses as necessary in
order to infer answers to these tasks. We
also design an EM algorithm to jointly learn
the parameters of our model while inferring
the correct answers to multiple tasks at a
time. Live experiments on Amazon Me-
chanical Turk demonstrate the superiority of
LazySusan at solving SAT Math questions,
eliminating 83.2% of the error and achieving
greater net utility compared to the state-of-
the-art strategy, majority-voting. We also
show in live experiments that our EM algo-
rithm outperforms majority-voting on a visu-
alization task that we design.

1 Introduction

Crowdsourcing marketplaces (e.g., Amazon Mechani-
cal Turk) continue to rise in popularity. Hundreds of
thousands of workers produce a steady stream of out-
put for a wide range of jobs, such as product cate-
gorization, audio-video transcription and interlingual

translation. Unfortunately, these workers also come
with hugely varied skill sets and motivation levels. En-
suring high quality results is a serious challenge for all
requesters.

Researchers have studied quality control extensively
for the case of simple binary choice (or multiple
choice) questions. A common practice is to ask mul-
tiple workers and aggregate responses by a major-
ity vote [Snow et al., 2008]. Several extensions have
been proposed that track the ability of individ-
ual workers while estimating the inherent difficulty
of questions [Dai et al., 2010, Whitehill et al., 2009].
These methods typically outperform majority vote and
achieve a much higher accuracy.

A key drawback of prior decision-theoretic approaches
to quality control is the restriction to multiple choice
questions, i.e., jobs where every alternative answer is
known in advance and the worker has to simply se-
lect one. While many tasks can be formulated in a
multiple-choice fashion (e.g. n-ary classification), there
a large number of tasks with an unbounded number of
possible answers. A common example is completing
a database with workers’ help, e.g., asking questions
such as “Find the mobile phone number of Acme Cor-
poration’s CEO.” Since the space of possible number
of answers is huge (possibly infinite), the task interface
cannot explicitly enumerate them for the worker. We
call these tasks open questions.

Unfortunately, adapting multiple-choice models for
open questions is not straightforward, because of the
difficulty with reasoning about unknown answers. Re-
questers, therefore, must resort to using a majority-
vote, a significant hindrance to achieving quality re-
sults from these more general open questions.

Our paper tackles this challenging problem of model-
ing tasks where workers are free to give any answer.
As a first step, we restrict these tasks to those which
have exactly one correct answer. We make the follow-
ing contributions:

• We propose a novel, probabilistic model relat-
ing the accuracy of workers and task difficulty
to worker responses, which are generated from a
countably infinite set.

• We design a decision-theoretic controller, Lazy-
Susan, to dynamically infer the correct answer
to a task by only soliciting more worker responses
when necessary. We also design an Expectation-
Maximization (EM) algorithm to jointly learn the
parameters of our model while inferring the cor-
rect answers to multiple tasks at a time.

• We evaluate variations of our approach first in a
simulated environment and then with live experi-
ments on Amazon Mechanical Turk. We show that
LazySusan outperforms majority-voting, achiev-
ing 83.2% error reduction and greater net utility
for the task of solving SAT Math questions. We
also show in live experiments that our EM algo-
rithm outperforms majority-voting on a visualiza-
tion task that we design.

2 Background

There exist many models that tackle the problem of in-
ferring a correct answer for a task with a finite number
of possible answers. Our work is based on the model
of of Dai et al. [Dai et al., 2010], which we now re-
view. Their model assumes that there are exactly 2
possible answers (binary classification). Let d ∈ [0, 1]
denote the inherent difficulty of completing a given
task, and let γw ∈ [0,∞) be worker w’s innate prone-
ness to error. The accuracy of a worker on a task,
a(d, γw), is defined to be the probability that she pro-
duces the correct answer using the following model:
a(d, γw) = 1

2 (1 + (1− d)γw). As d and γ increase, the
probability that the worker produces the correct an-
swer approaches 0.5, suggesting that she is guessing
randomly. On the other hand, as d and γ decrease, a
approaches 1, when the worker will deterministically
produce the correct answer.

Dai et al. couple this model with a utility function,
which describes the worth of a correct answer, to
define a Partially Observable Markov Decision Pro-
cess (POMDP) that outputs a policy for TurKon-
trol, their decision-theoretic controller for crowd-
sourced tasks. A significant limitation of this model
is its inability to handle tasks with an infinite number
of possible answers.

In order to address this limitation, we use the Chi-
nese Restaurant Process [Aldous, 1985], a discrete-
time stochastic process that generates an infinite num-
ber of labels (“tables”). Intuitively, the process may be
thought of as modeling sociable customers who, upon
entering the restaurant, decide between joining other

diners at a table or starting a new table. The greater
the number of customers sitting at a table, the more
likely new customers will join that table.

Formally, a Chinese Restaurant R = (T, f, θ) is a set
of occupied tables T = {t1, . . . , tn|ti ∈ N}, a function
f : T → N that denotes the number of customers at
each table ti, and a parameter θ ∈ R+. Imagine that
a customer arrives at the restaurant. He can either
choose to sit at one of the occupied tables, or at a new
empty table. The probability that he chooses to sit at
an occupied table t ∈ T is

CR(t) =
f(t)

N + θ

where N =
∑
t∈T f(t) is the total number of customers

in the restaurant. The probability that he chooses to
begin a new table, or, equivalently, the probability that
he chooses not to sit at an occupied table is

NTR =
θ

N + θ

Note that this probability is not equivalent to the prob-
ability that the new customer chooses to sit at a spe-
cific unoccupied table t ∈ N \ T . Since there are an
infinite number of unoccupied tables, the total sum of
these probabilities, should they be defined this way,
would be unbounded.

θ is a parameter that defines how attractive unoccu-
pied tables are at this restaurant. As θ grows, a new
customer becomes more likely to sit by himself at a
new empty table.

3 Probabilistic Model

We seek to develop a probabilistic model of workers on
tasks that have a countably infinite solution space. As
a first step, we focus on tasks that have exactly one
correct answer (e.g. the examples mentioned in the
introduction). We also assume that given the correct
answer and problem difficulty, the worker’s capability
to produce the correct answer is independent of all
the previous workers’ responses. However, even when
conditioning on v and d, wrong answers are depen-
dent on previous workers’ responses (because common
mistakes are often repeated). Finally, we assume that
workers are not adversarial and do not collaborate with
each other.

Dai et al.’s model is unable to solve this problem.
When one tries to extend their model to tasks with
an infinite number of possible solutions, several issues
arise from the difficulty of assigning an infinite number
of probabilities. For instance, since their model assigns
a probability to each possible solution, the naive ex-
tension of attempting to place a uniform distribution
over the space of solutions is impossible.

Additionally, a good model must consider correlated
errors [Grier, 2011]. For instance, consider a task that
asks a worker to find the mobile phone number of a
company’s CEO. We can reasonably guess that the
worker might Google the company name, and if one
examined a histogram of worker responses, it would
likely be correlated with the search results. A common
error might be to return the company’s main number
rather than the CEO’s mobile. Not all possible answers
are equally likely, and a good model must address this
fact.

The Chinese Restaurant Process meets our desiderata.
Let tables correspond to possible incorrect solutions
to the task (Chinese restaurant); a new worker (diner)
is more likely to return a common solution (sit at a
table with more people) than a less common solution.
We now formally define our extension of Dai et al.’s
model to the case of unbounded possible answers.

We redefine the accuracy of a worker for a given task,
a(d, γw), to be:

a(d, γw) = (1− d)γw

As a worker’s error parameter and/or the task’s dif-
ficulty increases, the probability the worker produces
the correct answer approaches 0. On the other hand, as
the stated parameters decrease, a approaches 1, mean-
ing the worker always produces the correct answer.

In addition to the difficulty d and the worker error γw,
let θ ∈ R+ denote the task’s bandwagon coefficient.
The parameter θ encodes the concept of the “tendency
towards a common wrong answer.” If θ is high, then
workers who answer incorrectly will tend to provide
new, unseen, incorrect answers, suggesting that the
task does not have “common” wrong answers. Con-
trastingly, if θ is low, workers who answer incorrectly
will tend toward the same incorrect answer, suggesting
that the task lends itself to the same mistakes.

Figure 1 illustrates our generative model, which en-
codes a Bayes Net for responses made by W workers
on a given task. xi is a binary random variable that
indicates whether or not the ith worker answers cor-
rectly. It is influenced by the correct answer v, the
difficulty parameter d, and the error parameter γi. bi,
the answer that is provided by the ith worker, is de-
termined by xi and all previous responses b1, . . . , bi−1.
Only the responses are observable variables.

Let Bi = {b1, . . . , bi} be the multiset of answers that
workers w1, . . . , wi provide. Let Ai = {a1, . . . , ak} be
the set of unique answers in Bi. The probability that
the i+1th worker produces the correct answer is simply
the worker’s accuracy for the given task:

P (xi = T |d, v) = a(d, γi+1)

P (xi = F |d, v) = 1− a(d, γi+1)

Then, the probability that the worker’s ballot is cor-
rect is defined as

P (bi+1 = v|d, v,Bi) = P (xi = T |d, v)

To define the probability space of wrong answers we
use the Chinese Restaurant Process. Let f(a) = |{b ∈
Bi|b = a}|, and let Ri,v = (Ai \ {v}, f, θ) be a Chi-
nese Restaurant Process. Then, the probability that
the worker returns a previously seen incorrect answer,
y ∈ Ai \ {v} is

P (bi+1 = y|d, v,Bi) = P (xi = F |d, v)CRi,v (y)

Finally, the probability that the worker returns an un-
seen answer is

P (bi+1 = u|d, v,Bi) = P (xi = F |d, v)NTRi,v

Here, u represents whatever the worker returns as long
as u /∈ Ai. More formally, u ∈ U where U is the single-
ton set {x|bi+1 = x ∧ bi+1 /∈ Ai}. We abuse notation
to simplify and elucidate:

P (bi+1 /∈ Ai|d, v,Bi) := P (bi+1 = u|d, v,Bi)

The model cares only about whether it has seen a
worker’s answer before, not what it actually turns out
to be.

3.1 Model Discussion

We now make several subtle and important observa-
tions.

First, our model is dynamic in the following sense. As
more workers provide answers, the probabilities that
govern the generation of an incorrect answer change.
In particular, the parameter θ becomes less and less
significant as more and more workers provide answers.
In other words, as i goes to infinity, the probability
that a new worker provides an unseen answer, θ/(θ+i),
goes to 0. As workers provide answers, the probabil-
ity mass that used to dictate the generation of a new
unseen answer is slowly shifted to that which deter-
mines the generation of seen answers. See Section 5.4
for a consequence of this behavior. Although we do not
believe these model dynamics completely reflect the
real-world accurately, we believe our model is a good
first approximation with several desirable aspects. In
fact, the model dynamics we just described are able to
capture the intuition that as more and more answers
arrive, we should expect to see fewer and fewer new
answers.

Second, certain areas of parameter space cause our
model to produce adversarial behavior. In other words,
there are settings of d and θ for a task such that
the probability a worker produces a particular incor-
rect answer is greater than the probability a worker

d

b4

γ4

b2

γ2

b1

γ1

b3

γ3

v

x1 x2 x3 x4

θ

xi P(xi)

T a(d, γi)

F 1-a(d, γi)

xi T F

P(bi = y Ai | xi) 0 CRi,v
(y)

P(bi Ai| xi) 0 NTRi,v

P(bi = v | xi) 1 0

Figure 1: Whether or not worker i gets it right, xi, depends on his error parameter γi and the difficulty of the
task d. Worker i’s answer bi depends on xi, the question’s true answer v, and all the previous workers’ answers
b1, . . . , bi−1. Ri is a Chinese Restaurant Process defined by Bi. This figure shows 4 workers. The bi are the only
observed variables.

provides the correct answer, on average. The follow-
ing theorem, proven in the supplementary materials,
makes this observation.

Theorem. Suppose the difficulty, d, is fixed and all

workers’ γ are equal. Then, θ < 1−2(1−d)γ
(1−d)γ if and only

if the expected probability the next worker returns the
first-seen incorrect answer is greater than the probabil-
ity the next worker returns the correct answer.

We note that the theorem only considers the first-
seen incorrect answer since the behavior of the Chinese
Restaurant Process is such that the first-seen incorrect
answer is generated with the highest expected proba-
bility. Thus, if the expected probability of generating
the correct answer exceeds that of the first-seen in-
correct answer, the model will not produce adversarial
behavior.

Finally, while the purpose of this paper is to address
open questions with infinite answer spaces, we note
that Polya’s Urn Scheme, the finite version of the Chi-
nese Restaurant Process, applies equally well to finite
answer spaces with many answer choices (multiple-
choice tasks).

4 A Decision-Theoretic Agent

We now discuss the construction of our decision-
theoretic controller, LazySusan. Our control problem
is as follows. Given an open question as input, the goal
is to infer the correct answer. At each time-step, an
agent can choose one of two actions. It can either stop

and submit the most likely answer, or it can create
another job and receive another response to the task
from another crowdsourced worker. The question is:
How do we determine the agent’s policy?

To solve this problem, first we define the world state of
LazySusan to be the pair (v, d), where v ∈ N is the
correct answer of the task and d is the difficulty of the
task. The space of world states is infinitely large, and
LazySusan cannot directly observe the world state,
so it has an agent state S, which at time i, is the set of
tuples, S = {(v, d)|v ∈ Ai ∪ {⊥} ∧ d ∈ [0, 1]}. Here, ⊥
represents the case when the true answer has not been
seen by the agent so far. In order to keep track of what
it believes to be the correct answer v, it maintains a
belief, which is a probability distribution over S.

The agent state allows us to fold an infinite number of
probabilities into one, since to compute the belief, one
only needs to calculate P (v =⊥, d|Bi), the probability
that no workers have provided the correct answer yet
given Bi, instead of P (v = u, d|Bi) for all possible
unseen answers u ∈ N \Ai.

4.1 Belief Update

We now describe specifically how LazySusan updates
its posterior belief P (v, d|Bi; i, k) after it receives its
ith ballot bi. Here, k = |Ai| is the number of unique
responses it has received. By Bayes’ Rule, we have

P (v, d|Bi; i, k) ∝ P (Bi|v, d; i, k)P (v, d; i, k)

Symbol Meaning

Ai The set of unique responses made by workers 1, . . . , i.
Bi The multiset of responses made by workers 1, . . . , i ({b1, . . . , bi})
bi Worker i’s response to the task
CC The value of a correct answer

CRi,v (y) The probability of a worker producing incorrect answer y in restaurant Ri,v.
CW The value of an incorrect answer
d Difficulty of task
γi Worker i’s error parameter
θ A task’s bandwagon coefficient; Chinese Restaurant Process parameter
k The number of unique worker responses (|Ai|)
i Number of ballots received so far

Q(Bi, action) The utility of taking action with belief Bi

NTRi,v The probability of a worker producing an unseen answer in restaurant Ri,v.
Ri,v An instance of the Chinese Restaurant Process instantiated using Bi and correct answer v.
U(Bi) The utility of a belief derived from Bi.
V (a) The value of an answer a
v Correct answer of task
xi Did worker i answer the task correctly

Table 1: Summary of notation used in this paper

The likelihood of the worker responses P (Bi|v, d; i, k)
is easily calculated using our generative model:

P (Bi|v, d; i, k) =

i∏
j=1

P (bj |v, d,Bj−1)

The prior on the correct answer and difficulty can be
further reduced:

P (v, d; i, k) = P (v|d; i, k)P (d; i, k)

The prior we must compute describes the joint prob-
ability of the correct answer and difficulty given i re-
sponses and k distinct responses. Notice that for all
a ∈ Ai, we do not know P (v = a|d; i, k). However,
they must be all the same, because knowing the dif-
ficulty of the task gives us no information about the
correct answer. Therefore, we must only determine the
probability the correct answer has yet to be seen given
d, i, and k. We propose the following model:

P (v =⊥ |d; i, k) = di

This definition is reasonable since intuitively, as the
difficulty of the task increases the more likely workers
have not yet provided a correct answer. On the other
hand, as the number of observations increases, we be-
come more certain that the correct answer is in Ai.

Finally, we model P (d; i, k). Consider for the moment
that workers tend to produce answers that LazySu-
san has seen before (θ is low). Intuitively, as k ap-
proaches i, the difficulty should grow, because the
agent is seeing a lot of different answers when it
shouldn’t, and as k approaches 1, the difficulty should

become smaller, because everyone is agreeing on the
same answer.

We choose to model P (d; i, k) ∼ Beta(α, β) and define
α ≥ 1 and β ≥ 1 as

α =

(
(i− 1)

k

i
+ 1

) 1
θ

β =

(
(1− i)k

i
+ i

)θ
First note that the bulk of a Beta distribution’s den-
sity moves toward 1 as α increases relative to β, and
toward 0 as β increases relative to α. Thus, as β in-
creases, difficulty decreases, and as α increases, diffi-
culty increases. Consider the case when θ = 1. As k
approaches i, α approaches i and β approaches 1, caus-
ing LazySusan to believe the difficulty is likely to be
high, and as k approaches 1, LazySusan believes the
difficulty is likely to be low. This behavior is exactly
what we desire.

Now we consider the effect of θ. Fix i and k. As θ
grows, β increases and α decreases. Therefore, for a
fixed multiset of observations, as people become more
likely to provide unseen answers, the probability that
the difficulty is low becomes greater. In other words,
LazySusan needs to see a greater variety of answers
to believe that the problem is difficult if θ is high.

Let θ1 > θ2 and consider the following scenarios: Sup-
pose k is close to i, so LazySusan believes, before fac-
toring in θ, that the task is difficult. If θ = θ2, Lazy-
Susan believes with more certainty that the task is
difficult than if θ = θ1. This behavior makes sense be-

cause LazySusan should expect a small k if θ is small.
If θ = θ2, LazySusan should see a smaller k than if
θ = θ1. If it sees a k that is larger than it expects,
it correctly deduces that more people are getting the
question wrong, and concludes the task is more dif-
ficult. Similarly, if k is close to 1, and θ = θ1, then
LazySusan believes with more certainty that the task
is easy than if θ = θ2, since even though workers tend
to produce more random answers, k is small.

4.2 Utility Estimation

To determine what actions to take, LazySusan needs
to estimate the utility of each action. The first step is
to assign utilities to its beliefs. Since Bi solely deter-
mines its belief at time i, we denote U(Bi) to be utility
of its current belief. Next, LazySusan computes the
utilities of its two possible actions. Let Q(Bi, submit)
denote the utility of submitting the most likely answer
given its current state, and let Q(Bi, request) denote
the utility of requesting another worker to complete
the task and then performing optimally. Then

U(Bi) = max{Q(Bi, submit),

Q(Bi, request)}

Q(Bi, submit) =
∑
a∈Ai

V (a)

∫
d

P (v = a, d|Bi; i, k)dd

Q(Bi, request) = c+
∑
a∈Ai

P (bi+1 = a|Bi)U(Bi+1)

+ P (bi+1 /∈ Ai|Bi)U(Bi+1)

where c is the cost of creating another job and
P (bi+1|Bi) =∑

a∈Ai

∫
d

P (bi+1|v = a, d,Bi)P (v = a, d|Bi)dd

LazySusan takes as inputs CC , the utility of a correct
answer, and CW , the utility of an incorrect answer.
These values are provided by the requester to man-
age tradeoffs between accuracy and cost. LazySusan
uses its own estimate of the correct answer to calculate
V (a):

a∗ = argmax
a∈Ai

∫
d

P (v = a, d|Bi; i, k)dd

V (a) =

{
CC if a = a∗
CW otherwise

4.3 Worker Tracking

After submitting an answer, LazySusan updates its
records about all the workers who participated in the
task using a∗. We follow the approach of Dai et al.
[Dai et al., 2010], and use the following update rules:

1) γw ← γw − dε should the worker answer correctly,
and 2) γw ← γw + (1 − d)ε, should the worker an-
swer incorrectly, where ε is a decreasing learning rate.
Any worker that LazySusan has not seen previously
begins with some starting γ.

4.4 Decision Making

We note that the agent’s state space continues to grow
without bound as new answers arrive from crowd-
sourced workers. This poses a challenge since existing
POMDP algorithms do not handle infinite-horizon
problems in dynamic state spaces where there is no
a-priori bound on the number of states. Indeed, the
efficient solution of such problems is an exciting prob-
lem for future research. As a first step, LazySusan
selects its actions at each time step by computing an
l-step lookahead by estimating the utility of each pos-
sible sequence of l actions. If the lth action is to request
another response, then it will cut off the computation
by assuming that it submits an answer on the l + 1th

action.

In many crowdsourcing platforms, such as Mechani-
cal Turk, we cannot preselect the workers to answer a
job. However, in order to conduct a lookahead search,
we need to specify future workers’ parameters for our
generative model. To simplify the computation, we as-
sume that every future worker has γ = γ.

4.5 Joint Learning and Inference

We now describe an EM algorithm that can be used
as an alternative to the working-tracking scheme from
above. Given a set of worker responses from a set of
tasks, b, EM jointly learns maximum-likelihood esti-
mates of γ,d, and θ, while inferring the correct an-
swers v. Thus, in this approach, after LazySusan sub-
mits an answer to a task, it can recompute all model
parameters before continuing with the next task.

We treat the variables d,γ, and θ as parameters.
In the E-step, we keep parameters fixed to compute
the posterior probabilities of the hidden true answers:
p(vt|b,d,γ,θ) for each task t. The M-step uses these
probabilities to maximize the standard expected com-
plete log-likelihood L over d,γ, and θ:

L(d,γ,θ) = E[ln p(v,b|d,γ,θ)]

where the expectation is taken over v given the old
values of γ,d,θ.

5 Experiments

This section addresses the following three questions: 1)
How deeply should the lookahead search traverse? 2)

The Crowd

Update posteriors for d and v

Update Bi and Ai

N

Y
START

task

Ready to

submit?

Submit

most likely v

Create a

duplicate

job

bi

Figure 2: LazySusan’s decisions when executing a
task.

How robust is LazySusan on different classes of prob-
lems? 3) How well does LazySusan work in practice?
and 4) How well does our EM algorithm work in prac-
tice?

To answer the first question, we compare LazySusan
at different settings of lookahead depth. Then, to an-
swer the second question, we test the robustness of
LazySusan by applying it to various kinds of prob-
lems in simulation. Next, to answer the third ques-
tion, we compare LazySusan to an agent that uses
majority-voting with tasks that test the workers of
Amazon Mechanical Turk on their SAT Math skills.
Finally, to answer the fourth question, we compare our
EM algorithm to a majority-voting strategy on a visu-
alization task.

5.1 Implementation

Since numerical integration can be challenging, we dis-
cretize difficulty into nine equally-sized buckets with
centers of 0.05, 0.15, . . . , 0.85, and 0.95.

For the purposes of simulation only, each response that
LazySusan receives also contains perfect information
about the respective worker’s γ. Thus, LazySusan
can update its belief state with no noise, which is the
best-case scenario.

In all cases, we set the learning rate ε = 1
mw+1 , where

mw is the number of questions a worker w has an-
swered so far. We also set the value of a correct an-
swer to be CC = 0. Finally, we set γ = 1, and the
bandwagon coefficient θ = 1 for all tasks.

5.2 Best Lookahead Depth

We first determine the best lookahead depth among
2, 3, and 4 with simulated experiments. We evaluate
our agents using several different settings of the value
of an incorrect answer: CW ∈ {−10,−50,−100}. Each
difficulty setting is used 10 times, for a total 90 sim-
ulations per utility setting. (9 difficulty settings × 10
= 90). We set the cost of requesting a job, c, from a
(simulated) worker to −1. Our simulated environment
draws worker γ ∈ (0, 2) uniformly.

Figure 3 shows the results of our simulation. Lazy-

-70

-60

-50

-40

-30

-20

-10

0

-10 -50 -100 -200

A
ve

ra
ge

 N
e

t
U

ti
lit

y

Penalty for an Incorrect Answer

LazySusan(2)

LazySusan(3)

LazySusan(4)

MV

Figure 3: In simulation, our lookahead search does well
at all depths.

Susan(l) denotes a lookahead depth of l. We also ex-
amine an agent that uses a majority-of-7-vote strat-
egy, MV. Expectedly, as the utility of an incorrect an-
swer decreases, the average net utility achieved by each
agent drops. We find that for all settings of lookahead
depth, LazySusan dramatically outperforms MV. We
also see that LazySusan(3) and LazySusan(4) both
achieve small, but sure gains over LazySusan(2).
However, LazySusan(3) and LazySusan(4) seem to
do about the same. Since LazySusan(4) runs signif-
icantly slower, we decide to use LazySusan(3) in all
future experiments, and refer to it as LazySusan.

5.3 Noisy Workers

We examine the effect of poor workers. We compare
two simulation environments. In the first, we draw
workers’ γ ∈ (0, 1) uniformly and in the second, we
draw workers’ γ ∈ (0, 2) uniformly. Recall that γ is
the worker error parameter. Thus, the first environ-
ment has workers that are much more competent than
those in the second. All other parameters remain as
before. Each difficulty setting is simulated 100 times,
for a total of 900 simulations per environment. The
results of this experiment are shown in Table 2. When
the workers are competent, LazySusan makes small
gains over MV, reducing the error by 34.3%. However,
when there exist noisier workers in the pool, Lazy-
Susan more decisively outperforms MV, reducing the
error by 48.6%. In both cases, LazySusan spends less
money than MV, netting average net utility gains of
55% and 75.9%.

5.4 Tasks with Correlated Errors

Next, we investigate the ability of LazySusan to deal
with varying θ and d in the worst case — when all
the workers are equally skilled. Recall that a high θ

γ ∈ (0, 1) γ ∈ (0, 2)

LazySusan MV LazySusan MV

Avg Accuracy (%) 88.7 82.8 83.3 67.5
Avg Cost 3.472 5.7 4.946 6.01

Avg Net Utility -14.772 -22.9 -21.646 -38.51

Table 2: Comparison of average accuracies, costs, and net utilities of LazySusan and MV when workers either
have γ ∈ (0, 1) or γ ∈ (0, 2)

What is the largest odd number that is a factor of 860?

Please answer the following math question. The solution is an
integer. Please enter your solution in its simplest form. (If the
solution is 5, enter 5, not 5.0, and not 10/2)

Answer:

Figure 4: An example of an SAT Math Question task
posed to workers for live experiments on Mechanical
Turk.

means that workers who answer incorrectly will tend
to produce previously unseen answers. We consider the
following variations of tasks: 1) Low difficulty, 2) High
difficulty, high θ, and 3) High difficulty, low θ. In the
first two cases, we see expected behavior. LazySusan
is able to use its model to infer correct answers.

However, in the third case, we see some very inter-
esting behavior. Since the difficulty is high, workers
more often than not produce the wrong answer. Addi-
tionally, since θ is low, they also tend to produce the
same wrong answer, making it look like the correct an-
swer. If the ratio is large enough, we find that Lazy-
Susan is unable to infer the correct answer, because
of the unfortunate ambiguity between high difficulty,
low θ problems and low difficulty problems. In fact, as
LazySusan observes more ballots, it becomes more
convinced that the common wrong answer is the right
answer, because of the model dynamics we mention
earlier (Section 3.1). This problem only arises, how-
ever, if the model produces adversarial 0, and we see
in practice that workers on Mechanical Turk generally
do not exhibit such behavior.

5.5 Experiments on Mechanical Turk

Next, we compare LazySusan to an agent using
majority-vote (MV) using real responses generated by
Mechanical Turk workers. We test these agents with
134 math questions with levels of difficulty compara-
ble to those found on the SAT Math section. Figure 4
is an example of one such task and the user interface
we provided to workers. We set the utility for an incor-
rect answer, CW , to be −100, because with this utility
setting, LazySusan requests about 7 jobs on aver-
age for each task, and a simple binary search showed

Figure 5: An example of a “triangle” task posed to
workers for live experiments on Mechanical Turk. The
area of this triangle, rounded down, is 38.

LazySusan MV

Avg Accuracy (%) 99.25 95.52
Avg Cost 5.17 5.46

Avg Net Utility -5.92 -9.94

Table 3: Comparisons of average accuracies, costs, and
net utilities of LazySusan and MV when run on Me-
chanical Turk.

this number to be satisfactorily optimal for MV. We
find that the workers on Mechanical Turk are surpris-
ingly capable at solving math problems. As Table 3
shows, LazySusan almost completely eliminates the
error made by MV. Since the two agents cost about the
same, LazySusan achieves a higher net utility, which
we find to be statistically significant using a Student’s
t-test (p < 0.0002).

We examine the sequence of actions LazySusan made
to infer the correct answer to the task in Figure 4. In
total, it requested 14 ballots, and received the follow-
ing responses: 215, 43, 43, 43, 5, 215, 43, 3, 55, 43, 215,
215, 215, 215. Since MV takes the majority of 7 votes,
it infers the answer incorrectly to be 43. LazySusan
on the other hand, uses its knowledge of correlated
answers as well as its knowledge from previous tasks
that the first three workers who responded with 43
were all relatively poor workers compared to the first
two workers who claimed the answer is 215. So even
though a clear majority of workers preferred 43, Lazy-
Susan was not confident about the answer. While it
cost twice as much as MV, the cost was a worthy sac-
rifice with respect to the utility setting.

Finally, we compare our EM algorithm to MV, using

real responses generated by Mechanical Turk workers.
We develop a “triangle” task (Figure 5) that presents
workers with a triangle drawn on a grid, and asks them
to find the area of the triangle, rounded down. We
posted 200 of these tasks and solicited 5 responses for
each. These tasks are difficult since many of the re-
sponses are off by 1. Our EM algorithm achieves an
accuracy of 65.5% while MV achieves an accuracy of
54.1%.

6 Related Work

Modeling repeated labeling in the face of noisy work-
ers when the label is assumed to be drawn from a
known finite set has received significant attention.
Romney et al. [Romney et al., 1986] are one of the
first to incorporate a worker accuracy model to im-
prove label quality. Sheng et al. [Sheng et al., 2008]
explore when it is necessary to get another label
for the purpose of machine learning. Raykar et al.
[Raykar et al., 2010] propose a model in which the
parameters for worker accuracy depend on the true
answer. Whitehill et al. [Whitehill et al., 2009] and
Dai et al. [Dai et al., 2010] address the concern that
worker labels should not be modeled as indepen-
dent of each other unless given problem difficulty.
Welinder et al. [Welinder et al., 2010] design a mul-
tidimensional model for workers that takes into ac-
count competence, expertise, and annotator bias. Ka-
mar et al. [Kamar et al., 2012] extracts features from
the task at hand and use Bayesian Structure Learn-
ing to learn the worker response model. Parameswaran
et al. [Parameswaran et al., 2010] conduct a policy
search to find an optimal dynamic control policy with
respect to constraints like cost or accuracy. Karger
et al. [Karger et al., 2011] develop an algorithm based
on low-rank matrix approximation to assign tasks to
workers and infer correct answers, and analytically
prove the optimality of their algorithm at minimiz-
ing a budget given a reliability constraint. Snow et al.
[Snow et al., 2008] show that for labeling tasks, a small
number of Mechanical Turk workers can achieve an ac-
curacy comparable to that of an expert labeler. None
of these works consider tasks that have an infinite num-
ber of possible solutions.

For more complex tasks that have an infinite
number of possible answers, innovative workflows
have been designed, for example, an iterative im-
provement workflow for creating complex artifacts
[Little et al., 2009], find-fix-verify for an intelligent ed-
itor [Bernstein et al., 2010], and others for counting
calories on a food plate [Noronha et al., 2011].

An AI agent makes an efficient controller for these
crowdsourced workflows. Dai et al. [Dai et al., 2010,
Dai et al., 2011] create a POMDP-based agent to

control an iterative improvement workflow. Shahaf
and Horvitz [Shahaf and Horvitz, 2010] develop a
planning-based task allocator to assign subtasks to
specific humans or computers with known abilities. We
[Lin et al., 2012] create a POMDP-based agent to dy-
namically switch between workflows.

Weld et al. [Weld et al., 2011] discuss a broad vision
for the use of AI techniques in crowdsourcing that in-
cludes workflow optimization, interface optimization,
workflow selection and intelligent control for general
crowdsourced workflows. Our work provides a more
general method for intelligent control.

7 Conclusion & Future Work

This paper introduces LazySusan, an agent that
takes a decision-theoretic approach to inferring the
correct answer of a task that can have a countably infi-
nite number of possible answers. We extend the prob-
abilistic model of [Dai et al., 2010] using the Chinese
Restaurant Process and use l-step lookahead to ap-
proximate the optimal number of crowdsourcing jobs
to submit. We also design an EM algorithm to jointly
learn the parameters of our model while inferring the
correct answers to multiple tasks at a time. Live ex-
periments on Mechanical Turk demonstrate the effec-
tiveness of LazySusan. At comparable costs, it yields
an 83.2% error reduction compared to majority vote,
which is the current state-of-the-art technique for ag-
gregating responses for tasks of this nature. Live ex-
periments also show that that our EM algorithm out-
performs majority-voting on “triangle” tasks.

In the future, we would like to address the ambiguity
between high difficulty, low θ problems and low diffi-
culty problems. We also hope to develop a generative
model that does not change as responses are gathered
from workers. We also hope to extend the ability of
LazySusan to solving tasks that have multiple cor-
rect answers. Indeed, workers oftentimes provide the
same answer in different forms (e.g., in different units).
Other questions may have several answers (e.g., top
executives often carry two mobiles). While multiple
correct answers may be reduced with crisply-written
instructions, an improved model may also prove use-
ful.

Acknowledgements

We thank the anonymous reviewers for their helpful
comments. This work was supported by the WRF /
TJ Cable Professorship, Office of Naval Research grant
N00014-12-1-0211, and National Science Foundation
grants IIS 1016713 and IIS 1016465.

References

[Aldous, 1985] Aldous, D. J. (1985). Exchangeability

and related topics. In École d’Été de Probabilités
de Saint-Flour XIII 1983, volume 1117 of Lecture
Notes in Mathematics, pages 1–198. Springer Berlin
/ Heidelberg. 10.1007/BFb0099421.

[Bernstein et al., 2010] Bernstein, M. S., Little, G.,
Miller, R. C., Hartmann, B., Ackerman, M. S.,
Karger, D. R., Crowell, D., and Panovich, K. (2010).
Soylent: A word processor with a crowd inside. In
UIST.

[Dai et al., 2010] Dai, P., Mausam, and Weld, D. S.
(2010). Decision-theoretic control of crowd-sourced
workflows. In AAAI.

[Dai et al., 2011] Dai, P., Mausam, and Weld, D. S.
(2011). Artificial intelligence for artificial intelli-
gence. In AAAI.

[Grier, 2011] Grier, D. A. (2011). Error identification
and correction in human computation: Lessons from
the WPA. In HCOMP.

[Kamar et al., 2012] Kamar, E., Hacker, S., and
Horvitz, E. (2012). Combining human and machine
intelligence in large-scale crowdsourcing. In AA-
MAS.

[Karger et al., 2011] Karger, D. R., Oh, S., , and Shah,
D. (2011). Budget-optimal crowdsourcing using low-
rank matrix approximations. In Allerton.

[Lin et al., 2012] Lin, C. H., Mausam, and Weld, D. S.
(2012). Dynamically switching between synergistic
workflows for crowdsourcing. In AAAI.

[Little et al., 2009] Little, G., Chilton, L. B., Gold-
man, M., and Miller, R. C. (2009). Turkit: tools
for iterative tasks on mechanical turk. In KDD-
HCOMP, pages 29–30.

[Noronha et al., 2011] Noronha, J., Hysen, E., Zhang,
H., and Gajos, K. Z. (2011). Platemate: Crowd-
sourcing nutrition analysis from food photographs.
In UIST.

[Parameswaran et al., 2010] Parameswaran, A.,
Garcia-Molina, H., Park, H., Polyzotis, N.,
Ramesh, A., and Widom, J. (2010). Crowdscreen:
Algorithms for filtering data with humans. In
VLDB.

[Raykar et al., 2010] Raykar, V. C., Yu, S., Zhao,
L. H., and Valadez, G. (2010). Learning from
crowds. Journal of Machine Learning Research,
11:1297–1322.

[Romney et al., 1986] Romney, A. K., Weller, S. C.,
and Batchelder, W. H. (1986). Culture as consen-
sus: A theory of culture and informant accuracy.
American Anthropologist, 88(2):313 – 338.

[Shahaf and Horvitz, 2010] Shahaf, D. and Horvitz,
E. (2010). Generlized markets for human and ma-
chine computation. In AAAI.

[Sheng et al., 2008] Sheng, V. S., Provost, F., and
Ipeirotis, P. G. (2008). Get another label? improv-
ing data quality and data mining using multiple,
noisy labelers. In Proceedings of the Fourteenth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining.

[Snow et al., 2008] Snow, R., O’Connor, B., Jurafsky,
D., and Ng, A. Y. (2008). Cheap and fast - but is it
good? evaluating non-expert annotations for natural
language tasks. In EMNLP, pages 254–263.

[Weld et al., 2011] Weld, D. S., Mausam, and Dai, P.
(2011). Human intelligence needs artificial intelli-
gence. In HCOMP.

[Welinder et al., 2010] Welinder, P., Branson, S., Be-
longie, S., and Perona, P. (2010). The multidimen-
sional wisdom of crowds. In NIPS.

[Whitehill et al., 2009] Whitehill, J., Ruvolo, P.,
Bergsma, J., Wu, T., and Movellan, J. (2009).
Whose vote should count more: Optimal integra-
tion of labels from labelers of unknown expertise.
In NIPS.

