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Abstract

We develop Graph-Coupled Hidden Markov
Models (GCHMMs) for modeling the spread
of infectious disease locally within a social
network. Unlike most previous research
in epidemiology, which typically models the
spread of infection at the level of entire popu-
lations, we successfully leverage mobile phone
data collected from 84 people over an ex-
tended period of time to model the spread of
infection on an individual level. Our model,
the GCHMM, is an extension of widely-used
Coupled Hidden Markov Models (CHMMs),
which allow dependencies between state tran-
sitions across multiple Hidden Markov Mod-
els (HMMs), to situations in which those de-
pendencies are captured through the struc-
ture of a graph, or to social networks that
may change over time. The benefit of making
infection predictions on an individual level is
enormous, as it allows people to receive more
personalized and relevant health advice.

1 INTRODUCTION

Growing amounts of information available from social
network data afford us an unprecedented opportunity
to answer questions about the individual agents who
are represented in these social networks, typically as
nodes, via the use of statistical models. The goal of
this paper is to provide a framework for modeling the
dynamical interactions between individual agents in a
social network, and to specifically apply it to modeling
the spread of infection.

We present the Graph-Coupled Hidden Markov Model
(GCHMM), a discrete-time model for analyzing the in-
teractions between agents in a dynamic social network.

New data and computational power have driven re-

cent developments in models of epidemic dynamics,
in which individuals in a population can express dif-
ferent epidemic states, and change state according to
certain events. These dynamics models range from
assuming homogeneous individuals and relations [Ker-
mack and McKendrick, 1927] to incorporating increas-
ingly more information on individuals and their rela-
tionships [Eubank et al., 2004, Salathé et al., 2010,
Stehlé et al., 2011, Hufnagel et al., 2004]. For ex-
ample, Eubank [Eubank et al., 2004] predicted out-
breaks ahead of time by placing sensors in key loca-
tions, and contained epidemics through a strategy of
targeted vaccination using land-use and population-
mobility from census data. Salath [Salathé et al., 2010]
looked at matching absentee records at a high school
with the epidemic size predicted by the susceptible-
exposed-infectious-recovered (SEIR) model.

In this paper, we focus on modeling the spread of in-
fection at an individual level, instead of for an entire
population. We aim to predict the state of each indi-
vidual’s health, and the paths of illness transmission
through individuals in a social network. This informa-
tion helps us to understand how disease is transmitted
locally within a network, and to give individual-level
behavioral advice about how to best maintain good
health.

The social network data that we employ for this re-
search is mobile phone data collected from 84 people
over an extended period of time. The data track each
person’s proximity to others within the network, and
daily symptom reports signal whether individual mem-
bers of the network might be ill.

Our graph coupled hidden Markov model (GCHMM)
incorporates dynamic social network structure into a
coupled hidden Markov model [Brand et al., 1997]. A
GCHMM allows us to predict at an individual level
how the spread of illness occurs and can be avoided.
Our results point to a new paradigm of infection con-
trol based on sensor networks and individual-level
modeling.



Access to dynamic social networks is an essential part
of modeling the spread of disease, and is useful for
many other real-world social applications as well. The
study of dynamic social networks has attracted con-
siderable research in the machine-learning community
[Goldenberg et al., 2010]. Since diffusion within dy-
namic social networks is important in many appli-
cations, we believe the GCHMM will also be useful
for studying the dynamics of fads, rumors, emotions,
opinions, culture, jargon, and so on [Castellano et al.,
2009]. Even though we focus on epidemiology in this
paper, the same model could be applied to determin-
ing, for example, to what extent an individual will
change his opinion to match the value of a random
neighbor in the formation of community consensus
[Holley and Liggett, 1975], to what extent an individ-
ual will change one of his traits to match the value of
a random neighbor using the Axelrod model of culture
formation [Axelrod, 41], how a real-world vocabulary
is formed at the society level through imitation and
alignment at the individual level [Steels, 1995], and
for any of these what further implications might be at
both the individual level and the network level.

This paper therefore makes several novel contributions
to the field of human behavior modeling and machine
learning: 1) We introduce a new class of models, GCH-
MMs, which combine coupled HMMs with dynamic so-
cial networks. We inject dynamic social network struc-
ture into the CHMM allowing us to use this class of
models for a potentially very wide range of multi-agent
network or behavior modeling tasks (e.g. rumor, in-
novation, or organizational flow in social networks).
2) We specify a particular model in that class, which
is a novel model for epidemics. This model allows us
to make individual-level epidemics predictions not en-
abled by previous epidemics methods. 3) We provide
methods for performing inference, generally in the case
of 1) and specifically in the case of 2), and discuss how
they relate to each other and previous work. These
methods provide tools for researchers interested in a
broad range of multi-agent and social network appli-
cations. 4) We validate our epidemics model on an
interesting new dataset which tracks the spread of ill-
ness on a local, individual level.

The rest of the paper is organized as follows. In section
2 we review the coupled hidden Markov model. In
section 3 we introduce the GCHMM for multi-agent
modeling in dynamic social networks. In section 4 we
show how the GCHMM can be applied to modeling
the spread of infection in networks, and in 5 we derive
the Gibbs sampler for parameter learning and latent
state estimation of the GCHMM for epidemics. In
section 6 we apply the GCHMM to our epidemic data
from an undergraduate university residence hall, which

includes daily symptom reports and hourly proximity
tracking.

2 COUPLED HIDDEN MARKOV
MODELS

A coupled hidden Markov model (CHMM) describes
the dynamics of a discrete-time Markov process that
links together a number of distinct standard hidden
Markov models (HMMs). In a standard HMM, the
value of the latent state at time t (Xt) is dependent on
only the value of the latent state at time t− 1 (Xt−1).
In contrast, the latent state of HMM i at time t in the
CHMM (Xi,t) is dependent on the latent states of all
HMMs in the CHMM at time t− 1 (X·,t−1).

The CHMM generative model is defined as follows:

Xi,t ∼ Categorical(φi,X·,t−1
) (1)

Yi,t ∼ F (θXi,t) (2)

where Xi,t is the hidden state of HMM i at time t, Yi,t
is the emission of HMM i at time t, X·,t−1 is a vec-
tor of the state values of all HMMs at time t− 1, and
φi,X·,t−1

is a vector the dimensionality of which is equal
to the number of states in the HMM and the entries
of which sum to 1. The entries in φi,X·,t−1 represent
the probability that the state variable in HMM i will
transition from its state at time t− 1 to each possible
state at time t, given the states of all other HMMs at
time t−1. θXi,t is the emission parameter for observa-
tions that derive from state Xi,t. The graphical model
for the CHMM can be seen in figure 1.

Historically, inference in CHMMs has been achieved
via maximum likelihood estimation, usually using an
Expectation-Maximization (EM) algorithm. Special-
ized CHMMs are often used in practice, however, be-
cause a CHMM with Mi states for HMM i has

∏
iMi

states in total, and the state transition kernel φi is
a
∏
iMi ×

∏
iMi matrix, both of which are a con-

siderable size. Many specializations either omit the
inter-chain probability dependence, such as in the fac-
torial hidden Markov model [Ghahramani and Jordan,
1997, Brand et al., 1997], or introduce fixed sparse
inter-chain probability dependence, such as in hidden
Markov decision trees [Jordan et al., 1996]. The dy-
namic influence model [Pan et al., 2012] allows one
chain to probabilistically depend on all other chains
through only a few sufficient statistics without increas-
ing modeling complexity.

However, in the following sections we introduce the
GCHMM, which differs from the models described
above in considering HMMs that are coupled based
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Figure 1: CHMM graphical model

on social network structure, and for which efficient
inference can be performed based on the inter-chain
“relations” of sufficient statistics.

The CHMM generative model can easily be formulated
in a Bayesian manner, which helps to avoid overfitting
problems in real-world applications [Beal, 2003]:

θXi ∼ Conj(γ) (3)

φi,X· ∼ Dirichlet(α) (4)

where Conj refers to the distribution conjugate to F ,
above, and γ and α are shared hyperparameters. Here,
θXi and φi,X· are drawn once for all times t. Xi is the
set of all state values that HMM i can take on, while
X· is the set of all state values that all HMMs can take
on in the CHMM.

This is the Bayesian formulation of the CHMM that
we extrapolate in the next section in order to deal with
situations wherein the relationship between HMMs is
mediated by a dynamic social network.

3 GRAPH-COUPLED HIDDEN
MARKOV MODELS

Here, we introduce the graph-coupled hidden Markov
model (GCHMM) to model how infection and influ-
ence spread via the interactions of agents in a dynamic
social network.

Let Gt = (N,Et) be a dynamic network, where each
n ∈ N is a node in Gt representing an individual agent,
and Et = {(ni, nj)} is a set of edges in Gt represent-
ing interactions between agents ni and nj at time t.
Graph Gt changes over time, where there is a discrete
number of observations of the structure of the graph at
times t ∈ {1 . . . T}. Changes in Gt over time represent
changes in interactions between agents in the network
over time.

We can use the CHMM in conjunction with dynamic
network Gt if we let Xn,t be the state of agent (node) n
at time t, and Yn,t be noisy observations about agent n
at time t. Gt restricts the connections between latent
state variables in the CHMM, allowing us to model
multi-agent phenomena of interest while potentially al-
lowing for efficient inference.

The generative model of the GCHMM in its most gen-
eral form is as follows:

Xn,t ∼ Categorical(φn,Xe:{n,·}∈Gt,t−1
)(5)

Yn,t ∼ F (θXn,t) (6)

θXn ∼ Conj(γ) (7)

φn,Xe:{n,·}∈Gt ∼ H(Xe:{n,·}∈Gt , µ) (8)

Unlike the CHMM, whose transition matrix φn for
HMM n is dependent on all other HMMs, φn in the
GCHMM is dependent on only the HMMs that have
edges in the graph connected to node n. Thus, φi,X·
becomes φn,Xe:{n,·}∈Gt . We assume that n itself is also
included in this set of HMMs on which n is dependent.
There is also a difference in the prior distribution of
φn. In the CHMM, the prior is the same for all rows
of the transition matrix, whereas in the GCHMM the
prior on φn, H, depends on the values of the states of
the HMMs on which n is dependent at the previous
time step.

The graphical model for the GCHMM is given in fig-
ure 2. Here, we show a GCHMM with 3 HMMs. Net-
work structure Gt is depicted in the bubbles above
each time step, also showing the dependency structure
corresponding to Gt in the GCHMM graphical model.
The structure for Gt−1 is not displayed, since it would
be off the left side of the figure.

This is a discrete-time multi-agent model, and thus it
approximates its continuous-time multi-agent counter-
part: a Markov jump process, also called a compound
Poisson process. This approximation works well only
when the time step size in the discrete-time model is
smaller than the average rate of interaction events. In
our setting, as in many settings in which these multi
agent models may be used, this is not an issue.

In the following, we describe an application of the
GCHMM to fit susceptible-infectious-susceptible epi-
demic dynamics. Here, we assume specific forms for
distributions F and H. Much like in the CHMM,
efficient inference may not always be possible in the
GCHMM, but we show that efficient inference can eas-
ily be done in our specific application. We expect that
efficient inference in the GCHMM will be possible for
many applications, since the incorporation of social
networks in the GCHMM leads to sparsity in the con-
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Figure 2: GCHMM graphical model

nections between latent variables, since these networks
are typically sparse, and the incorporation of structure
resulting from network-specific prior knowledge in H
can also often be leveraged. For example, as in the
epidemics model, H can become a simple function of
a few parameters and sufficient statistics of connected
states.

4 GCHMMS FOR MODELING
INFECTION DYNAMICS

In this section, we show that the GCHMM can be used
as a discrete-time multi-agent epidemic model, where
the spread of infection is modeled on an individual level
as opposed to the standard population-level models
commonly used in epidemiology. In section 6, we show
that the GCHMM can be applied to real-world data
based on individual proximity and symptom reporting.

In particular, the GCHMM that we apply to epidemics
can be seen as an individual-level version of the clas-
sic susceptible-infectious-susceptible (SIS) epidemiol-
ogy model. The SIS model describes infection dynam-
ics in which the infection does not confer long-lasting
immunity, and so an individual becomes susceptible
again once recovered (e.g., the common cold).

Using the GCHMM to model SIS dynamics identifies
paths of infection based on individual-level interac-
tions that are captured in our data.The classical differ-
ential equation and stochastic models of SIS dynamics
work at the population level, and their variables are
density and size of susceptible and infectious popu-

lations, respectively. The differential equation model
Ṡ = −β · SI + γ · I and İ = β · SI − γ · I for SIS spec-
ifies that the rate of change of infectious-population
density is bilinear for both infectious-population den-
sity and susceptible-population density. In this sys-
tem, any two individuals from the infectious popu-
lation are treated as the same, as are any two indi-
viduals from the susceptible population, and therefore
any two individuals from different populations have
an equal chance of causing infection. The stochas-
tic model S + I → 2I, rate = β′ · |S| · |I| and
I → S, rate = γ′ · |I| specifies that infection happens
at a bilinear rate for both the infectious-population
density and the susceptible-population density. This
model enables us to reason about the randomness in
the SIS system when the population size is small and
randomness cannot be ignored.

The above models focus on the statistics of the spread
of infection over a homogeneous population. How-
ever, we are instead interested in predicting the spread
of infection on an individual level, given relevant in-
formation about each specific individual. Our goal
is to explain symptom observations in a commu-
nity with susceptible-infectious-susceptible dynamics
at any given point in time. How likely is a person
to be infectious at time t, given that his friends are
reporting symptoms, reporting no symptoms, or not
answering surveys, and given the infectious person’s
own survey responses and his recent proximity to his
friends? Which nodes and links are critical in spread-
ing infection in the community? How can we control
infection in this community?

We use the GCHMM to address these questions, fol-
lowing the generative model given in section 3 and the
details (state space, H, F , and so on) specified here.

Gt = (N,Et) is a dynamic network, where each
node n ∈ N represents a person in the network, and
Et = {(ni, nj)} is a set of edges in Gt representing
the fact that person ni and person nj have interacted
or come into contact at time t. There are two pos-
sible latent states for each person n at each time t,
Xn,t ∈ {0, 1}, where 0 represents the susceptible state
and 1 the infectious state. There are six possible symp-
toms that can be displayed by a person at any given
time, Yn,t, which are runny nose, coughing, fever, feel-
ing stressed, sadness, and diarrhea, and each symptom
Yn,t,i ∈ {0, 1} represents the presence or absence of
symptom i.

Our generative model is therefore as follows:

Xn,t ∼ Bernoulli(φn,Xe:{n,·}∈Gt,t−1
) (9)

Yn,t,i ∼ Bernoullii(θXn,t) (10)



θXn ∼ Beta(h) (11)

This is identical to the generative model from section 3
(the Bernoulli is the same as Categorical for 2 states),
with F specified as a multivariate Bernoulli distribu-
tion. Here, h are given hyperparameters. The gener-
ative process for φn,Xe:{n,·}∈Gt is a little more subtle,
as it is defined using the interaction structure in the
network, detailed below..

In keeping with the SIS model, we assume that there
are certain transmission rates for the infection of one
person by another, and likewise a recovery rate for an
infected individual:

µ =


α ∼ Beta(a, b)

β ∼ Beta(a′, b′)

γ ∼ Beta(a′′, b′′)

(12)

γ is the probability that a previously-infectious in-
dividual recovers and so again becomes susceptible
(p(Xn,t+1 = 0|Xn,t = 1)), β represents the proba-
bility that an infectious person infects a previously-
susceptible person (p(Xni,t+1 = 1|Xni,t = 0, Xnj ,t =
1, {ni, nj} ∈ Et+1)), and α represents the probabil-
ity that an infectious person from outside the network
infects a previously-susceptible person within the net-
work. Each of these infection probabilities is assumed
to be independent. It is also assumed that a person
cannot be infected by more than one infectious per-
sons at the same time. Here, {a, b, a′, b′, a′′, b′′} are
given hyperparameters.

Therefore, we can now compute transition matrix
φn,Xe:{n,·}∈Gt (and thus specify H from section 3) in
terms of α, β, and γ:

p(Xn,t+1 = 0|Xn,t = 1) = γ (13)

P (Xn,t+1 = 1|Xn,t = 0, Xe:{n,·}∈Gt) (14)

= 1− P (Xn,t+1 = 0|Xn,t = 0, Xe:{n,·}∈Gt)

= 1− (1− α)(1− β)
∑
e:{n,·}∈Gt

Xn′,t

Thus our H from equation 8 is now a simple func-
tion of parameters µ and sufficient statistics of con-
nected states, g(X), given by the summation term in
the above equation. Intuitively, the probability of a
susceptible person becoming infected is 1 minus the
probability that no one, including someone from out-
side the network, or any of the people within the
network with whom the susceptible person is known
to have interacted, infected that individual. When
the probability of infection is very small, it is ap-
proximately the sum of the probabilities from differ-
ent sources (P (Xn,t+1 = 1|Xn,t = 0, Xe:{n,·}∈Gt) ≈

α+ β ·
∑|Xe:{n,·}∈Gt|

1 Xe:{n,·}∈Gt,t), since the probabil-
ity that more than one source contributed to infection
is also small.

If this assumption is correct, then the probability of
seeing an entire state sequence/matrix X is therefore
as follows:

P (X,α, β, γ)

= P (α)P (β)P (γ)
∏
n

P (Xn,1)∏
t,n

P (Xn,t+1|{Xn′∈N,t}, α, β, γ) (15)

= P (α)P (β)P (γ)
∏
n

P (Xn,1)∏
t,n

γ1Xn,t=1·1Xn,t+1=0 · (1− γ)1Xn,t=1·1Xn,t+1=1 ·

(α+ β ·
|Xe:{n,·}∈Gt |∑

1

Xe:{n,·}∈Gt,t)
1Xn,t=0·1Xn,t+1=1 ·

(1− α− β ·
|Xe:{n,·}∈Gt |∑

1

Xe:{n,·}∈Gt,t)
1Xn,t=0·1Xn,t+1=0

It is assumed that all people start off in the susceptible
state, and that 1• in the above equation is the indicator
function.

In general, we can often identify M types of events
in agent-based models, sometimes by taking small
enough time intervals in time-discretization to make
first-order approximation sufficient, and count the dif-
ferent ways that events of type m ∈ {1, . . . ,M} could
change an agent’s state from x′ at time t to state x 6= x′

at time t+ 1, gm(X•,t+1 = x, {Xn,t : n, t}). The state
transition matrix can then be defined as

P (Xn,t+1 = x|Xn,t 6= x,Xe:{n,•}∈Gt) ≈ (16)

M∑
m=1

µm · gm(Xn,t+1 = x,Xn,t, Xe:{n,•}∈Gt),

where µm is the success rate of event type m.

This formulation of the GCHMM enables us to fit a
wide range of agent-based models to “big data” sets
of networked people, by specifying the right ways of
counting events [Castellano et al., 2009]. For exam-
ple, in the Sznajd model of opinion dynamics [Sznajd-
Weron, 2005], any pair of agents with the same opinion
will have a small chance µ of convincing one of their
neighbors to change to their opinion. The number of
ways that an individual can be convinced by a pair of

neighbors is then g(X) =
(∑

(n′,n)∈Gt
1X

n′ 6=Xn
2

)
, and the

chance that an agent is convinced is µ ·g(X). Sznajd’s
model captures the intuition that we might not pay



attention to a single person looking up, but we would
look up if a group of people look up.

5 INFERENCE

In this section, we present an efficient inference algo-
rithm for our GCHMM in order to describe and pre-
dict the spread of infection. We start by describing
inference in the most general, worst case for GCH-
MMs, and progress from there to much more efficient
inference for the epidemics model. The worst case in-
ference algorithm for GCHMMs will be the same as
for CHMMs (the case where the graph is complete).
A Gibbs sampling algorithm for a particular CHMM
with two chains is given in [Rezek et al., 2000], which
we extend here to an unconstrained number of chains.
The two sampling steps relevant to the extension to
multiple chains become:

Xn,t+1 ∼ Categorical([
p(Xn,t+1 = j, Y |γ, φ)∑
k p(Xn,t+1 = k, Y |γ, φ)

])

φn,i ∼ Dirichlet([αj +

T∑
τ=1

1(Xn,τ+1 = j ∧X•,τ = i)])

Here j and k are states of n, and i is the transition
matrix row number corresponding to a combination of
states for all nodes. We can see that this sampling
procedure is not very efficient, particularly for a rea-
sonably large number of chains.

Fortunately, in practice most social networks are
sparse - far from complete. The number of parame-
ters needed to be inferred will decrease dramatically
for sparse networks (from O(NN ) to O(Nnmax) where
nmax is the maximum number of connections for node
n). The parameters of the transition matrix can now
be sampled conditioned on the network structure:

φn,i ∼ Dirichlet([αj+ (17)

T∑
τ=1

1(Xn,τ+1 = j ∧Xe:{n,·}∈Gτ+1,τ = i)])

Here i now corresponds to a combination of the states
of nodes connected to n only. While significantly bet-
ter than the full CHMM, this may still be intractable
for large N or T . However, the interaction structure
that we are interested in is also not typically governed
by unrestricted transition matrices, φ. There is struc-
ture to interactions or behavior that we can leverage
to drastically increase efficiency. One common exam-
ple is that all agents may be subject to the same φ.
Another is that interactions themselves have a struc-
ture which can be captured by an H(µ, g(X)), where

H is now a function parameterized by a reasonably
small set of parameters µ and sufficient statistics of
the current state space g(X). This allows us to sam-
ple p(µ|g(X)), and then compute φ, unlike in the algo-
rithms above. This form of H applies to many multi-
agent network models including the emergence of col-
laboration, the spread of rumors and the formation of
culture. It similarly applies to our epidemics model,
as described in section 4, where where g(X) can be
efficiently computed at each node, at each time step.
We now describe the resulting inference method for the
epidemics model, and then briefly discuss applying the
same inference scheme to some more general, g(X).

The epidemics inference algorithm learns the param-
eters of infection dynamics, including the rate of in-
fection and rate of recovery. It then estimates the
likelihood that an individual becomes infectious from
the contact with other students based on the reported
symptoms of others, and even when the individual’s
own symptom report is not available. Finally, the al-
gorithm enables us to make useful predictions about
the spread of infections within the community in gen-
eral.

We employ a Gibbs sampler to iteratively sample the
infectious/susceptible latent state sequences, to sam-
ple infection and recovery events conditioned on these
state sequences, and to sample model parameters.

The Gibbs sampler for the GCHMM for epidemics is
given in detail below.

The Gibbs sampler takes the following as its input:

G = (N,E): a dynamic network where nodes n ∈ N
represent a person in the network, and Et = {(ni, nj)}
is a set of edges in Gt representing that person ni and
person nj have interacted or come into contact at time
t.

Y : an observation matrix of symptoms indexed by
time and node.

The Gibbs sampler gives the following output:

{X,α, β, γ, θ}s: samples s. This includes several pa-
rameters: α, the base rate of infection; β, the rate
of infection by each infectious neighbor in Gt; and γ,
the rate of recovery. It includes the emission matrix
θ, which expresses the probability of seeing each of
the six symptoms given the infectious/susceptible la-
tent state. It also includes the state matrix X of the
epidemics GCHMM, which shows sequences of states
0 (susceptible) and 1 (infectious) for each individual
over time.

We randomly initialize the model parameters and set
the state matrix so that every individual in the net-
work is in the susceptible state. The Gibbs sampler



then iterates through sampling the latent states:

Xn,t+1|{X,Y }\Xn,t+1;α, β, γ ∼

Bernoulli

(
P (Xn,t+1 = 1)∑

x=0,1 P (Xn,t+1 = x)

)
(18)

P (Xn,t+1 = 1) = P (X|α, β, γ)P (Y |X)

where P (X|α, β, γ), is the same as in equation 15 mi-
nus the priors on α, β, and γ. P (Y |X) can be com-
puted in a straightforward manner from the product
of entries in the emissions matrix, θ, where P (Y |X) =∏
n,t,i P (Yi,n,t|Xn,t).

After sampling the latent statesX, we sample infection
events. Due to the interaction structure, and to ease
sampling, we introduce the auxiliary variable Rn,t to
track the source of an infection (inside or outside the
network) if an infection event occurs for person n at
time t+ 1 (i.e., Xn,t = 0 and Xn,t+1 = 1):

Rn,t ∼ Categorical

 α, β, . . . , β

α+ β
∑
n′

1(n′,n)∈Et∩Xn′,t=1

 (19)

Here Rn,t takes the value 1 if the infection event orig-
inated outside the network, and Rn,t > 1 if transmis-
sion came from someone within the network. Given
the state sequences X and infection events R, we can
sample the remaining parameters from their posteri-
ors:

α ∼ Beta(a+
∑
n,t

1{Rn,t=1},

b+
∑

n,t:Xn,t=0

1−
∑
n,t

1{Rn,t=1}), (20)

β ∼ Beta(a′ +
∑
n,t

1{Rn,t>1}, (21)

b′ +
∑
n,t:Xn,t=0;n′

1(n′,n)∈Et∩Xn′,t=1 −
∑
n,t

1{Rn,t>1}),

γ ∼ Beta(a′′ +
∑
n,t:Xn,t=1

1{Xn,t+1=0}, (22)

b′′ +
∑

n,t:Xn,t=1

1−
∑
n,t:Xn,t=1

1{Xn,t+1=0}).

In the more general M state case, we can sample
Xn,t+1 from its posterior categorical distribution sim-
ilar to equation 18, sample events Rn,t ∈ {1, . . . ,M}
(reflecting which type of event caused the state change
of Xn,t, c.f., equation 16) similar to equation 19, and

sample the success rates of different types of events
similar to equation 20.

Xn,t+1|{X,Y }\Xn,t+1;µ (23)

∼ Categorial

(
P (Xn,t+1)∑

x P (Xn,t+1 = x)

)
,

Rn,t ∼ Categorial

(
µ1g1, . . . , µMgM∑

m µmgm

)
, (24)

µm ∼ Beta(am +
∑
n,t

1Rn,t=m, (25)

bm +
∑
n,t

gm − 1Rn,t=m)

6 EXPERIMENTAL RESULTS

In this section we describe the performance of the epi-
demics GCHMM in predicting missing data in multiple
synthetic time series, comparing to a Support Vector
Machine (SVM) and standard SIS model. We also fit
our epidemics model to the hourly proximity records
and self-reported symptoms in a real world Social Evo-
lution data set.

6.1 CONTAGION IN THE SOCIAL
EVOLUTION EXPERIMENT

To demonstrate the potential of GCHMMs and our
epidemics model, we use it on the data collected in
the Social Evolution experiment [Dong et al., 2011],
part of which tracked common cold symptoms in a
student residence hall from January 2009 to April
2009. This study monitored more than 80% of the
residents of the hall through their mobile phones from
October 2008 to May 2009, taking periodic surveys
which included health-related issues and interactions,
and tracked their locations. In particular students an-
swered flu surveys, about the following symptoms: (1)
runny nose, nasal congestion, and sneezing; (2) nau-
sea, vomiting, and diarrhea; (3) frequent stress; (4)
sadness and depression; and (5) fever. Altogether, 65
residents out of 84 answered the flu surveys.

Because of the symptom reports and proximity infor-
mation, the Social Evolution data is a good test bed
for fitting infection models to real-world data, and for
inferring how friends infect one another: For almost all
symptoms, a student with a symptom had 3-10 times
higher odds of having friends with the same symptom,
confirming that symptoms are probabilistically depen-
dent on their friendship network. The durations of
symptoms averaged two days, and fit an exponential
distribution well, agreeing with the discussed epidemic
models. The base probability of a subject reporting
a symptom is approximately 0.01, and each individ-
ual had a 0.006˜0.035 increased chance of reporting



a symptom for each additional friend with the same
symptom, in line with the assumption that the rate of
contagion is proportional to the likelihood of contact
with an infected individual.

6.2 CALIBRATING PERFORMANCE

We took several steps to calibrate the performances of
our epidemics GCHMM and a support vector classifier
on synthetic data. First, we synthesized 200 time series
– each 128 days long – from the Bluetooth proximity
pattern in the Social Evolution data and different pa-
rameterizations. Then, we randomly removed the in-
fectious/susceptible data from 10% of the population,
added noise to each time series, and then inferred the
held-out data with each method, for each parameteri-
zation.

The different parameterizations were (1) α = 0.01,
β = 0.02, and γ = 0.3, with observation error 0.01;
(2) α = 0.01, β = 0.02, and γ = 0.3, with observation
error 0.001; and (3) α = 0.005, β = 0.045, and γ = 0.3,
with observation error 0.01. Comparing performances
between (1) and (2) enables us to see the effect of ob-
servation error on algorithm performance. Comparing
performances between (1) and (3) enables us to see
the effect of the network on algorithm performance.
Comparing performances between methods enables us
to see the difference between our model-based learning
and the SVM or SIS model.

We ran Gibbs samplers for 10,000 iterations, including
1000 for burn-in. We trained the SVM on a 1000-day
time series synthesized using the correct parameteriza-
tion, and used the number of infectious contacts yes-
terday, today, and tomorrow as features. We assigned
different weights to the “infected” class and the “sus-
ceptible” class to balance the true and false prediction
rates.

All methods can easily identify 20% of infectious cases
in the missing data with little error; however, the our
model-based method consistently performs better than
SIS and SVM. Less noise in symptoms observations
and in the contact networks of individuals significantly
improves the performance of inferring missing data, as
shown in Figure 3. An ROC curve shows how differ-
ent algorithms compare in terms of inferring infectious
cases in the held out 10% of the data.

The SVM performs poorly – especially at identify-
ing isolated infectious cases – because it assumes that
cases are i.i.d and because properly incorporating the
temporal structure of epidemic dynamics into the fea-
tures is not easy. The SVM also assumes that we have
enough training data. This assumption often cannot
be satisfied for the kinds of problems we are inter-
ested in. Lastly, we also compare to the traditional
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Figure 3: Less observation error (obs.err.=0.001) and
better knowledge about the network (β = 0.045) result
in a better trade-off between true positive rate (TPR)
and false positive rate (FPR). Lack of knowledge about
the network and assuming a compete graph structure
result in poor trade-off between TPR and FPR. The
support vector classifier has a worse trade-off between
TPR and FPR than the epidemics GCHMM does.

SIS methods (both pde and stochastic). They do not
predict well because they treat everyone in the pop-
ulation the same, regardless of individual interaction
network information.

Observation noise makes inferring the individual states
difficult, since it increases uncertainty in the parame-
ters of the system. Knowledge of the dynamic contact
network also affects the quality of parameter estima-
tion and state inference. The more we know about
who contacted whom, the more targeted we can be in
locating the infectious cases.

6.3 INFERRING COLD FROM
SYMPTOMS AND PROXIMITY

In this section, we report the results of our epidemics
model on the Social Evoluation data. In order to
infer infections we extracted an hour-by-hour prox-
imity snapshot over the 107 days that we monitored
symptoms, and interpolated hourly symptom reports
from the daily symptom reports. We assumed that
the symptoms are probabilistically independent given
the common cold (infectious) state. We ran the Gibbs
sampler for 10,000 iterations, with 1000 burn-in itera-
tions.

We do not have the clinical certainty of common cold



diagnoses . However, the statistics that we discuss be-
low give solid evidence that the epidemics model cap-
tures the structure of a infection process accompanying
the symptom report.

Figure 4 shows the (marginal) likelihood of the daily
common-cold states of individuals. Rows in this heat
map are indexed by subjects, arranged so that friends
go together, and then placed next to a dendrogram
that organizes friends hierarchically into groups. Dif-
ferent colors on the leaves of the dendrogram repre-
sent different living sectors in the student residence
hall. Columns in this heat map are indexed by date
in 2009. Brightness of a heat-map entry indicates the
likelihood of infectiousness - the brighter a cell, the
more likely it is that the corresponding subject is in-
fectious on the corresponding day. Sizes of black dots
represent the number of reported symptoms. When
a black dot doesn’t exist on a table entry, the corre-
sponding person didn’t answer the survey that day.

This heat map shows clusters of common-cold infec-
tions. When larger clusters of interpersonal proxim-
ities occurred , symptom clusters lasted longer and
involved more people. The heat map also tells us that
subjects often submitted flu-symptom surveys daily
when they were healthy, but would forget to submit
surveys when in the infectious state. The Gibbs sam-
pler nonetheless uses the data to determines that the
individual was infectious for these days. Similarly, a
subject sometimes reported isolated symptoms. The
Gibbs sampler is able to conclude the he was most
likely healthy, because the duration of the symptom
reports didn’t agree with the typical duration of a
common cold, and because his symptom report was
isolated in his contact network.

Inferred Infectious states normally last four days to
two weeks. A student typically caught a cold 2-3
times during this time span. The bi-weekly searches
of the keyword “flu” from January 2009 to April 2009
in Boston – as reported by Google Trends – correlated
with these findings.

7 CONCLUSIONS

We have presented the GCHMM for modeling discrete-
time multi-agent dynamics when the agents are con-
nected through a social network. We showed that the
GCHMM can be used as an individual-level SIS model
to successfully predict the spread of infection through-
out a social network. In the future, it would be inter-
esting to use the GCHMM to learn graph dynamics, or
to predict missing links. It would also be interesting
to try to use the GCHMM in applications with a more
complex transition matrix structure.
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Figure 4: Our epidemics GCHMM can infer common
cold state, and captures infection data from symp-
tom self-reports and the proximity network. The size
of black dots represents the number of symptoms re-
ported, ranging from zero symptoms to all, and no
black dot means no self-report.

The study of infection in small populations has im-
portant implications both for refining epidemic models
and for advising individuals about their health. The
spread of infection in this context is poorly understood
because of the difficulty in closely tracking infection
throughout a complete community. This paper show-
cases the spread of an infection centered on a student
dormitory, with data based on daily symptom surveys
over a period of four months and on proximity track-
ing through mobile phones. It also demonstrates that
fitting a discrete-time multi-agent model of infection
to real-world symptom self-reports and proximity ob-
servations gives us useful insights into infection paths
and control.
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