
Dynamic Teaching in Sequential Decision Making Environments

Thomas J. Walsh
Center for Educational Testing and Evaluation

University of Kansas
Lawrence, KS 66045

Sergiu Goschin
Department of Computer Science

Rutgers University
Piscataway, NJ 08854

Abstract

We describe theoretical bounds and a practi-
cal algorithm for teaching a model by demon-
stration in a sequential decision making en-
vironment. Unlike previous efforts that
have optimized learners that watch a teacher
demonstrate a static policy, we focus on the
teacher as a decision maker who can dynam-
ically choose different policies to teach dif-
ferent parts of the environment. We develop
several teaching frameworks based on previ-
ously defined supervised protocols, such as
Teaching Dimension, extending them to han-
dle noise and sequences of inputs encountered
in an MDP. We provide theoretical bounds on
the learnability of several important model
classes in this setting and suggest a practical
algorithm for dynamic teaching.

1 Introduction

In situations where one agent teaches another, the
AI community has largely focused on teachers that
demonstrate a static policy to the learning agent
[Abbeel and Ng, 2005; Walsh et al., 2010]. However,
demonstration of even an optimal policy is often not
the best way to teach. For instance, consider a learner
being trained to play billiards by observing a near-
optimal player. Since a hallmark of good play is sim-
plifying the next shot, an optimal player will likely
only demonstrate easy shots. But if we really want
to teach the learner to shoot pool, we need to show
it difficult shots and novel situations that the optimal
policy will rarely encounter. More generally, teach-
ers can improve learning efficiency by showing highly
informative examples that a static policy might not of-
ten encounter. In this paper, we show how to cast the
problem of optimal teaching as a decision problem in
its own right, and provide bounds on the teachability

of several important model classes in Reinforcement
Learning (RL) [Sutton and Barto, 1998].

Our approach uses lessons from the supervised-
learning community, which has established a num-
ber of frameworks for quantifying the teachability of
a domain class. Specifically, we extend the classi-
cal Teaching Dimension framework (TD) [Goldman
and Kearns, 1992] and the recently described Subset
Teaching Dimension (STD) [Zilles et al., 2011], which
quantify the teachability of deterministic hypothesis
classes. We adapt these frameworks for the type of
data encountered in RL, particularly handling noise
and sequential inputs. This allows us to characterize
the teachability of several RL concept classes such as
Bernoulli distributions, k-armed bandits and DBNs in
a supervised setting.

These supervised algorithms and analyses form the
foundation for our teaching algorithms in the sequen-
tial decision making setting, where teachers are con-
strained in the examples they can select by the dy-
namics of their environment and their current state.
We show how to cast the problem of optimal teach-
ing as a decision problem in its own right and that
exact optimization is often intractable. We then use
our results from the supervised setting to construct
approximations to the optimal teaching strategy that
are successful in practice. The end result is a gen-
eral algorithm for a teacher in a Markov Decision Pro-
cess (MDP) [Puterman, 1994] that, in contrast to work
on demonstrating static policies, dynamically chooses
highly informative examples to teach the model.

2 Alternate Approaches

We now describe competing protocols for teaching in
the RL setting. We will cover previous work on teach-
ing in the supervised setting in later sections.

Static policies for teaching RL agents have been stud-
ied in Inverse Reinforcement Learning (IRL) [Abbeel

and Ng, 2004, 2005] and Apprenticeship Learning
[Walsh et al., 2010]. However, in both of these set-
tings, the emphasis is on better learning algorithms to
interpret a static teaching policy repeated over many
episodes. By contrast, we are providing algorithms for
the teaching side so that the teacher can show trajec-
tories built to teach, not just to demonstrate. Also,
learning efficiency with static demonstrators is mea-
sured by either the time needed to achieve the same
policy as the teacher (IRL) or perform as well or bet-
ter than the teacher (Apprenticeship). In our current
work we will focus on algorithms to teach the entire
model of a given environment rather than a specific
policy. We note this is a different problem because
the learner cannot rely on a policy bias towards the
teacher demonstrations.

There has been significant work on human teachers
guiding RL agents, including by direct demonstration
[Argall et al., 2009] and providing shaping rewards
[Knox and Stone, 2010]. Most of these works focus
on either optimizing the learner for human inputs or
studying how different human interfaces or reward sig-
nals impact the learner. An area of future work is
studying how similar our optimal teaching policies are
to human teachers, as results indicate these behaviors
may be very different [Khan et al., 2011].

In some domains, teaching a model may be less effi-
cient than directly teaching the optimal policy or value
function. For instance, in the bandit setting, teaching
the model (the payout of all arms) requires pulling
each arm a number of times, but teaching the optimal
policy directly might require (if the learner knows only
one arm is optimal) only pulling the optimal arm once.
This situation is similar to behavioral cloning [Bain
and Sammut, 1995; Khardon, 1999], where supervised
learning techniques are employed in the policy space,
though the focus of that field is on learning algorithms,
not teaching. We focus on teaching a model because in
large structured domains, the number of parameters in
the model is usually much smaller than the number of
parameters needed to encode the value function or pol-
icy, though our techniques could be extended to teach
in the policy space.

3 Teachers and Learners

In this section, we begin by describing several teaching
frameworks from the supervised-learning literature.
We then describe modifications to these protocols to
accommodate teaching in an RL setting. Specifically,
we need to account for (1) noise in the labels and (2)
sequences of instances rather than sets. We deal with
the first problem in this section and then describe sev-
eral domain classes that can be taught in this noisy

supervised model.

3.1 Supervised Teaching Frameworks

We now describe two frameworks that can be used to
measure the sample complexity of teaching in a super-
vised setting where a teacher is picking the examples.
These frameworks differ considerably in how much the
teacher and learner can infer about one another. First,
we consider the classical Teaching Dimension model
[Goldman and Kearns, 1992] where the teacher is pro-
viding helpful examples to the learner, but the learner
is unaware that it actually has a teacher.
Definition 1. The Teaching Dimension of a concept
class {c ∈ C} : X 7→ Y over instance space X and la-
bels Y is TD(C) = maxc∈C min|S|(Cons(S, C) = {c}),
with Cons being the concepts in C consistent with S.
This makes S a teaching set TS(c,C) for c.

Intuitively, TD represents the minimum number of ex-
amples needed to uniquely identify any c ∈ C. Be-
cause the learner may not know it is being taught and
the teacher does not know what learner it is provid-
ing samples to, TD teachers may not act optimally
for a specific learner. However, a natural extension
is a protocol where the learner and teacher both un-
derstand they are interacting with a shared goal (for
the learner to realize a concept). Such notions were
formalised first by Balbach and Zeugmann [2009] who
devised a protocol where the learner would make in-
ferences about hypotheses that the teacher was clearly
not trying to teach based on the size of the teaching
set. This reasoning between the teacher and learner
was further formalised in the Subset Teaching Dimen-
sion (STD) [Zilles et al., 2011] where the learner and
teacher both assume the other is optimal.
Definition 2. The Subset Teaching Dimension
(STD) of a hypothesis class {c ∈ C} : X 7→ Y
(STD(C)) is equal to the worst case number of sam-
ples needed to teach a learner when both the teacher
and the learner know that the other is performing their
task optimally. This is done by iteratively construct-
ing Subset Teaching Sets STSi(c, C) starting from
STS0(c, C) = TS(c, C), such that STSi ⊆ STSi−1 and
STSi(c, C) is not a subset of STSi−1(c′, C) for c′ 6= c
(a “consistent subset”).

Intuitively, STD captures the fixed point behavior of a
learner and teacher that recursively assume the other
is doing their job optimally. One can think through the
process of reaching this fixed point iteratively starting
with the teaching sets for all concepts in the original
TD framework, denoted STS0 = TS. In the first step
of reasoning, the learner assumes it is being taught us-
ing STS0, and therefore it can assume the instances it
will see will come from an optimal teaching set. This

in turn allows it to notice when it has seen subsets of
instances that must be leading to one (and only one)
set from STS0. The next step of reasoning goes back to
the teacher, who infers it can teach using one of these
subsets from STS1. The process repeats until there are
no more changes to STS. The uniqueness and reach-
ability of this fixed point is detailed by Zilles et al.
While the reasoning process may be complicated, the
resulting behavior can be quite intuitive. For instance,
in the original TD setting, when teaching any single-
ton concept over n variables with the empty set also
a possibility, n negative instances are needed to show
the empty hypothesis is correct. However in STD, all
hypotheses can be taught using just one example (pos-
itive for the singleton, negative for empty).

3.2 Teaching Frameworks for Noisy Concepts

In this section, we extend the protocols above to the
setting where the concept being learned is noisy. We
begin by defining a stochastic concept and unordered
collection (a “set” that may contain duplicates):
Definition 3. A stochastic concept c : X 7→ D(Y)
maps each possible instance x ∈ X to a distribution
over the label space (D(Y)). An unordered example
collection U of a concept c consists of (potentially over-
lapping) pairs of inputs and labels {x0, y0...xn, yn} with
each yi drawn from c(xi).

Next, we need to address the consistency of the learner,
which can no longer be expected to predict the exact
label of every instance. Instead, we consider learners
that predict a distribution of labels for a given input.
Definition 4. A distribution consistent learner with
parameters ε and δ makes predictions for input x based
on the current unordered collection U in the form of
a predicted distribution D′(x) over the label space Y .
Consistency means ||D̂(x)−D′(x)||TV ≤ ε with prob-
ability 1− δ, where || · ||TV is the total variation (half
the L1-norm) over the labels and D̂ is the distribution
observed in U (in most cases D̂ is the distribution de-
termined by the maximum-likelihood estimate).

Now we can extend the notion of a teaching set from
Definition 1 in three ways. First, instead of sets, we
consider collections with duplicates. Second, we as-
sume the teacher does not control the label associated
with a given input, but can see the label (produced
by the true concept) once an instance is added to the
teaching collection. Therefore, the teacher can choose
instances one at a time to add to the collection and al-
ways knows how all the current examples have been la-
beled. In practical terms, the teacher will then be able
to choose when to execute a stop action to declare the
collection finished but notice that the learner will not
be aware of the order in which examples were added.

Finally, we say such a collection is a teaching collection
(denoted TS in an abuse of notation) if any distribu-
tion consistent learner must have ||D(x)− D̂(x)|| ≤ ε,
with probability 1− δ after seeing that sequence.

We now have all of the components to define the noisy
teaching dimension (NTD):

Definition 5. The noisy teaching dimension (NTD)
with parameters ε and δ of a stochastic concept class
C (NTD(C)) is the maximum size minimum teaching
collection τ ∈ TS(c) over all concepts c ∈ C. That is,
maxc minτ∈TS(c)|τ |

Next, we consider the case of a Noisy Subset Teach-
ing Dimension (NSTD), which will extend STD. Here,
we need to redefine the notion of subset used in the
original STD to account for duplicates and the incre-
mental construction of the teaching collection. To do
so we introduce the consistent subcollection relation:

Definition 6. A collection U ′ is a consistent subcol-
lection of another collection U (U ′ ⊆ U) if (1) every
element of U ′ is mapped by a function to an element
of U and (2) the range and probability of distributions
represented by U and U ′ are the same.

Replacing the original “consistent subset” requirement
from Definition 2 with a requirement that each itera-
tion of reasoning must produce a consistent subcollec-
tion and assuming the learner is distribution consis-
tent gives us a full definition of NSTD. In most cases
the original NTD collection (NSTD0) will not be im-
proved upon in the worst case, but in many cases the
teachers ability to stop constructing the collection will
cause a significant decrease in the expected teaching
time for NSTD over NTD (see Theorems 2 and 3).
While the definitions above assumes the teacher’s con-
struction ordering is hidden from the learner, we will
later see the sequential setting reveals this order and
allows stronger inference.

4 Concept Classes

We now describe several concept classes that are rel-
evant for RL agents. Our analysis in this section is
carried out in the supervised setting.

4.1 Monotone Conjunctions

Conjunctions of terms are a simple but important
model for pre-conditions of actions and simple con-
ditional outcomes. A monotone conjunction over an
input space of n boolean terms is labeled 1 if all of
the relevant variables are 1, and 0 otherwise. In the
TD setting, the complexity of learning a monotone
conjunction is O(n) [Goldman and Kearns, 1992], but
the types of examples are slightly different than in the

classical mistake-bound [Littlestone, 1988] case, which
only requires positive examples. This is because in
TD we cannot assume anything about how the learner
defaults in its predictions. Instead, the TD teacher
should present the most specific positive example (only
relevant variables set to 1), and then negative exam-
ples with each relevant variable alone set to 0.

In the STD protocol, the bound actually becomes 1
[Zilles et al., 2011]. The optimal STD strategy is to
show the positive example from the TD case because
the learner can infer all of the other negative exam-
ples. These results provide intuition about how pre-
conditions or conditional effects can be taught in the
sequential setting, a topic we return to in Section 5.3.

4.2 Coin Learning

One of the fundamental noisy hypothesis classes in
model-based RL is the Bernoulli distribution learned
through observation outcomes, (i.e. determining the
bias (p∗) of a coin by observing flips). In the NTD
case, because the teacher has to provide samples that
may be interpreted by any type of consistent learner,
the following strategy produces the optimal teaching
set with high probability.

Theorem 1. In the NTD setting, the proper teaching
strategy is to collect m = H(ε, δ) = 1

2ε2 ln(2
δ) samples

of the Bernoulli distribution and then say stop.

Proof. This strategy produces enough samples for
learners that requires m samples before they make any
predictions (e.g. KWIK learners [Li et al., 2011]). Sup-
pose a learner existed that made inaccurate (> ε er-
ror) predictions with probability > δ after seeing these
samples with empirical mean p̂. Then by Definition 4
this learner would be inconsistent because Hoeffding’s
inequality states Pr[|p̂− p∗| > ε] < δ.

This is not surprising since this is also the sample com-
plexity as an autonomous coin learner [Li et al., 2011].
However, in NSTD, the teacher has a significant im-
pact. The following two theorems lay out (1) the rea-
soning that leads to the different behavior and (2) the
sample complexity of coin learning in this protocol.

Theorem 2. The general NSTD teaching policy for
teaching the probability of a weighted coin is to flip the
coin at most H(ε, δ) times, but the teacher can stop
building the collection whenever the empirical mean p̂
of the coin’s bias is within ε/2 of the true probability.

Proof. After processing a teaching collection of some
size m, a learner can construct a confidence interval
(using Hoeffding’s inequality), denoting the upper and
lower limits of p∗ (the true probability of heads) with

probability 1 − δ. We call this region the consistent
region and the hypotheses outside of this region are
deemed inconsistent. In addition, we can define the
empirical mean p̂ =

∑m
i=1 yi/m and a region [p̂− ε

2 , p̂+
ε
2] that we call the instantaneous region.

In NTD (NSTD0) we just saw the teacher’s only re-
course is to provide m = H(ε, δ) samples. For NSTD1,
where the learner is aware it is being taught, suppose
the teacher presents a collection of size m′ < m to the
learner. If p∗ is in the inconsistent region, then the la-
bel set has probability < δ, so the teacher was correct
in stopping early. If p∗ was in the consistent region
but not in the instantaneous region, then the teacher
would not have stopped construction, because treating
this as a consistent subcollection will not guarantee the
learner picks a distribution within ε of p∗. Therefore,
in the case where the teacher stops the construction
while the consistent region is still larger than the in-
stantaneous region, the teacher’s current collection is
a consistent subcollection of a possible NTD collec-
tion and the learner can pick any hypothesis from the
instantaneous region and be correct.

We will now prove that the expected time for teaching
a distribution in the NSTD framework is significantly
smaller than the standard Hoeffding bound (H(ε, δ))
that determines the number of samples needed to learn
in the NTD protocol. We believe the result is interest-
ing in its own right as it describes a useful fact about
the expected time the empirical average needs to first
hit an interval of interest centered at the true expected
value of a random variable.

The key technique we will use is formulating the evo-
lution of the empirical average as a random walk and
reducing the problem of hitting the desired interval to
the problem of computing the mean first passage time
through a fixed barrier. The models we introduced so
far use Bernoulli as the standard example of learning
a noisy concept. In the interest of technical brevity,
we will actually prove the result for the case where
the noise model is a Normal distribution. The reason
is that the proof is more insightful for a continuous
distribution and it is known in the literature [Redner,
2001; Feller, 1968] that the first passage time proper-
ties in the continuous case approximate the discrete
version well.

Theorem 3. Given a Normal distribution with un-
known mean p, and the ability to sample from it, the
expected number of samples a teacher needs to teach p
in the NSTD protocol scales with O(1

ε) (the variance
is considered known).

Proof. The above theorem statement is equivalent to
stating that the expected first time the empirical av-

erage of a sequence of i.i.d. samples from a D =
Normal(p, 1) distribution hits the interval [p−ε, p+ε]
is O(1

ε). Let Xi, i = 1, 2, ... be i.i.d. samples from dis-
tribution D and let St =

∑
i=1..t Xi be a random walk

on R (with step values sampled from D). The empiri-
cal average at any time t > 0 is of course X̂t = St

t . Let
Yi = Xi − p (thus Yi ∼ Normal(0, 1)) and let Wt =∑

i=1..t Yi. We can thus write St = pt + Wt,∀t > 0.

Proving a bound on the expected time it takes X̂t to
first hit interval [p − ε, p + ε] is equivalent to showing
a bound on the expected time it takes the random
walk St to hit the dynamic interval [pt − εt, pt + εt].
Let At = pt + εt be a process that encodes the time
evolution of the upper bound of the dynamic interval.

We will first focus on the expected time it takes for
the random walk to first be inside the interval from
the perspective of the upper bound. Let Bt = At −
St = εt−Wt = εt + Wt where the last equality follows
from Wt being a symmetric stochastic process around
0. Since we are looking for the expected time t that
At first becomes larger than St, this is equivalent to
asking what is the expected first time that Bt hits the
origin if it first starts on the negative side (if it starts
on the positive side, this first time will be 1).

We will now approximate the discrete-time stochastic
process Bt by a continuous-time process with the goal
of getting a qualitative result about the expected mean
time. This technique is commonly used to study first
passage-time properties of discrete time random pro-
cesses (see for instance the Integrate-and-Fire Neuron
model in section 4.2 in [Redner, 2001]). Viewed from
this perspective, Bt = εt+Wt is actually the standard
Brownian motion with positive drift ε. But it is well
known that the mean first passage time over a fixed
positive constant α for a Brownian motion with posi-
tive drift ε is governed by the Inverse Gaussian Dis-
tribution (IG) with parameters IG(α

ε , α2) [Chhikara
and Folks, 1989]. The expected value of the IG distri-
bution is α

ε and if we take α = 1 we get that the ex-
pected first time that Bt will become larger that 1 is 1

ε .
Since the expected time to first hit the origin if started
on the negative side is naturally upper bounded by the
expected time to hit 1, we get a bound on the expected
time At needs to first ’catch up’ with the random walk
St.

Symmetrically we can show that the expected time
for St to become larger than the lower bound of the
dynamic interval (the process pt− εr) is also 1

ε .

Figure 1a shows empirical validation of this result in
the coin-flipping case for increasingly smaller values of
ε (1000 runs, δ = .05). While NTD grows quadrati-
cally in accordance with H(ε, δ), the NSTD expected

time grows only linearly in 1
ε .

4.3 k-armed Bandits

A natural extension of coin-learning is teaching a com-
plete model in the k-armed bandit case [Fong, 1995],
that is teaching the expected payout of all k arms,
each of which may have a different noisy (but bounded
[0, 1]) payout function. We note again that we are
teaching the full model here, not the optimal policy.
Each arm can be treated as a Bernoulli distribution
that needs to be learned within ε with probability δ/k
to ensure total failure probability at most δ . Note ε
does not change with k because each arm corresponds
to a different input parameter x (a different action).
Hence for k arms, the NTD solution is to pull each arm
H(ε, δ/k) times, giving us an NTD bound of k

2ε2 ln(2k
δ).

For NSTD, the teacher can again pull the arms in some
ordering, but can stop pulling an arm when it has ei-
ther (1) been pulled m = H(ε, δ/k) times or (2) its
empirical average is within ε/2 of its true payout. The
expected savings over NTD is a factor of 1

ε for each
arm, so the speedup effect is actually multiplied across
the arms. Figure 1b illustrates this in the bandit set-
ting for increasing k (1000 runs, ε = 1/45, δ = .05).
The algorithms just described are labeled NTD-IND
and NSTD-IND (for “individual” pulls). The growth
of NTD-IND is actually kln(k) but quickly diverges
from the other approaches here, showing the increas-
ingly better (than NTD-IND) expected performance
for NSTD-IND.

While not applicable in RL, the complexity of teaching
by pulling all of the arms in parallel will be informa-
tive in the next section, so we investigate it here. The
goal is still to learn each arm’s expected payout with
ε-accuracy, but the teacher has access to an action that
pulls all of the arms at once and reports their individ-
ual payouts. NTD in this case (NTD-PAR in Figure
1b) performs H(ε, δ/k) parallel pulls, saving a factor of
k over the individual NTD above. But in NSTD, the
parallel pulls introduce a tension between the speedup
from parallelizing and the previously noted speedup
from being able to stop pulling an arm when its em-
pirical mean is close to the true mean. Now if some
arms are close to their empirical mean but others are
not, a parallel pull may disturb the empirical means of
the “learned” arms. Figure 1b shows the NSTD-PAR
strategy that is forced to either perform a parallel pull
or stop, which it only does when all the empirical pay-
outs are within ε/2 of their true payout or have been
pulled H(ε, δ/k) times. For small k, the sequential
pulls are actually more efficient, but for a larger num-
ber of arms, the parallel pulls have a significant benefit
despite the danger of “unlearning” an arm.

0 100 200 300 400 500

0
50

0
10

00
15

00
20

00
25

00
30

00

(a) Coin Learning

1/ε

T
im

e
NTD / 150
NSTD

0 50 100 150 200 250 300

0
20

00
40

00
60

00
80

00
10

00
0

(b) Bandit Learning

#Arms

T
im

e

NSTD−IND
NTD−PAR
NSTD−PAR
NTD−IND

0 20 40 60 80 100

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

(c) Bitflip DBN

#Bits

T
im

e

NSTD−IND
NTD−PAR
NSTD−PAR

Figure 1: TD and STD comparisons for (a) coin flipping, (b) k-armed bandits and (c) the Bitflip DBN

4.4 Dynamic Bayesian Networks

We now consider Dynamic Bayesian Networks [Dean
and Kanazawa, 1989], or DBNs, where multiple noisy
factors are learned in parallel. This case is similar
to the parallel bandit case but here because the to-
tal error (ε) is an aggregate of the subproblem errors,
the NSTD strategy will be dramatically different. A
Dynamic Bayesian Network is composed of n discrete
valued factors. At every timestep, the next value for
factor xi is determined by a probability distribution
P (xi|ρ(xi)) where ρ maps the factor to its k “parent
factors”. We assume here that k = O(1) and we only
consider the binary case (all factors are either 0 or 1)
as the bounds generalize to ordinal values from 1 to D
with extra terms including Dk+1 (see [Li et al., 2011]).

Mapping this back to our learning protocols, the input
space is all possible configurations of the DBN factors
and predictions should be made on the distribution
of the factors at the next timestep. As a simple ex-
ample, consider the case where every variable is the
parent of only one other variable. Assume that the
structure is known and the DBN is deterministic, so
all that has to be learned is the relationship between
each parent value and its child value. In the traditional
mistake bound setting, where the teacher has no con-
trol over the inputs, the worst case learning bound is
O(n), because each example after the first one could
show the same parent (input) pattern as the first, ex-
cept with a single bit flipped. Because of the connec-
tion between mistake bound learnability and teaching
by demonstration [Walsh et al., 2010] this is the worst-
case bound for teaching this type of DBN by demon-
stration of a static policy. However, with our dynamic
teaching protocols we can do much better. Specifically,
in the TD case the sample complexity is O(1), because
the teacher can pick the parent values. In the first ex-
ample, the teacher can pick an arbitrary setting of the
factors and show the result. Then all it needs to do is
show the complement of this bit string in the second

example. Thus, deterministic binary DBNs with k = 1
are teachable with 2 examples. The STD bound is the
same in this case and the generalization to multiple
parents adds only a constant term.

In the stochastic setting, the consequences of teaching
the factor probabilities in parallel are more compli-
cated than the deterministic case. Unlike the bandit
case, the total error in predicting the next state prob-
ability is based on the aggregate error (total variation
by Definition 4) of all the subproblems. So each factor
needs to be predicted with ε/n accuracy. This means
that for an NTD teacher, we need H(ε/n, δ/nk) =
O(n2

ε2 kln(n
δ)) samples to learn the probabilities.

The stochastic setting is even more complicated in the
NSTD case, where once again there is competition be-
tween the desire to teach factor probabilities in parallel
and the desire to stop showing certain conditions once
they have been taught. The parallel and individual
teaching styles in the bandit case manifest themselves
here in the following ways. NSTD-PAR tries to teach
multiple factors at once, using the same “complement”
input selection as NTD but can stop providing sam-
ples whenever all of the factors are ε/2n accurate. The
worst case time for this approach is bounded by NTD’s
bound above but again on expectation this will usually
perform better than NTD. However, if one wishes to
minimize expected teaching time when there is back-
ground knowledge that says certain conditions are al-
ready known, a variant of the NSTD-IND strategy is
likely better. In NSTD-IND, the teacher presents in-
puts with only one unknown condition for a single fac-
tor, and all other factors have their parent values set
to configurations matching the background knowledge.
As in the bandit case, this avoids “unteaching” but
sacrifices parallelization. Once the factor outcome be-
ing taught has its empirical distribution within ε/2n
of the true probability, the algorithm moves on to the
next condition. The worst-case time for NSTD-IND
is O(n3

ε2 kln(n
δ)), worse than TD and NSTD-PAR, but

its expected time is only O(n2

ε kln(n
δ)) since it targets

individual conditions.

An empirical demonstration of these teaching strate-
gies is shown in Figure 1c for a DBN representation of
a noisy Bitflip domain [Givan et al., 2003]. The input
for this DBN is simply a bit string of length n and there
are two actions, one to flip bit 0 and one to shift each
bit up (with a 0 always incoming to bit 0). However,
the effect of the shift is noisy for each bit: with prob-
ability pi the shift to bit i is successful, and otherwise
the bit retains the same value it currently has. Figure
1c shows the number of steps needed to teach all of
the pi’s for ε = .3 (aggregate error) and δ = .05 for the
three teaching protocols described above (500 runs).
NTD teaches by setting the inputs (current state) to
an alternating string of 0’s and 1’s ending in a one,
so that each bit’s shift probability is observed on ev-
ery step (ensuring parallel teaching). NSTD-PAR uses
the same alternating bit string for every example, but
stops building the collection if all of the pi values are
within ε/2n of their true value. NSTD-IND sets up
the state to have all 1’s from bit 0 up to the highest
bit it has not yet taught, and then all 0′s above that.
This teaches the probability of shifting each bit one at
a time with deterministic outcomes for the other bits.
We see here that unlike the bandit case, NSTD-IND
dominates the other strategies, even as the number of
bits increases. This is because the continually shrink-
ing accuracy requirements increase the chances of the
parallel strategy unteaching a factor. However, NSTD-
PAR still outperforms NTD, so in situations where no
background knowledge is available (for NSTD-IND)
and the teacher and learner are aware of each other,
this may be the preferred strategy.

Finally, we note Bitflip also showcases the benefit of
teaching versus demonstration from an optimal policy.
Consider Bitflip with a reward only when all bits are
1. The optimal policy is to flip if bit 0 is a 0, other-
wise shift. However, this strategy produces very few
useful samples because once a bit is turned to 1 in an
episode, it will never be a 0 (even if the shift fails the
bit retains its current value). Even if pi = .5, the ex-
pected number of useful samples in an episode for bit i
is only 2, and the probability of more samples drops off
exponentially. So the optimal performance policy will
almost always take far more steps to teach the domain
than any of the teaching protocols described above.

5 Teaching in an MDP

Above, we established the teachability of several RL
concept classes in a supervised setting. However, we
are interested in teachers acting out lessons in an MDP,
where a transition function T : X, A 7→ Pr[X] governs

agent movement, and therefore the teacher may not
have access to all possible states at every timestep.
We now extend the previously defined frameworks to
the sequential setting, forcing them to handle teaching
sequences drawn from an MDP. We then describe the
teaching process in an MDP as a planning problem in
its own right and present and demonstrate a heuristic
solution based on our supervised learning results.

5.1 Sequential Teaching Frameworks

In sequential domains, the teacher may not be able
to access all possible states at every timestep, but in-
stead may have to take multiple steps (each of which
will be seen by the learner) to reach its target teaching
state. Hence, we now adapt the TD and STD defini-
tions to consider sequences of states and actions rather
than randomly accessed inputs and labels. More for-
mally, we need each protocol to handle the following
constrained teaching sequences.
Definition 7. An MDP teaching sequence
MTS(c, C,M) for MDP M = 〈X, A, T,R, γ〉
and c : X, A 7→ Pr[X] or c : X, A 7→ < is a sequence
〈〈x0a0r0〉...〈xT , aT , rT 〉〉 with each 〈xi, ai, ri, xi+1〉
reachable by taking action ai from xi in M , starting
from x0 = s0. After witnessing this sequence, the ĉ
learned by a consistent learner must either be c (de-
terministic) or distributionally consistent (Definition
4) to c with high probability (stochastic concepts).

In the definition above, c is a concept that may be part
of the transition or reward function (or both) of M .
For TD, instead of considering a set of instances and
labels, one now needs to consider a sequence of states
and actions drawn from M based on the teacher’s
potentially non-stationary policy π. We denote the
distribution of such sequences as MTSπ(c, C,M).
Formally, we define Sequential Teaching Dimension
(TDS) in an MDP as:
Definition 8. The sequential teaching dimension
TDS(C,M) of concept class C being taught in MDP
M with accuracy parameters ε and δ is the maximum
of the minimum expected length of an MDP teach-
ing sequence for any individual concept in the class,
TDS(C,M) = maxc minπ E[MTSπ(c, C,M)], where
π is an arbitrary, potentially non-stationary, policy
(any possible teaching algorithm).

This definition is very general and using it construc-
tively in the full stochastic case is a topic of future
work, but there are cases where the optimal dynamic
teaching policy is clear. For instance, when the tran-
sition function is deterministic (including cases where
we are teaching a noisy reward function), the teacher
simply needs to find the shortest-length teaching se-
quence starting from s0 that contains enough samples

to teach c to any consistent learner. Also, heuristic so-
lutions for approximating optimal teaching defined in
this manner (e.g. Algorithm 1) can successfully teach
in both the deterministic and stochastic setting.

The conversion of Zille’s STD protocol to the sequen-
tial setting is even more complicated because in STD
the learner makes inferences about why the teacher is
showing certain instances, but now not every instance
is accessible at every step. The main intuition we can
use to resolve these difficulties in the case where T
is deterministic is to instead apply the recursive rea-
soning to the teaching sequences defined above. Intu-
itively, this should allow the learner to reason that a
teacher is trying to teach a concept c when the teacher
chooses a path that leads to a state consistent with c
instead of other paths that would teach different con-
cepts. This saves the teacher from walking the entire
path. We can formalize this using the notion of an
example subsequence and prefix.
Definition 9. An example subsequence Σ′ of example
sequence Σ is a contiguous series of inputs and labels
〈xi, yi...xj ...yj〉 for i ≥ 0, j ≤ T . A prefix (Σ′ <pre Σ)
is a subsequence with i = 0 and a suffix is a subse-
quence with j = T .

Using this definition, we can replace previous defini-
tions of subsets and collections in STD and NSTD and
define a SubSequence Teaching Dimension (SSTD) in
a natural way for MDPs with a deterministic transi-
tion function (see the appendix).

As a concrete example of the more powerful reasoning
about sequences in SSTD and NSSTD (its noisy ver-
sion), consider coin learning, but instead of predicting
a probability, assume the learner only needs to pre-
dict whether the coin is biased more towards heads or
tails (assuming p∗ 6= 0.5). Without loss of generality
assume the coin is biased towards tails but comes up
heads on the first trial. In NSTD, because the order-
ing of examples is hidden to the learner (Def. 3), we
need to keep flipping the coin until we have observed
more tails than heads. But in NSSTD we only need
one more flip and then the teacher can end teaching,
no matter what the outcome of the second flip (and
even though the empirical distribution will not indi-
cate a tails bias). This is because if the coin was biased
heads the teacher would not have made the second flip;
it would have stopped after the first heads observation.
Similar reasoning can be done when predicting p∗ as
every choice to flip indicates p∗ is not in the previous
step’s instantaneous region (see Theorem 2).

5.2 Practical Teaching in MDPs

If teaching is to be done in an MDP, the best policy will
directly optimize the TDS or SSTD criteria described

above. However, even for TDS in the deterministic
setting, the problem of determining the exact optimal
teaching sequence may be intractable.

Theorem 4. Determining the optimal teaching se-
quence for a concept in a deterministic MDP under
the conditions of Definition 8 is NP-Hard.

Proof. We can encode the graph of a Traveling Sales-
man Problem (TSP) with integer edge costs as a deter-
ministic MDP with unit costs by adding in the same
number of “dummy” states between cities as their dis-
tance in the original graph. Then consider teaching a
reward function that is known to be 0 at every non-city
state but has an unknown value at each of the cities.
The shortest tour for teaching such a reward function
provides a solution to the original TSP.

This is in line with previous results on the intractabil-
ity of determining teaching sets in the supervised set-
ting [Servedio, 2001]. However, tractable approxi-
mations such as Algorithm 1 are certainly possible.
There we perform two approximations: first we use a
greedy approximation of the supervised (random ac-
cess) teaching collection construction to find a set of
instances that will teach the target concept and then
greedily construct a tour of all instances in this set.

Algorithm 1 Heuristic teaching in an MDP
input: Concept c ∈ C to be taught, MDP M with
start state s0, Learning protocol P
TS(c, C) = ∅
R = 〈s, a, r, s′〉 ∈ M reachable from s0

while TS(c, C) is not a teaching set for c in P do
X = 〈s, a, r, s′〉 ∈ R and /∈ TS(c, C) that teaches
the most parameters of c
TS(c, C) = {X} ∪ TS(c, C)

while TS(c, C) 6= ∅ do
X ′ = closest X ∈ TS(c, C) to current state, reach-
able fastest with policy π
Demonstrate π until X ′ is demonstrated
TS(c, C) = TS(c, C)\X ′

In the SSTD setting, the first approximation by itself
could be problematic because the inference process is
based on optimality assumptions shared by the learner
and teacher. If the teacher uses a suboptimal teaching
sequence, then the learner can make the wrong infer-
ence. So for extending SSTD or NSSTD to the practi-
cal setting, any approximations used by the teacher to
construct the teaching set or the touring policy need
to be shared between the teacher and the learner, al-
lowing them to simulate each other’s behavior. The
motivation behind this sharing is to engender natu-
ral teacher-student interactions by having the learner
and teacher share a set of common assumptions about

one another (such as optimality or consistency in the
original STD and TD).

Finally, we consider noise in the transition function for
states and actions that are not part of the target con-
cept being taught. In that case, we would ideally like
to create a tour of instances with the shortest stochas-
tic path length (in expectation), but this is certainly
as hard as the deterministic touring case. However,
we can modify the heuristic algorithm used above to
simply find the state with the shortest stochastic path
and then focus on reaching that state. This allows the
heuristic to teach concepts in arbitrary MDPs.

5.3 An Example in the Taxi Domain

To demonstrate our heuristic teaching algorithm
we conducted experiments with the Object-Oriented
MDP encoding of a Taxi Domain [Diuk et al., 2008].
This environment consists of a square grid (5 by 5 for
us) and a controllable taxi with actions {up, down,
left, right}. There are also several landmarks in the
grid, one of which initially contains a passenger and
another of which is the passenger’s destination. The
taxi’s goal is to go to the passenger, execute its pickup
action, transport her to the destination, and then ex-
ecute dropoff. In the OOMDP encoding of this do-
main, every state has a set of predicates (e.g. Wall-
ToRight(taxi)) associated with it, and actions have pa-
rameters stipulating which objects are in its scope(e.g.
pickup(T,P,L) for taxi, passenger and landmark). The
predicates in this domain include indicators of walls
and clearness in every direction from an object, as
well as predicates indicating when two objects are in
the same square and when the passenger is in the
taxi. Also, each action has a conjunction over the
variablized predicates that serves as a pre-condition for
this action. We focus on teaching these pre-conditions.

We perform our experiments in a deterministic Taxi
domain, starting with a modified TD-style conjunc-
tion teacher as the set constructor for Algorithm 1.
The modification to the conjunction learner from Sec-
tion 4.1 is that instead of using the most specific posi-
tive example, it may have to use one that contains ir-
relevant predicates (like WallNorth for putDown) be-
cause of state-space restrictions. The teacher must
show more positive examples to discredit these irrel-
evant predicates in addition to the negative examples
(action failures) to indicate the relevant variables.

To demonstrate the benefits of STD, we used an ap-
proximation of the STD behavior described in Section
4.1 that shows the most specific state it can, then
shows positive examples for all of the irrelevant vari-
ables and then stops demonstrating (since the learner
can infer all other variables are relevant). Table 5.3

Table 1: Teaching steps for selected action sets in taxi

Action(s) TD STD Approximation
pickup 20 15

pickup / putdown 23 17
movement 37 27

all 63 45

shows the number of steps needed to fully teach the
pre-conditions of several sets of actions with all others
being known. The agent in all cases starts from the
middle of the grid and there are 2 landmarks in the
bottom-left and top-right corners.

Several interesting behaviors were observed, including
the teacher using the landmarks in the corners as areas
to gather many positive examples (because the irrele-
vant predicates can be dispelled en masse there). The
teacher also made use of the lack of type constraints
on most of the variables to create negative instances
(where the pre-conditions failed) by swapping the or-
der of arguments to indicate specific relations were
relevant. These results compare favorably to previ-
ous result on teaching taxi conditions by static-policy
demonstration [Walsh et al., 2010] but static policy
approaches can be made to look arbitrarily bad in this
situation because they will not teach subtle aspects of
the domain (like how the corners work) unless they are
actually on the way to the goal. By contrast, our ap-
proach ignores the current goal and focuses on being
the best teacher, not the best performer.

We also experimented with a sequential Bitflip domain
(Section 4.4) where all but two of the bits (the mid-
dle and one from the end) had deterministic shift out-
comes. Our experiments again showed the approxi-
mations using NSTD significantly outperforming those
using NTD. The average steps to teach the 10 bit
version were 362.35 (NSTD-Par), 869.61 (NSTD-IND)
and 14610.41 (NTD-PAR). The parallel versions were
all more efficient despite flipping every other action.

6 Conclusions

We have extended two supervised learning frameworks
(TD and STD) to handle noisy observations and se-
quential data. These frameworks provide efficient
ways to teach several RL classes, including DBNs and
Bernoulli distributions. We also presented a practical
heuristic algorithm for leveraging TD and STD to per-
form efficient teaching in an MDP and demonstrated
its effectiveness in the taxi domain. Unlike previous
efforts at teaching domains with a static policy, these
new algorithms actually target the individual parame-
ters of a domain in a task-independent manner, leading
to agents that truly teach, rather than just show.

References

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learn-
ing via inverse reinforcement learning. In ICML.

Abbeel, P. and Ng, A. Y. (2005). Exploration and
apprenticeship learning in reinforcement learning. In
ICML.

Argall, B., Chernova, S., Veloso, M. M., and Brown-
ing, B. (2009). A survey of robot learning from
demonstration. Robotics and Autonomous Systems,
57(5):469–483.

Bain, M. and Sammut, C. (1995). A framework for
behavioural cloning. In Machine Intelligence.

Balbach, F. J. and Zeugmann, T. (2009). Recent de-
velopments in algorithmic teaching. In Proceedings
of the 3rd International Conference on Language
and Automata Theory and Applications, LATA ’09.
Springer-Verlag.

Chhikara, R. S. and Folks, J. L. (1989). The inverse
gaussian distribution: theory, methodology, and ap-
plications. Marcel Dekker, Inc., New York, NY,
USA.

Dean, T. and Kanazawa, K. (1989). A model for rea-
soning about persistence and causation. Computa-
tional intelligence, 5:142–150.

Diuk, C., Cohen, A., and Littman, M. L. (2008). An
object-oriented representation for efficient reinforce-
ment learning. In ICML.

Feller, W. (1968). An Introduction to Probability The-
ory and Its Applications, volume 1. Wiley.

Fong, P. W. L. (1995). A quantitative study of hy-
pothesis selection. In ICML.

Givan, R., Dean, T., and Greig, M. (2003). Equiv-
alence notions and model minimization in markov
decision processes. Artificial Intelligence, 147((1-
2)):163–223.

Goldman, S. A. and Kearns, M. J. (1992). On the
complexity of teaching. Journal of Computer and
System Sciences, 50:303–314.

Khan, F., Zhu, X., and Mutlu, B. (2011). How do
humans teach: On curriculum learning and teaching
dimension. In NIPS.

Khardon, R. (1999). Learning to take actions. Machine
Learning, 35(1):57–90.

Knox, W. B. and Stone, P. (2010). Combining manual
feedback with subsequent mdp reward signals for
reinforcement learning. In AAMAS.

Li, L., Littman, M. L., Walsh, T. J., and Strehl, A. L.
(2011). Knows what it knows: A framework for self-
aware learning. Machine Learning, 82(3):399–443.

Littlestone, N. (1988). Learning quickly when irrele-
vant attributes abound. Machine Learning, 2:285–
318.

Puterman, M. L. (1994). Markov Decision Processes:
Discrete Stochastic Dynamic Programming. Wiley,
New York.

Redner, S. (2001). A guide to first-passage processes.
Cambridge University Press, Cambridge.

Servedio, R. A. (2001). On the limits of efficient teach-
ability. Information Processing Letters, 79.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement
Learning: An Introduction. MIT Press, Cambridge,
MA.

Walsh, T. J., Subramanian, K., Littman, M. L., and
Diuk, C. (2010). Generalizing apprenticeship learn-
ing across hypothesis classes. In ICML.

Zilles, S., Lange, S., Holte, R., and Zinkevich, M.
(2011). Models of cooperative teaching and learning.
Journal of Machine Learning Research, 12.

