
Incentive Decision Processes

Sashank J. Reddi
Machine Learning Department
Carnegie Mellon University

sjakkamr@cs.cmu.edu

Emma Brunskill
Computer Science Department
Carnegie Mellon University

ebrun@cs.cmu.edu

Abstract

We consider Incentive Decision Processes,
where a principal seeks to reduce its costs
due to another agent’s behavior, by offering
incentives to the agent for alternate behav-
ior. We focus on the case where a principal
interacts with a greedy agent whose prefer-
ences are hidden and static. Though IDPs
can be directly modeled as partially observ-
able Markov decision processes (POMDP),
we show that it is possible to directly reduce
or approximate the IDP as a polynomially-
sized MDP: when this representation is ap-
proximate, we prove the resulting policy is
boundedly-optimal for the original IDP. Our
empirical simulations demonstrate the per-
formance benefit of our algorithms over sim-
pler approaches, and also demonstrate that
our approximate representation results in a
significantly faster algorithm whose perfor-
mance is extremely close to the optimal pol-
icy for the original IDP.

1 Introduction

Consider a landlord who pays for her tenant’s heating
bill, or an insurance company that covers an insuree’s
health care bills. These are two instances where a prin-
cipal agent incurs a cost for the behavior of another
agent. In such scenarios the principal may be able to
provide incentives to attempt to change the agent’s be-
havior; however, the principal typically does not know
the preferences of the agent, and these preferences de-
termine which incentives will be accepted by the agent
in return for altered behavior.

We formalize this problem as an instance of sequential
decision making under uncertainty. Despite much AI
interest in this general field, there has been limited re-
search on multi-step decision processes where a princi-
pal agent’s own costs are a function of another agent’s

behavior. We call these processes Incentive Decision
Processes (IDPs) and in this paper we focus on the
case where a principal interacts with a greedy myopic
agent whose preferences are hidden and static. The ob-
jective is to compute a decision policy for the principal
that minimizes its total expected sum of costs over the
horizon of interactions with the agent. Computing this
policy would be trivial if the agent’s preferences were
known to the principal: the principal would simply of-
fer the incentive for an agent action that minimized
the principal’s cost amongst all incentive-action pairs
that would be accepted by the agent. However, the
agent preferences are typically hidden. It is important
to consider the case where a principal cannot simply
ask the agent for its preferences. Naturally a strate-
gic rational agent may wish to misrepresent its stated
preferences in order to gain additional reward, and we
will briefly touch on this issue at the end of the paper.
But our focus will be on agents that act myopically and
therefore truthfully (as we will later prove). We argue
that this model is reasonable for many important situ-
ations where the agent is not adversarial, but is either
unaware or in denial of its own utility function, such as
asking a person about their preference for consuming
healthy food or exercising different amounts, or where
it is impossible for the agent to directly respond (such
as teaching a baby a new behavior).

Our work is most closely related to the research of
Zhang and colleagues [12, 13, 4] on environment de-
sign. However, Zhang et al.’s work primarily addresses
inducing the agent to follow a particular policy within
a short number of interactions, whereas our research
focuses on how to provide incentives to minimize the
total cost incurred by the principal over many interac-
tions with the agent. We believe our objective is likely
to be particularly relevant in multiple real-world do-
mains, where the cost of any diagnostic steps to reveal
the hidden preferences of the agent, such as a tenant,
office employee, or insuree, must be balanced with the
expected benefit of that information in reducing the
cost to the principal. In this sense our algorithms will

address the exploration versus exploitation tradeoff in
the context of Incentive Decision Processes.

We will show constructing a policy for the principal
in an IDP may be modeled as a partially observable
Markov decision process (POMDP) planning problem.
However we will demonstrate that we can leverage the
significant structure in IDPs to achieve much more ef-
ficient optimal or boundedly-optimal algorithms. Our
first contribution is to prove that if there are only two
different actions that the agent may choose, then the
incentive decision process can be reduced to a poly-
nomially sized MDP. We will also describe a similar
approximate mapping for multiple action incentivized
decision processes, and also present formal bounds on
the quality of policies for the approximate representa-
tion. Our empirical simulations demonstrate the per-
formance benefit of our sequential decision-theoretic
algorithms over simpler approaches. We will finish
by briefly discussing multiple extensions to our model,
including dynamic agent preferences and strategically
rational agents. When proofs are omitted, they are
provided in the appendix.

2 Background

A Markov decision process (MDP) is described by a
tuple 〈S,A, p(s′|s, a), C, γ〉. S is a set of states, A is
a set of actions, and p(s′|s, a) is the transition model
and stores for each state s and action a the probability
of transitioning to any state s′. C is the cost model
and represents the cost of taking action a in state s
and transitioning to state s′. γ ∈ [0, 1] is a discount
factor. A stationary policy π : S → A is a mapping
from states to actions.1 The value of a policy π for a
horizon H from state s is the expected sum of costs
over H steps when following the policy from state s,

V H
π (s) =

∑

s′

p(s′|s,π(s))[c(s,π(s), s′) + γV H−1
π (s′)]

This equation is also known as the Bellman equa-
tion [1]. In a slightly modified form (known as a Bell-
man update) it can be used to iteratively compute the
optimal value function and optimal policy. If the hori-
zon is infinite, then the value function is independent
of the time step. The optimal policy is the policy that
has the lowest value.

Partially observable MDPs (POMDPs) [10, 6] are of-
ten used to describe decision processes where the state
is not directly observable. POMDPs are represented
by a tuple 〈S,A,O, p(s′|s, a), p(o|s′, a), C, γ〉. Here O
is a set of observations, and p(o|s′, a) is the probability
of observing o after taking action a and transitioning
to state s′. A belief b is a probability distribution over

1The policy can also depend on the time step.

the possible world states, given the prior history of ac-
tions taken and observations received. b is a sufficient
statistic for the history, and can be updated as new
actions are taken, and new observations are received,
using a Bayes filter. In POMDP planning the objec-
tive is to compute a policy π : b → a that maximizes
the expected sum of future rewards.

3 Related Work

Since the agent’s preferences are unknown to the prin-
cipal, our work is loosely related to research on pref-
erence elicitation [3]. However, preference elicitation
only focuses on identifying an agent’s hidden reward
model, or identifying it sufficiently to make a single de-
cision. In contrast, in our work the principal seeks to
minimize its expected sum of costs. Similarly, inverse
reinforcement learning [9] seeks to identify an agent’s
hidden reward model given the agent’s behavior, but
our focus is on minimizing the cost to a principal by
altering the agent’s behavior through the offering of
incentives, which may not involve fully identifying the
agent’s hidden reward model.

Research on multiple agents interacting includes so-
phisticated models for representing and updating each
agent’s internal estimate of the state of the other
agent. Such representations can lead to infinite nest-
ings of state estimates [11]. Interactive POMDPs
(I-POMDPs) are used to represent such problems,
and use a finite representation of each agent’s state
for tractability [5]. Such rich representations remain
very expressive, but at the price of computational in-
tractability for all but very small domains.

The closest work to our own is that of Zhang and col-
leagues [12, 14, 13, 4] on policy teaching and environ-
ment design. Their earliest work [12] focuses on find-
ing a set of incentives for the agent that minimizes the
principal’s expected cost. Their setting is quite gen-
eral: the agent acts in a MDP and the principal pro-
vides a set of incentives over the MDP states. Zhang
et al. provide an algorithm for identifying the optimal
incentives to provide within a finite (but unknown)
number of episodes, where in each multi-step episode
the agent follows their optimal policy given their (hid-
den) reward function plus the provided incentives. Our
presented work focuses on a more restrictive setting of
a greedy agent selecting among a fixed set of actions
at each step, but within this context we provide for-
mal guarantees of our algorithm’s performance over a
single multi-step episode as the principal and agent in-
teract. Our IDP model is most similar to Zhang et al.’s
recent work [4] on an incentivized multi-armed bandit.
However, this work focuses on inducing a particular ac-
tion selection by the agent given some budget, whereas
our focus is on minimizing the total expected cost for

the principal. Also, we are interested in long horizon
decision processes, versus their algorithmic work only
considers short (≤ 3 step) horizons.

4 Incentive Decision Process Model

Consider a principal interacting multiple times with
an agent. At each time step the agent chooses
an action from a set of agent actions A =
{a1, a2, · · · , aN , aN+1}. We assume that the agent has
an internal reward Ran

for every action an such that
Rai

> Raj
if i > j. Therefore aN+1 will yield the high-

est reward for the agent, and so we define aN+1 as the
default agent action that the agent will select if no in-
centives are provided. All other actions a1, · · · , aN will
be referred to as alternate agent actions. The agent’s
rewards are hidden from the principal, but due to the
assumed structure, the principal does know that ac-
tion aN+1 is the agent’s default action. Each agent
action ai is also associated with a particular cost ci
to the principal and the costs are such that ci < cj if
i < j. Therefore by definition the default agent action
aN+1 is of highest cost to the principal.

At each time step the principal offers an incentive δ
for a particular action an (n ∈ (1, N)) to the agent if
the agents chooses action an on this time step. The
offered incentive is selected from a set of K incentives
∆ = {δ1, · · · , δK} where δi < δj if i < j. We assume
that the agent acts to maximize its immediate reward,
and will accept the offered incentive and take action
an if doing so yields a higher reward than the default
action, Ran

+ δ > RaN+1
. Otherwise the agent will

reject the incentive and take the default action aN+1

and receive reward RaN+1
. If the agent accepts the of-

fered incentive for action an, the principal will incur an
immediate cost of cn+δ; otherwise, the principal’s im-
mediate cost is cN+1. We will assume that the cost of
each alternate agent actions, plus the maximum possi-
ble incentive, is always less than the cost of the default
agent action: cN + δK < cN+1. This implies that the
principal would always prefer the agent to accept an
incentive and take one of the alternate agent actions.
We also assume that for each alternate agent action
an, there exists an incentive in ∆ such that if that in-
centive is offered, the agent would prefer to accept that
incentive and take the alternate agent action instead
of the default action. Let tn = RaN+1

− Ran
∈ ∆ be

the least incentive for which the agent prefers action
an to the default agent action aN+1. Observe that
lower indexed actions have lower rewards to the agent,
and therefore will require incentives equal or greater
than higher indexed rewards, ti ≥ tj for i < j. We use
I = (t1, · · · , tN) to denote the tuple of true incentives
for the N alternate agent actions. These incentives
are initially unknown to the principal. The principal
is provided with an initial joint probability distribu-

tion P0 which gives the probability that ti = δk for all
n ∈ {1, · · · , N} and k ∈ {1, · · · ,K}.

Note the set of alternate actions and set of possible in-
ternal rewards for each action for the agent is common
knowledge. The agent’s actual reward for each alter-
nate action is prive knowledge to the agent. Since the
agent is assumed to act in a myopic fashion, it does
not matter if the principal’s costs for each alternate
action, and its set of possible incentives, are private or
common knowledge.

The objective of the principal is to minimize its ex-
pected sum of costs overH interactions with the agent.
The costs may be multiplied by a discount factor
γ ∈ [0, 1]. We will consider both the finite horizon
case and the discounted infinite horizon case (H = ∞).
In this paper we will design tractable algorithms that
compute a decision policy to achieve the principal’s
objective.

For example, the landlord-tenant scenario can be mod-
eled as an IDP where the tenant’s (agent’s) default
temperature setting is the default action, and other
temperatures correspond to alternate agent actions.
Each temperature maps to a cost to the landlord (prin-
cipal). At each step the principal offers an incentive
to the agent if the agent sets the thermostat to an
alternate temperature that the principal specifies.

An IDP can also be modeled as a POMDP. In the
IDP POMDP the state is the agent’s hidden tn for all
n ∈ {1, · · · , N}, the actions are the cross product of
all alternate agent actions with the possible incentives
∆ (since the principal can offer any incentive paired
with any alternate agent action), and the observations
are the binary accept or reject response of the agent.
For most of this paper we assume that the agent’s hid-
den preferences are static, and so the state transition
model is a delta function. The observation model is
that an agent’s acceptance of an offer of δk for alter-
nate action an indicates that tn ≤ δk (since an agent
will accept any incentive equal or greater than tn for al-
ternate action an), and a reject indicates that tn > δk.
Note that the observation model depends on how we
assume the agent acts, which is a function of its in-
ternal hidden reward and the offered incentive. Since
we assumed that the agent is myopically greedy, the
agent will accept an incentive if the sum of offered in-
centive and the agent’s internal reward is greater than
the agent’s hidden reward for its default action choice.
The initial belief in the POMDP is given by P0. Com-
puting the optimal policy for this POMDP will enable
the principal to optimally offer (an, δk) pairs that bal-
ance reducing the uncertainty over the agent’s hidden
true incentives I with minimizing the expected cost
to the principal, given the current belief state over I.

However, computing an optimal policy for a POMDP
can take doubly exponential time and existing meth-
ods often struggle to scale to large state or action
spaces or long time horizons, all of which can feature
in IDPs.

Fortunately there is significant structure in IDPs. We
will now show how we can leverage this structure to
reduce the problem to simpler decision processes, and
we will present efficient algorithms for computing ex-
act or boundedly-optimal policies.

5 Single Alternate Agent Action IDPs

We first consider IDPs when there is a single alternate
action a1. It is known that a POMDP can be reduced
to a continuous state MDP where each state repre-
sents a belief: note that since the states are probabil-
ity distributions, the MDP has an infinite state space.
Here we show the surprising result that a single alter-
nate agent action IDP can be reduced to a polynomi-
ally sized MDP, which means they can be solved much
more efficiently than standard POMDPs.

We first describe how to perform belief updating in
a single alternate agent action IDP. Let the possi-
ble range of incentives for alternate agent action a1
be S1 = [s1, e1] if and only if δs1 ≤ t1 ≤ δe1 .
S = [S1, · · · , SN] are the incentive ranges for all al-
ternate agent actions; for N = 1, S = S1. We are
interested in maintaining the probability that t1 = δi
for all δi ∈ ∆. Given the initial probability distribu-
tion P0, we can directly compute the initial incentive
range S1. The initial probability that t1 = δi is

p1,S(δi) =
P0(δi)1(δi, S)

∑K
k=1 P0(δk)1(δk, S)

, (1)

where 1(δi, S) = 1 if δs1 ≤ δi ≤ δe1 (if incentive δi
is within the possible incentive range), and, with a
slight abuse of notation, we use P0(δi) to represent the
initial probability that the agent’s t1 = δi. Note that
initially the denominator will be 1, because the range
will cover all incentives δi for which P0(δi) > 0. On
the first time step the principal will offer the agent an
incentive δi to take the alternate agent action a1. If the
agent accepts, the principal knows that t1 ≤ δi, due to
the assumed monotonic structure of the incentives and
the greedy myopic agent behavior. Therefore the new
possible incentive range if the agent accepts δi is S1 =
[s1, i], since the upper bound on the possible index is
at most i. If the agent rejects the offered incentive,
then t1 > δi and so the new incentive range must be
S1 = [i+1, e1]. In either case the new probability of the
agent accepting a particular incentive δj is identical to
Equation 1 using the updated incentive range S1.

Each offered incentive, and associated agent response,
can set the probability of some incentives to zero.

Since t1 is static, we prove it is sufficient to main-
tain and update S1 in order to compute the cur-
rent p1,S(δj) given the history of offered incentives
and agent responses. Therefore, the belief state over
the agent’s incentive t1 will be of the form B1

i,j =
(0, · · · , 0, p1i,S , · · · , p

1
j,S , 0, · · · , 0) where S1 = (i, j) and

p1j,S = p1,S(δj). We will shortly prove that there are
only O(K2) possible such states.

Before we do so, we first note that an IDP-MDP is
an instance of a deterministic POMDP, since the ob-
servations are a deterministic function of the underly-
ing agent’s preferences, and the transition model is a
delta function because these preferences are assumed
to be static. Prior work [7, 2] has proved that a de-
terministic POMDP with Ns states can be converted
to a finite-state MDP with a number of states that is
an exponential function ((1 + Ns)Ns) of the number
of POMDP states. This is significantly smaller MDP
than generic POMDPs which map to a MDP with an
infinite number of states. However, we will show that
an IDP withN = 1 can be mapped to a MDP with B1

i,j

as the MDP states. We now prove that the resulting
MDP has a number of states that is only a polynomial
function of the number of POMDP states (K).

Theorem 5.1. An IDP with N = 1 alternate agent
actions is equivalent to an MDP with O(K2) states.

Proof. We see that B1
1,K is the initial state of the

IDP-MDP. Suppose B1
i,j is the current state. Con-

sider the case where incentive δk is offered. The agent
might either accept or reject the incentive. As stated,
the agent’s response to each offer can eliminate cer-
tain range of the incentives but the ratio amongst the
remaining ones does not change. If the agent accepts
the incentive, the new probability vector will be B1

i,k

since the response indicates that t1 ∈ [δi, δk], otherwise
if the agent rejects the incentive, the new probability
vector will be B1

k+1,j , since t1 ∈ [δk+1, δj]. Hence, by

induction, at the tth step, the probability vector is of
the form B1

i,j and only states of this form are reach-
able from the initial probability vector. Now i and j
can each take on at most K values, so the maximum
number of possible B1

i,j is at most O(K2). Therefore
the number of belief states is bounded by O(K2) and
therefore the IDP with one alternate agent action can
be reduced to a MDP with O(K2) states.

We now define the IDP-MDP for a single alternate
agent action. We use v(l) to denote the l-th element
of a vector v. The state space is the B1

i,j vectors just
described. The action space is the incentive space ∆.
The MDP transition model is the probability of tran-
sitioning from one B1

i,j to other belief states after the
principal offers the agent an incentive. For a given

Algorithm 1 ValH1

1: Input: IDP-MDP M , state B1
i,j , matrix V of

horizon-values, matrix π of horizon-policy, h
2: if h = 0 then
3: V h(B1

i,j) = 0 {no more time steps}
4: else
5: for k = i : j − 1 do
6: if V h−1(B1

i,k) = Ø then

7: [V h−1(B1
i,k), V,π]=ValH1(M ,B1

i,k,V ,π,h−1)
{Calc. value if agent accepts δk}

8: end if
9: if V h−1(B1

k+1,j) = Ø then

10: [V h−1(B1
k+1,j), V,π]=ValH1(M ,B1

k+1,j ,V ,π,h−
1) {Calc. value if agent rejects δk}

11: end if
12: Qh(B1

i,j , δk)=p(B
1
i,k|B

1
i,j , δk)(δk+V

h−1(B1
i,k))+

p(B1
k+1,j |B

1
i,j , δk)(c2+V h−1(B1

k+1,j))
13: end for
14: Qh(B1

i,j , δj) = δjh

15: V h(B1
i,j) = minQh(B1

i,j , ·)

16: πh(B1
ij) = argminQh(B1

i,j , ·)
17: end if
18: Return [V h(B1

i,j), V,π]

state B1
i,j , and a given offered incentive δk, with prob-

ability
∑

i≤l≤k B
1
i,j(l) the agent will accept the offer

and the new state will be B1
i,k, and with probabil-

ity 1 −
∑

i≤l≤k B
1
i,j(l) the agent will reject the offer,

and the new state will be B1
k+1,j . The cost model of

the MDP takes the form c(B1
i,j , δk, B

1
i,k) = δk + c1 for

transitions where the agent accepts the incentive, and
c(B1

i,j , δk, B
1
k+1,j) = c2 when the agent rejects.

We now show the special structure of this problem al-
lows us to introduce more efficient planning algorithms
that require only O(K3) and O(min(H,K)K3) com-
putation time for the infinite and finite horizon case,
respectively. First note that the principal only needs
to consider offering incentives δk within the range of
i ≤ k ≤ j for a state B1

i,j , as other incentives will be
automatically rejected (or accepted but at higher cost
than necessary for the principal). We start by consid-
ering the infinite horizon case. Let the expected sum
of discounted costs of state B1

i,j be V (B1
i,j). We de-

fine a MDP state s to be non-recurring with respect
to a policy π if the state can only be reached once
while executing the π. A state s of the MDP is called
self-absorbing if executing π from s results in a self-
transition to state s with probability 1. A policy π is
NonRecur-Absorb if each MDP state is either non-
recurring or self-absorbing with respect to π.

First recall that for an infinite horizon MDP, there al-

ways exists an optimal policy that is stationary (the
decision depends on only the current state and is in-
dependent of the time step). Therefore we will con-
sider only stationary policies. Next note that for an
infinite horizon IDP-MDP, if incentive δj is offered
in state B1

i,j , then the MDP remains in same state
B1

i,j . If one of the other possible actions (offering
incentives δi, · · · , δj−1) is taken, then the MDP will
transition to a new state, and will never return to the
state B1

i,j since the number of non-zero entries in the
probability vector B1

i,j monotonically decreases. This
implies all infinite-horizon policies for an IDP-MDP
are NonRecur-Absorb. As each state can only be
reached once (or is an absorbing state) during execu-
tion, we only need to compute a Bellman backup for
the state-action values Q once for each state-action
pair. We compute a decision policy by computing the
state-action values of the initial state by recursively
computing the value of each reachable state. The
values of subsequent states are stored and cached so
that they can be re-used if the same state is reached
through a different trajectory of offered incentives and
responses. There are O(K2) MDP states and O(K)
actions for each state, so there are O(K3) state-action
pairs. The cost of computing the Bellman backup for
a given state-action pair can be done in constant time
given the values of the possible next states (since there
are only at most 2 possible next states). Therefore the
algorithm takes O(K3) time. Note this is significantly
faster than value iteration on generic MDPs with Ns

states and Na actions which requires O(NaN
2
s

1−γ) time to
compute a near-optimal policy.

For the finite horizon case, let V h(B1
i,j) denote the ex-

pected sum of costs to the principal for state B1
i,j for a

horizon of h future interactions with the agent. Every
policy is not NonRecur-Absorb because the prin-
cipal could offer the same incentive for multiple time
steps (staying in the same state) and then offer a new
incentive and transition to another state. However, we
can prove the following result:

Theorem 5.2. There exists an optimal policy for an
IDP-MDP with N = 1 that is NonRecur-Absorb.

The proof intuition is that we can always re-order an
optimal policy so that it only offers incentives that
keep the MDP in the same state at the final time steps.

The algorithm for the finite horizon case is displayed
in Algorithm 1. Here the state’s value and policy
will depend on the time step. Each time the hori-
zon decreases, either a state becomes self-absorbing
with a cost of δjh or least one non-zero element of
the probability vector B1

i,j becomes zero. Since the
initial state B1

1,K has K non-zero elements, it will
take at most K time steps until a state is reached

which is self-absorbing (as all single-element beliefs
are self-absorbing). Therefore, the algorithm takes
O(min(H,K)K3) running time

6 Multiple Alternate Action IDPs

We next consider IDPs with multiple alternate agent
actions, namely N > 1. We now need to maintain a
belief state over the joint of the alternate agent actions
crossed with the incentives. As stated in the definition
of the IDP, we assume we are provided with an initial
probability distribution over the true incentives tn for
each alternate action an, P0. We know from the prior
section that all beliefs for anN = 1 IDP are of the form
B1

i,j = (0, · · · , 0, p1i,S , · · · , p
1
j,S , 0, · · · , 0) where S1 =

(i, j). We now extend the model to handle multiple ac-
tions. Let BS = (Bn

S) |
N
n=1 where B

n
S denotes the prob-

ability vector (0, · · · , 0, pni,S , · · · , p
n
j,S , 0, · · · , 0) where

Sn = (i, j) and pni,S is the probability that tn = δi
given the initial joint distribution P0 and the possible
incentive ranges Sn for each alternate agent action.
Sn = (sn, en), for all n ∈ {1, · · · , N}.

Theorem 6.1. The number of states of IDP-MDP
for N > 1 is O(K2N) states.

Proof. Assume that the current state is BS , where
Sn = (sn, en) for 1 ≤ n ≤ N . Consider the case
where incentive δi is offered for action an. The agent
will accept this offer with the probability that its true
incentive tn for an is ≤ δi, which is equal to

∑

j≤i p
n
j,S .

If the offer is accepted, then sn ≤ tn ≤ i, which implies
Sn = (sn, i). In addition, all alternate agent actions
m > n with higher agent reward than alternate agent
action an will also all accept tn, so the incentive range
of all such actions will also be updated Sm = (sm, i) for
all m > n. This defines a new S, which together with
P0, completely defines the new distribution over the
probability of each incentive for each alternate agent
action. If the agent rejects the offered incentive, then
sn ≥ i + 1, and so Sn = (i + 1, en). All alternate
agent actions m < n with a lower agent reward than
action an will also reject the reward, which results in
Sm = (i+1, em) for all m < n. There are N alternate
agent actions, and we know from Theorem 5.1 that
there are at O(K2) states per individual action, there-
fore there are at most O(K2N) possible states. Due to
the relationship among the agent costs and rewards,
this number will often be much lower.

An IDP with N > 1 alternate agent actions has many
of the same properties as an IDP with N = 1 ac-
tions, and therefore we can use algorithms similar to
those described in the prior section (see the text and
Algorithm 1) to solve the IDP-MDP with N > 1.
Excluding the cost for the belief updates, this re-
quires O(NK2N+1) and O(min(H,NK)K2N+1) com-
putation time for the infinite and finite horizon case,

respectively. While this is computationally tractable
for small N , this scales poorly as N increases.

To address this, we will now provide efficient approx-
imate algorithms for computing a decision policy in
IDPs with large N . Note that computing the probabil-
ity of the next possible states, given an offered incen-
tive δk for alternate agent action an involves comput-
ing the marginal probabilities pnk,S that tn = δk given

the current S. This is an O(KN) operation due to
summing over all other action-incentive probabilities.
Hence, any approximation algorithm will take at least
O(KN) time due to the bottleneck of belief updating.
This cost can be reduced by assuming structure in the
joint probability distribution, such as using graphical
models with bounded treewidth. We leave further ex-
ploration of this issue for future work.

We now define a new special form of a Markov deci-
sion process. Let a SEQ-MDP be an IDP-MDP with
N > 1 with the following additional restrictions on the
allowable principal’s actions at different states:

1. For the initial state, the principal can offer any
incentive for only alternate agent action a1 (as-
suming that initially S1 = (s1, e1) and s1)= e1).

2. For any other state, the principal can offer any
incentive for alternate agent action an, only when
Si = (si, ei) and ei = si for all i < n. In other
words, ti must be known for all alternate agent
actions i < n before the principal can offer an
incentive for an.

A SEQ-MDP restricts the possible decision policy set
Π to policies that only provide incentives for alternate
agent actions with higher cost to the principal only af-
ter finding the true incentive for the lower cost actions.
Note that the SEQ-MDP policy may not identify the
true incentive for all actions, but can decide to stick
with a previously identified an, δk pair.

We now analyze the number of states in a SEQ-MDP.
Consider that at the present state the principal is offer-
ing incentives for alternate agent action an. We know
that Si = (si, ei) for i > n and si = ei for i < n.
Define ci + δj as the minimum action cost + true in-
centive across all i < n. Since we would never take
any other i′ < n with a higher cost, ci + δj is suffi-
cient to summarize all useful information from prior
offered actions. Therefore we can represent a state in
the SEQ-MDP as the tuple (ai, δj , BSn

). For each
offered alternate agent action, there can be O(K2)
states, as in the IDP-MDP with N = 1. We also
must track the current minimal cost alternate agent
action and offered incentives, and there are O(NK)
such combinations. Finally we also have to monitor

the current alternate agent action, and there are O(N)
possibilities. The product of these quantities yields a
state space of O(N2K3). For similar arguments as
given in Section 5, we can construct optimal policies
that are NonRecur-Absorb for SEQ-MDP and use
planning methods similar to those described in Section
5. There are O(K) possible actions for each state in a
SEQ-MDP. Therefore, again excluding costs for com-
puting the marginal probabilities, the computational
cost of computing an optimal infinite-horizon policy
for a SEQ-MDP is O(N2K4), and the finite horizon
H cost is O(min(H,NK)N2K4).

We now prove that computing the optimal policy for a
SEQ-MDP yields a boundedly-optimal policy for the
original IDP-MDP with N > 1.

Theorem 6.2. An optimal policy for a SEQ-MDP
that is a transformation of an IDP-MDP with N > 1,
has an expected cost V seq which is bounded by V seq =
V ∗ +

∑K
k=1(δk − δ1) +N(cN+1 − c1), where V ∗ is the

optimal value for the IDP-MDP.

Proof. We will make a constructive argument by pro-
viding a policy π ∈ Π that realizes the bound V seq.
Consider a policy π that starts with the lowest cost ac-
tion, and offers the highest possible incentive. The pol-
icy proceeds by sequentially decreasing the offered in-
centive δk for alternate agent action a1 until the agent
rejects the offered incentive. Let this highest incentive
at which the agent rejects be δj−1. That means that
the true incentive t1 for alternate agent action a1 is
δj . Since a1 is the lowest cost and lowest reward al-
ternate action, we know that δj will be accepted for
all other alternate agent actions i > 1, since all such
actions yield higher reward to the agent. Therefore
we need not offer δj for any other agent actions. The
policy then moves on to offering incentives for alter-
nate agent action a2, starting with offering δj−1. The
policy again continues to incrementally decrease the
offered incentive until it reaches a reject, at which it
then starts to provide incentives for a3, and so on. The
policy is similarly defined for all subsequent alternate
agent actions. The defined policy π operates only on
the SEQ-MDP version of the IDP-MDP.

Note that after the principal makes an offer, either
an incentive for a particular action, or a particular
incentive for all actions can be eliminated. Since there
can at most be K accepts, and at most N rejects (as at
most one offer can be rejected for each action), there
are at most K +N steps.

Each of the at most N rejected offers will cause the
algorithm to incur at most cN+1 − c1 additional cost
compared to the optimal policy, since the principal will
pay the cost of the default action cN+1. Each offer
that was accepted that is above the true incentive will

result in an additional cost of at most δi−δ1. Note that
each incentive δi is offered only once if it is accepted for
an action an. Therefore, the total cost is bounded by
V seq = V ∗+N(cN+1−c1)+

∑K
k=1(δk−δ1). This is true

irrespective of the distribution over incentives. It can
be easily seen that the policy π ∈ Π, as required.

This bound does not use any information about the
probability distribution. A tighter bound using the
probability distribution can be obtained but is not
presented here for ease of exposition. Also, an al-
ternate algorithm with bound V ∗ + K(cN+1 − c1) +
∑N

i=1(cN − ci) is possible by starting from action aN
rather than a1 and progressing to lower cost actions
only after identifying the true incentive for the higher
cost actions. An argument similar to the one made in
Theorem 6.2 can be used to prove this bound. In next
section, our empirical results show the optimal policy
for a SEQ-MDP performs well in practice.

7 Experiments

We now empirically evaluate our algorithms.

In our simulations the cost of the default agent action
was set to cN+1 = 2. For N alternate agent actions,
the cost to the principal of the agent taking action an
was set to cn =

(

n
N

)η
where η is a constant. For K in-

centives, the value of the k-th incentive was δk = k/K.
Note the maximum cost of the alternate agent actions
is 1, and the maximum incentive is 1. Therefore the
cost to the principal of an agent accepting an incentive
cn + δk is always less than or equal than the cost to
the principal of the agent’s default action cN+1, as our
IDP model assumed (Section 4). The initial belief was
set to a uniform joint distribution over the possible
incentive-alternate agent action space: recall that this
distribution must always respect the constraints that
ti ≥ tj for i < j since Rai

< Raj
. In each experimental

run we fixed K,N ,η and the horizon H, and sampled a
true hidden vector of incentives for the agent from the
initial belief. We then executed the policy of each al-
gorithm and recorded the total cost accumulated over
H steps. We simulated 1000 runs and averaged over
each run’s total sum of costs. We repeated this for 10
rounds (each of 1000 runs) and computed the standard
deviation error bars for the average total cost.

We compare the performance of our algorithms to two
natural methods. The first is a greedy algorithm. In
the greedy algorithm, given a current state BS (with
Sn = (sn, en)), the principal offers the incentive δk
for alternate action an that minimizes the expected
immediate cost to the principal,

[δk, an] = argmin
δk,an

k
∑

k′=sn

pnk′,S(δk+cn) +
en
∑

k′=k+1

pnk′,S(cN+1).

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

H

A
ve

ra
g
e
 C

o
st

Optimal Algorithm
SEQ−MDP
Greedy
DAA

(a) Avg total cost over H (w/1 std. error bars).N = 3,K = 5.

0 2 4 6 8 10 12 14 16 18 20
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

H

A
ve

ra
g
e
 C

o
st

 /
 O

p
tim

a
l

Optimal Algorithm
SEQ−MDP
Greedy
DAA

(b) Ratio of avg. total cost to optimal. N = 3,K = 5.

0 2 4 6 8 10 12 14 16 18 20
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

H

A
ve

ra
g
e
 C

o
st

 /
 O

p
tim

a
l

Optimal Algorithm
SEQ−MDP
Greedy
DAA

(c) Ratio of costs. N = 5,K = 3.

Figure 1: Average total cost for varying horizons H.

The second method first uses a binary-search-like pro-
cedure, starting from a1, to identify the true incentive
for each alternate agent action. It then selects the al-
ternate agent action, and incentive, with the lowest
immediate cost, and then offers that for all remain-
ing steps. We label this algorithm “diagnose-and-act
(DAA).” It should be noted that DAA can be viewed
as a first running a simple inverse reinforcement learn-
ing approach.

Figure 1(a) displays the average total cost incurred
for different horizons for N = 3 alternate agent ac-
tions, and K = 5 incentives. Here we set η = 1 and
N ≤ 5 but results from varying η (from 0.75 to 1.25)
and N yielded similar results. As expected, the op-

1 2 3 4 5 6 7
0

20

40

60

80

100

120

140

K

P
la

n
n
in

g
 T

im
e
 (

se
co

n
d
s)

Optimal Algorithm
SEQ−MDP

(a) N = 3, H = 20

1 2 3 4 5
0

500

1000

1500

2000

N

P
la

n
n
in

g
 T

im
e
 (

se
co

n
d
s)

Optimal Algorithm

SEQ−MDP

(b) K = 4, H = 20

Figure 2: Planning time (sec) as a function of K or N
for the optimal algorithm and SEQ-MDP.

timal policy performs best for all horizons. To bet-
ter explore the difference between the algorithms, we
replotted the results by dividing by the optimal algo-
rithm’s average total cost at each horizon H, resulting
in a figure where the optimal algorithm is always 1,
and all other algorithms are displayed as their ratio
to the optimal performance (see Figure 1(b)). For low
horizons the greedy algorithm performs very close to
optimal, because there is little benefit to gathering in-
formation to find a lower cost alternate since there is
little time to use such information. However, as H in-
creases, greedy performs significantly worse than the
optimal algorithm. DAA algorithm performs poorly
at low horizons because it tries to identify the optimal
incentive for each action, and this can take longer than
the available horizon to accomplish. At larger horizons
DAA performs better. For very large horizons we ex-
pect that DAA would converge to the performance of
the optimal policy: in such cases the loss incurred from
not identifying the best action-incentive pair will likely
become very high, meaning that it will be optimal to
identify the minimal cost incentive.

The SEQ-MDP approach has very good performance.
Indeed it is was visually and statistically indistinguish-
able from the optimal algorithm for all horizons H for
K = 5, N = 3. SEQ-MDP is not always identical to
the optimal algorithm’s performance: for example, in
Figure 1(c) we display results for K = 3 and N = 5.
Here there are a larger number of possible incentive-
action combinations (35) relative to the available hori-
zon, and so consecutively stepping through the alter-
nate agent actions may not be the optimal strategy.

However SEQ-MDP performs very close to the optimal
algorithm’s performance, and it is significantly better
than other approaches. The SEQ-MDP approxima-
tion also requires much less computation time than
the optimal algorithm. Figures 2(a) and 2(b) compare
the average computational time to execute a single run
(H = 20). Figure 2(a) fixes the number N = 3 of al-
ternate agent actions, and varies the number of offered
incentives K, and Figure 2(b) fixes K = 4 and varies
N . The SEQ-MDP algorithm scales much better than
the optimal algorithm in both cases.

8 Discussion and Extensions

So far we have focused on Incentive Decision Processes
where a principal interacts with a myopic greedy agent
whose preferences are hidden and static. Here we
briefly consider two extensions of this model.

Dynamic Preferences: In many real applications
the agent’s preferences will change over time, and the
principal may not know if the agent’s preferences have
changed. This significantly complicates the decision
problem. One important common class of dynamic
changes is where the preferences change locally. For
example, a tenant’s thermal preferences may locally
shift during seasonal changes. Let us assume that if
true incentive tn for alternate agent action an is δk,
then tn remains the same with probability λ0, shifts
to δk+d with probability λ1, and shifts to δk−d with
probability λ2 after each potential preference change2.
We will restrict our attention to the case where the
maximum number of times the agent might change
its preferences is at most L. For simplicity we will
also assume that we know the time epochs at which
changes can occur, but our results also apply when we
do not have prior information about these time epochs.
Similarly, we will state our results for N = 1 but these
results can be extended to N > 1.

Such dynamic preference IDPs can be represented as
a POMDP with O(K3) states: in a static IDP there
are O(K2) belief states; a change in preference shifts
the non-zero elements of the belief state; there are
at most O(K) possible shifts; and as we don’t know
whether a shift occurs or not, this becomes the hidden
state of our POMDP. Interestingly, we can reduce this
POMDP to a finite state MDP:

Theorem 8.1. A dynamic preference IDP (N=1) can
be represented as a MDP with O(K2(L+1)) states.

This result is significant because we have mapped
a non-deterministic POMDP to a finite state MDP.
While a similar result is known to hold for determin-
istic POMDPs, it does not hold for general POMDPs,
which typically map to a MDP with an infinite number
of states. It is important to emphasize that this result
holds for infinite horizon dynamic preference IDPs.

We believe that substantial further reductions in the
state space may be possible with minimal performance
loss since each possible change is local and small.

Rational Strategic Agents: Often the agent itself
will seek to optimize its long term expected sum of
rewards, reasoning about the potential future incen-
tives the principal might provide if the agent chooses
to accept or reject different offers. In such situations,

2λ0 + λ1 + λ2 = 1.

the previous reduction to a MDP will no longer hold
because the principal cannot trust that the agent’s re-
sponses reflect its true hidden incentives.

Many of the policies we have considered so far will
provide a higher incentive when an offer is rejected,
and a lower incentive if the offer is accepted. Let us
denote such policies πsimple. Such policies are strategy
proof for a horizon of H = 1:

Theorem 8.2. The agent will act truthfully for H=1.

Indeed it is fairly easy to see that acting truthfully
will always maximize the agent’s immediate reward.
However, this does not hold for longer horizons.

Theorem 8.3. πsimple is not a strategy proof policy
for arbitrary horizons.

The proof provides an example of a H = 2 IDP where
the agent can increase its reward by acting in discord
with its true preferences. In the future we intend to de-
velop algorithms for automatically constructing equi-
librium decision policies for the principal and agent,
and to design strategy proof policies.

Other directions: There are multiple other exten-
sions to the Incentive Design Problems we have con-
sidered in this paper. Another interesting variant is
when there are multiple agents (say U), and the prin-
cipal can only provide incentives to 1 agent at each
time step. It can be shown that an approach similar
to binary search will lead to an O((c2−c1)U logK) ad-
ditive bound with respect to the optimal algorithm in
case of single alternate action. Interestingly, this prob-
lem can also be reduced to multi-arm bandit (MAB)
problem with superprocesses [8]. Though computing
optimal policies for superprocess MABs is generally
difficult, it may be possible to leverage the IDP struc-
ture to compute efficient algorithms. We also plan to
use IDPs to construct personalized adaptive incentives
for reducing energy consumption.

9 Conclusion

We have introduced Incentive Decision Processes,
where the objective is to compute a decision policy for
a principal to minimize its expected sum of costs by
providing incentives to a myopic agent. If the agent’s
hidden preferences are static, then we can represent
an IDP (either exactly for 1 alternate action, or ap-
proximately for multiple actions) as a polynomially-
sized Markov decision process, instead of as a standard
POMDP. Our empirical results showed our sequential
decision theoretic techniques significantly outperform
simpler comparison algorithms.

References

[1] R. Bellman. Dynamic Programming. Princeton Uni-
versity Press, 1957.

[2] B. Bonet. Deterministic POMDPs revisited. In Pro-
ceedings of the Conference on Uncertainty in Artificial
Intelligence, 2009.

[3] C. Boutilier. A POMDP formulation of preference
elicitation problems. In Proceedings of the Eighteenth
National Conference on Artificial Intelligence (AAAI-
2002), pages 239–246, 2002.

[4] Y. Chen, J. Kung, D. Parkes, A. Procaccia, and
H. Zhang. Incentive design for adaptive agents. In
AAMAS, 2011.

[5] P. Doshi, Y. Zeng, and Q. Chen. Graphical models
for interactive POMDPs: representations and solu-
tions. Autonomous Agents and Multi-Agent Systems,
18:376–416, 2009.

[6] L. Kaelbling, M. Littman, and A. Cassandra. Plan-
ning and acting in partially observable stochastic do-
mains. Artificial Intelligence, 101:99–134, 1998.

[7] M. Littman. Algorithms for Sequential Decision Mak-
ing. PhD thesis, Brown University, 1996.

[8] A. Mahajan and D. Teneketzis. Multi-armed Bandit
Problems, chapter 6. 2007.

[9] A. Y. Ng and S. Russell. Algorithms for inverse rein-
forcement learning. In Proceedings of the Seventeenth
International Conference on Machine Learning, 2000.

[10] E. Sondik. The Optimal Control of Partially Ob-
servable Markov Processes. DTIC Research Report
AD0730503, 1971.

[11] L. Zettlemoyer, B. Milch, and L. Pack Kaelbling.
Multi-agent filtering with infinitely nested beliefs. In
NIPS, 2008.

[12] H. Zhang and D. Parkes. Value-based policy teaching
with active indirect elicitation. In Association for the
Advancement of Artificial Intelligence (AAAI), 2008.

[13] H. Zhang, Y. Chen, and D. Parkes. A general ap-
proach to environment design with one agent. In IJ-
CAI, 2009.

[14] H. Zhang, D. Parkes, and Y. Chen. Policy teaching
through reward function learning. In EC, 2009.

	Introduction
	Background
	Related Work
	Incentive Decision Process Model
	Single Alternate Agent Action IDPs
	Multiple Alternate Action IDPs
	Experiments
	Discussion and Extensions
	Conclusion
	Appendix

