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Abstract

Multinomial logistic regression is one of the
most popular models for modelling the ef-
fect of explanatory variables on a subject
choice between a set of specified options.
This model has found numerous applications
in machine learning, psychology or economy.
Bayesian inference in this model is non trivial
and requires, either to resort to a Metropolis-
Hastings algorithm, or rejection sampling
within a Gibbs sampler. In this paper, we
propose an alternative model to multinomial
logistic regression. The model builds on the
Plackett-Luce model, a popular model for
multiple comparisons. We show that the in-
troduction of a suitable set of auxiliary vari-
ables leads to an Expectation-Maximization
algorithm to find Maximum A Posteriori es-
timates of the parameters. We further pro-
vide a full Bayesian treatment by deriving a
Gibbs sampler, which only requires to sample
from highly standard distributions. We also
propose a variational approximate inference
scheme. All are very simple to implement.
One property of our Plackett-Luce regression
model is that it learns a sparse set of feature
weights. We compare our method to sparse
Bayesian multinomial logistic regression and
show that it is competitive, especially in pres-
ence of polychotomous data.

1 Introduction

The multinomial logistic regression (or multinomial
logit) model is one of the most popular models for
modelling the effect of explanatory variables Xi =
(Xi1, . . . , Xid) ∈ X on a subject choice Yi between
a set of prespecified options {1, . . . ,K}. The model,
which belongs to the class of generalized linear mod-

els (McCullagh & Nelder, 1989), takes the following
form:

Pr(Yi = k|Xi, β) =
eX
>
i βk

1 +
∑K−1
`=1 eX

>
i β`

(1)

for k = 1, . . . ,K − 1 and Pr(Yi = K|Xi) =
1

1+
∑K−1
`=1 exp(X>i β`)

. The monograph of Agresti (1990)

gives details on the foundations of this model and re-
lated ones such as conditional logit (McFadden, 1973).
The parameters βk = (βk1, . . . , βkd), k = 1, . . . ,K − 1
are unknown and have to be estimated from the data.
Bayesian inference in multinomial logit is complicated
by the fact that no conjugate prior exists for the re-
gression parameters. Various algorithms have been
proposed in the literature, see e.g. (Dey et al., 2000).
In particular, similarly to Bayesian inference in pro-
bit models (Albert & Chib, 1993; Talhouk et al., 2012;
Holmes & Held, 2006) proposed an auxiliary variable
model for block Gibbs sampling. Alternative Markov
Chain Monte Carlo (MCMC) algorithms have been
compared by Girolami & Calderhead (2011). How-
ever, although some algorithms show excellent mixing
properties, they lack simplicity of implementation.

When only some of the predictors are assumed to
be relevant, sparse multinomial logistic regression
has been proposed using Laplace priors.Krishnapuram
et al. (2005) obtained Maximum A Posteriori (MAP)
estimates via Minorization-Maximization-based algo-
rithms, while fully Bayesian inference is conducted
in (Cawley et al., 2007) and (Genkin et al., 2007).

In this article, we propose an alternative model to
multinomial logit for multi-class classification and dis-
crete choice modelling. We show that the use of a care-
fully chosen set of latent variables leads to an Expecta-
tion Maximization (EM) algorithm to find MAP esti-
mates, a Gibbs sampler or a variational EM algorithm
to approximate the full posterior. Importantly, the
Gibbs sampler only requires to sample from standard
distributions, which makes it computationally highly
amenable. Moreover, for some values of the hyperpa-
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rameter, we show that the model induces sparsity over
the parameters. In particular, the MAP estimates are
exactly sparse. We also provide detailed comparaisons
with Bayesian sparse multinomial logit in terms of
computational efficiency and prediction performances.
The Bayesian treatment of sparse multinomial logis-
tic regression is discussed in Appendix A. The model
builds on the data augmentation model proposed by
Holmes & Held (2006) and the Bayesian lasso of Park
& Casella (2008). To the best of our knowledge is has
not been proposed before.

2 Statistical model

We propose an alternative model for categorical data
analysis. The model is defined as follows:

Pr(Yi = k|Xi, λ) =
W>i λk∑K
`=1W

>
i λ`

(2)

for k = 1, . . . ,K, where Wi = (Wi1, . . . ,Wip) and
Wij = Kj(X). Kj is a known function from X to
[0,+∞[. In practice, there is a lot of flexibility on
the choice of the transformations Kj of the explana-
tory variables. In the remaining of this paper, we will
consider Kj(X) = exp(Xij), Kd+j(X) = exp(−Xij) to
account for negative effects and K2d+1(X) = exp(0)
for the offset. The non-negative parameters λkj , k =
1, . . . ,K, j = 1, . . . , p are unknown and have to be
estimated from the data.

The model shares strong similarities with the Plackett-
Luce model for multiple comparisons (Luce, 1959;
Plackett, 1975), for which efficient Bayesian inference
can be carried out (Guiver & Snelson, 2009; Caron &
Doucet, 2012). Similarly to this model, it also admits
a Thurstonian interpretation (Diaconis, 1988) that we
describe now. For k = 1, . . . ,K and j = 1, . . . , p, let

Vikj ∼ Exp(Wijλkj) ,

where Exp(b) denotes the exponential distribution
with rate parameter b. As an analogy, let consider
a race between K different teams, each team having p
competitors. Each individual j in a team k has an ar-
rival time Vikj for competition i. Then Yi denotes the
winning team, i.e. the team k which has the individ-
ual with the lowest arrival time. Following properties
of the exponential distribution, it is straightforward to
show that

Pr(arg min
κ

(min
j
Viκj) = k|Xi, λ) =

W>i λk∑K
`=1W

>
i λ`

.

The decision boundaries between two classes k and `
are given by

W>(λk − λ`) = 0 ,

i.e. they are linear in the transformed domain W . As
the multinomial logit model, the model (2) satisfies
Luce’s axiom of choice (Luce, 1977) a.k.a. indepen-
dence from irrelevant alternatives.

3 MAP estimation and Bayesian
Inference

3.1 Data Augmentation

The likelihood defined by (2) does not admit a conju-
gate prior. We can nonetheless consider a data aug-
mentation scheme as indicated by Caron & Doucet
(2012). Assume that we have observed data Y =
{Yi}ni=1. We introduce auxiliary latent variables C =
{Ci}ni=1 and Z = {Zi}ni=1 such that, for i = 1, . . . , n

Yi|Ci, λ ∼ Disc

(
λ1Ci∑
` λ`Ci

, . . . ,
λKCi∑
` λ`Ci

)
, (3)

Ci|λ ∼ Disc

(
Wi1

∑
k λk1

W>i
∑
` λ`

, . . . ,
Wip

∑
k λkp

W>i
∑
` λ`

)
, (4)

Zi|λ ∼ Exp

(
W>i

∑
`

λ`

)
, (5)

where Disc(π1, . . . , πp) denotes the discrete distribu-
tion of parameters (π1, . . . , πp) where πi ≥ 0 and∑
i πi = 1. Pursuing the analogy with team com-

petition introduced in the previous section, the la-
tent variables Zi and Ci have the following interpre-
tation. Zi = mink,j(Vijk) corresponds to the arrival
time of the winner of the competition. As the vari-
ables Vijk are exponentially distributed and the min-
imum of two exponential variable of rates w1 and w2

is an exponential variables of rate w1 +w2, we recover
(5). Ci ∈ {1, . . . , p} corresponds to the index of the
individual in the winning team who arrives first.

The model (3–4) corresponds to an ad-mixture of Dis-
crete distributions. Indeed, the class probabilities de-
fined by the Plackett-Luce model (2) can be rewritten
in the form of a mixture model by integrating out the
latent indicator variables {Ci}ni=1:

Pr(Yi = k|Xi, λ) =
∑
j

πij Disc

(
λ1j∑
` λ`j

, . . . ,
λKj∑
` λ`j

)
,

where the mixture weight πij =
Wij

∑
k λkj

W>i
∑
` λ`

depends

on the data through {Wij}pj=1. Note that there is one
mixture component per feature. Hence, each compo-
nent characterises the classes by assigning a different
importance weight to their associated feature.
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Figure 1: Graphical Model. Parameter of interest λ is
in blue, latent variables Z and C in green and mea-
surements Y in orange.

The resulting log-complete likelihood is given by

ln p(Y, C,Z|λ) =

K∑
k=1

p∑
j=1

{
nkj lnλkj − λkj

n∑
i=1

ZiWij

}

+

n∑
i=1

p∑
j=1

δCij lnWij , (6)

where nkj =
∑
i δYikδCij and δij is the Kronecker

delta. We further assign a conjugate Gamma prior
to the parameters λ:

λ ∼
K∏
k=1

p∏
j=1

Gam(λkj ; a, b) . (7)

where a > 0 is the shape parameter and b > 0 is
the rate parameter. The graphical model is shown in
Figure 1.

3.2 EM algorithm

The log-posterior can be maximized using the EM
algorithm by iteratively maximizing a lower bound,
called the negative variational free energy (Neal &
Hinton, 1998), or a penalized version as below:

ln p(λ|Y) ≥ 〈ln p(Y, C,Z|λ)〉q + H (q(C,Z)) + ln p(λ)

≡ −F(q, λ) + ln p(λ) , (8)

where 〈·〉q denotes the expectation with respect to
q(C,Z) and H(·) is the (differential) entropy. When the
posterior p(C,Z|Y, λ) is analytically tractable, then we
set q(C,Z) = p(C,Z|Y, λ) so that the bound is exact
and we recover the EM algorithm.

Given the augmented model (3-5), the posterior fac-
torizes: p(C,Z|Y, λ) =

∏
i p(Ci|Yi, λ)p(Zi|Y, λ). The

E-step consists in computing the posterior of the latent
indicator variables for fixed λ.1 This leads to

Ci|Yi, λ ∼ Disc

(
Wi1λYi1
W>i λYi

, . . . ,
WipλYip
W>i λYi

)
. (9)

1Note that p(Zi|Y, λ) is given by (5)

The M-step updates the parameter set λ for fixed pos-
teriors:

λ← arg max
λ
〈ln p(Y, C|λ)〉p(C|Y,λ) + ln p(λ) .

It follows that

λkj =

{
a−1+〈nkj〉
b+

∑
i〈zi〉Wij

if a > 1− 〈nkj〉 ,
0 otherwise.

(10)

where 〈nkj〉 =
∑
i
Wijλkj
W>i λk

and 〈zi〉 =
(
W>i

∑
l λl
)−1

.

For a = 1 and b = 0, the maximum a posteriori es-
timate coincides with the maximum likelihood esti-
mate. If a < 1, one may obtain sparse estimates of
the weights, as the numerator of (10) may become
negative. By changing the value of the hyperparam-
eter a, one may obtain different levels of sparsity. It
could for example be set by cross-validation. Next,
we propose a Bayesian treatment of λ. We first show
that it is straightforward to derive a Gibbs sampler
for (2) given our data augmentation. Subsequently,
we derive a deterministic approximate Bayesian infer-
ence scheme, closely related to the Gibbs sampler.

3.3 Gibbs sampler

Using the same data augmentation, we can define a
Gibbs sampler for sampling from the posterior dis-
tribution p(C,Z, λ|Y). The conditional distribution
p(C|Y, λ) factorizes, such that each Ci can be updated
conditioned on (Yi, λ) using (9). Likewise, the condi-
tional p(Z|Y, λ) factorizes, such that each Zi can be
updated conditioned on λ as the posterior reverts to
the prior (5). Finally, the conditional for each λkj is
of the form p(λkj |Y, C,Z) ∝ p(λkj)eln p(Y,C,Z|λ). Since
the Gamma prior is conjugate to the complete likeli-
hood, the conditional for λkj still follows a Gamma
distribution.

To summarize, the Gibbs sampler is given by

Ci|Yi, λ ∼ Disc

(
Wi1λYi1
W>i λYi

, . . . ,
WipλYip
W>i λYi

)
, (11)

Zi|λ ∼ Exp

(
W>i

K∑
`=1

λ`

)
, (12)

λkj |Y, C,Z ∼ Gam

(
a+ nkj , b+

n∑
i=1

ZiWij

)
. (13)

3.4 Variational approximation

Next, we turn our attention to a deterministic approx-
imation instead of sampling. Variational EM max-
imizes the variational lower bound (Neal & Hinton,



1998), which can be re-written in the form

ln p(Y) ≥ −F(q) = 〈ln p(Y, C,Z, λ)〉q(C)q(Z)q(λ) (14)

+ KL [q(C)q(Z)q(λ)‖p(C,Z, λ|Y))] .

The approximation assumes that the latent variables
and the parameters are independent a posteriori given
the data. The approximate posteriors are given by

q(C) ∝ p(C)e〈ln p(Y,Z,λ|C)〉q(Z)q(λ) , (15)

q(Z) ∝ e〈ln p(Y,C,Z,λ)〉q(C)q(λ) , (16)

q(λ) ∝ p(λ)e〈ln p(Y,C,Z|λ)〉q(C)q(Z) , (17)

In practice, this boils down to cycling through the fol-
lowing updates

ρkji ∝ δYikWije
〈lnλkj〉, 〈zi〉 =

1

W>i
∑
`〈λ`〉

, (18)

akj = a+ 〈nkj〉 , bkj = b+
∑
i

〈zi〉Wij ,(19)

where 〈λkj〉 =
akj
bkj

, 〈lnλkj〉 = ψ(akj) − ln bkj , and

〈nkj〉 =
∑
i ρkji.

The similarity between the variational posteriors
and the Gibbs sampler is striking. For example,
p(λ|Y, C,Z) and q(λ) have the same form, except that
the counts nkj and the latent auxiliary variables Zi are
respectively replaced by their expected values, namely
〈nkj〉 and 〈Zi〉. However, unlike Gibbs sampling, the
convergence of variational inference and the correct-
ness of the algorithm are easy to check by monitoring
the variational lower bound, which monotonically in-
creases at each iteration. Hence, considering both ap-
proaches in parallel is convenient when debugging the
Gibbs sampling code.

3.5 Identifiability and hyperparameters
estimation

The likelihood (2) is invariant to a rescaling of the
λkj ’s. As a consequence, the scaling hyperparameter
b does not have any effect on the prediction, It can be
set to an arbitrary value, e.g. b = 1. Let

Λ =
∑
k

∑
j

λkj , λkj =
λkj
Λ

.

Because of the invariance w.r.t. rescaling, Λ is not
likelihood identifiable and

p(Λ, λ|Y) = p(Λ)p(λ|Y) ,

with p(Λ) = Gam(Λ;Kp, b). It follows that

ΛMAP =
Kp− 1

b
.

To improve the mixing of the Markov chain, an ad-
ditional sampling step can be added by sampling the
total mass Λ from the prior then rescale the parame-
ters λ adequately. While it would improve the mixing
of the Markov chain, this is useless here as we are typ-
ically interested in the prediction with the normalized
weights.

The parameter a can be estimated by cross-validation
in the EM algorithm. For full Bayesian inference, we
assume the following flat improper prior:

p(a) ∝ 1

a

and we add a Metropolis-Hastings sampling step in the
Gibbs sampler. In the variational EM algorithm, a is
estimated by type II Maximum Likelihood:

a← arg max
a

{−F(q, λ) + ln p(a)} .

While this does not lead to a closed form update for a,
the maximization can be performed by a line search.

4 Experiments

In this section we investigate the performances of the
Plackett-Luce regression model, which we will denote
PL-EM, PL-Gibbs or PL-Var depending on the train-
ing algorithm we used (see Section 3).

4.1 Sparsity and regularization paths

First, we compare the sparsity properties of PL-EM,
PL-Gibbs and PL-Var. We consider the iris dataset,
which is available from the UCI repository. As with
`1-penalization in generalized linear regression models,
varying the value of the regularization coefficient a will
enforce the amount of sparsity over the estimated λ of
our model.

Figure 2 shows the regularization path for the coef-
ficients as a function of a, using the MAP estimate
obtained with EM, the posterior mean and median ob-
tained with Gibbs sampling, and the posterior mean
obtained with the variational approximation. Regular-
ization paths report the values of the weights obtained
when training the models with decreasing values of the
hyperparameter a. When considering MAP, we obtain
exactly sparse estimates for sufficiently small values of
a. Similarly to what is observed with the Bayesian
lasso (Park & Casella, 2008) the posterior mean es-
timates obtained by Gibbs sampling are not sparse
but more concentrated around zero as the value of a
decreases. The posterior median leads to sparser esti-
mates, similarly to what is observed with the Bayesian
lasso. Interestingly, the variational approximation
shows similar sparsity as the posterior median, but
converges faster.
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(a) Posterior mean PL-Gibbs.
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(b) Posterior median PL-Gibbs.
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(c) Posterior mean PL-Var.

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

a

N
or

m
al

iz
ed

 c
oe

ffi
ci

en
ts

(d) MAP PL-EM.

Figure 2: Regularization paths for the iris dataset. The paths are the values of the weight parameters as a
function of a. They are obtained by training the models for decreasing values of a. Each colour corresponds to
a different λkj . The coefficient values are normalized to make the scales comparable.

4.2 Toy datasets

Next, we investigate the predictive and computational
performances of the proposed PL models. We compare
to Bayesian multinomial logistic regression (or logit).
More specifically, we consider the Gibbs sampler de-
scribed by Holmes & Held (2006), as the authors pro-
vide detailed pseudo-code on the algorithm, and the
algorithm has no tuning parameter as in the case of
our Gibbs sampler (as opposed to hybrid Monte Carlo,
for example).2 However, we will consider a sparse
extension inspired by the Bayesian lasso of Park &
Casella (2008). The Gibbs sampler is detailed in the
Appendix.

We compare both models/algorithms in terms of com-
putational efficiency and predictive performance on
five datasets from the UCI repository: three poly-
chotomous (Lenses, Wine and Iris) and three binary
(Heart, German and Pima). Summaries of the differ-
ent datasets are given in Table 1.

2To be precise we used the corrected version by van der
Lans (2011); Holmes & Held (2011).

Name d K n
Lenses 4 3 24
Wine 13 3 178
Iris 4 3 150
Heart 13 2 270
German 24 2 1000
Pima 8 2 768

Table 1: Dataset characteristics: covariates (d), cate-
gories (K), and data points (n).

As Holmes & Held (2006), we first conduct 5000 burn
in iterations then the next 5000 iterations are used
to collect posterior samples. Each method was imple-
mented in Matlab on a standard computer. We com-
pare the predictive performance by computing the av-
erage number of misclassifications over 20 replications
(i.e. random splits of the data in training and test set).
Predictions are based on Bayesian averaging over 5000
samples. The results are reported in Table 2. It can be
observed that the proposed Plackett-Luce models are
competitive with sparse Bayesian multinomial logit.



This is confirmed when computing the area under the
receiver operating curve (Figure 3). Gibbs sampling is
in general beneficial compared to the variational ap-
proximation. This can be explained by the fact the
PL-Var tends to provide sparser solutions, hence loos-
ing predictive power.

We used the same experimental setup to investigate
the relative efficiency of PL-Gibbs and sparse Bayesian
multinomial logit. The two methods are compared by
calculating the effective sample size using the posterior
samples for each covariate

ESS =
N

1 + 2
∑
k γ(k)

,

where N = 5000 and
∑
k γ(k) is the sum of the K

monotone sample auto-correlations as estimated by
the initial monotone sequence estimator(Geyer, 1992;
Girolami & Calderhead, 2011). We report the mini-
mum ESS over the set of whole set of covariates. Ta-
ble 3 shows the results for the different datasets, based
on 20 replications. It can be observed that ESS is bet-
ter (higher) for sparse multinomial logit in the binary
cases. However, the running time is also higher, lead-
ing to a relative speed (ratio of time to ESS) of 2 to 3
in favour of sparse logit. However, when the number of
classes increases this trend is drastically changed with
a relative speed of approximately 30 in favour of PL-
Gibbs. As discussed in Section 5, we attribute this to
the fact that, in multinomial logit, the coefficients of
one class are sampled conditioned on the coefficients
of the other classes. Unfortunately, these coefficients
are strongly correlated, resulting in a poor mixing. By
contrast, the PL regression models jointly sample (or
update) the coefficients associated to all the classes.

4.3 Real data examples

First, we consider the colon cancer data3. This is a bi-
nary classification problem consisting of 62 data points
and 2001 features. In general, 50 data points are used
for training and 12 for testing. The average number
of misclassifications is 0.36 ± 0.11 for PL-Gibbs and
0.33± 0.15 for sparse binary logit. Hence, both model
perform similarly. However, sparse binary logit based
on the sampler of Holmes & Held (2006) runs about
500 times slower.

Second, we consider the sushi data (Kamishima, 2003).
Individuals were asked which out of 10 sushis they pre-
ferred. The number of training data points is 4000
and the number of test data points is 1000. The num-
ber of features is 11. We repeated the experiment 5
times. Here, the average number of misclassifications

3http://perso.telecom-paristech.fr/~gfort/GLM/
Programs.html

Dataset Sparse Logit PL-Gibbs PL-Var
Pima .240 (.024) .238 (.015) .239 (.017)
Iris .086 (0.086) .186 (.055) .181 (.057)
Heart .215 (.046) .170 (.023) .223 (.056)
German .262 (.021) .260 (.017) .298 (.015)
Lenses .700 (0.087) .825 (.071) .821 (.073)
Wine .080 (0.038) .048 (.019) .093 (.048)

Table 2: Average number of misclassifications (and
standard deviations) for the different dataset.

Dataset Method Time ESS Time
ESS

Relat.

Speed

Lenses Sp. Logit 26.0 304 0.086 1
PL-Gibbs 8.6 2916 0.003 29

Wine Sp. Logit 184.9 8 22.960 1
PL-Gibbs 15.1 23 0.655 35

Iris Sp. Logit 139.9 8 17.996 1
PL-Gibbs 10.8 14 0.747 24

Heart Sp. Logit 128.8 270 0.477 2
PL-Gibbs 16.0 14 1.185 1

German Sp. Logit 561.1 418 1.342 3
PL-Gibbs 58.0 17 3.426 1

Pima Sp. Logit 409.6 675 0.607 2
PL-Gibbs 23.2 23 1.028 1

Table 3: Efficiency of Sparse multinomial logit and
Plackett-Luce regression on the different datasets.

for Plackett-Luce and sparse multinomial logit were
respectively 656 and 672. While the performances are
poor in both cases, PL-Gibbs performs slightly better
and is much faster to run. Generating 5000 samples
with PL-Gibbs takes a couple of minutes on a stan-
dard quad-core laptop, while it takes approximately 6
hours with the sampler of Holmes & Held (2006).

5 Discussion and extensions

The Gibbs sampler of the Plackett-Luce regression
model only requires to sample from highly standard
distributions (Exponential, Gamma and Discrete) for
which very efficient generators exist. This is to be
compared to Bayesian (multinomial) logistic regres-
sion, where it is required to sample from the truncated
logistic and from other distributions without standard
form, like for example the Kolmogorov-Smirnov, with
rejection sampling (Holmes & Held, 2006). An impor-
tant drawback of recent treatments of multinomial lo-
gistic regression like the one of Holmes & Held (2006)
is that the multinomial outcomes are expressed as a
sequence of binary outcomes. In other words, each
vector of coefficient βk is sampled conditional on the
others.This explains why we observed experimentally

http://perso.telecom-paristech.fr/~gfort/GLM/Programs.html
http://perso.telecom-paristech.fr/~gfort/GLM/Programs.html
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(b) PL-Gibbs
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(c) PL-Var
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(d) Sparse Logit
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(e) PL-Gibbs
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Figure 3: ROC for heart (first row) and pima (second row) datasets.

the relatively poor mixing properties of multinomial
logit when the number of classes is more than 2. In-
ference in multinomial probit models often suffer from
the same weakness (e.g., Albert & Chib, 1993). In the
Gibbs sampler associated to the model we propose, the
parameters λkj are updated jointly and independently
given the latent variables.

Throughout the paper, we arbitrarily used an expo-
nential transformation of the covariates. Additional
flexibility could be introduced into the model by allow-
ing other transformations, which would better charac-
terize the classes. Indeed, one of the limitations of the
proposed generative model is that for each observation
Xi, it is assumed first a feature Ci is selected, and
then its class Yi is drawn given Ci. When features do
not uniquely characterize the classes, it becomes diffi-
cult to distinguish them. Figure 4 shows the decision
boundaries for the iris data set (when only consider-
ing the petal length and width). It could be argued
that these decision boundaries are counter-intuitive,
especially in contrast to the decision boundaries of the
sparse multinomial logit. This is confirmed by the poor
performance of PL regression on the iris data set (see
Table 2). However, by introducing additional transfor-
mation, more natural boundaries can be obtained. For
example, to obtain Figure 4) we considered the addi-
tional features exp(Xi1 + Xi2) and exp(−Xi1 − Xi2).

In general, devicing features of this kind would require
prior knowledge of the problem at hand, which is rarely
the case.

In this paper, we have focused on a Gamma prior for
the weights parameters λkj . Now assume that a =
α/p. When the number of covariates p and hence p?

becomes very large, we have

Λ =

∞∑
j=1

λkj ∼ Gam(α, b) .

Hence, the sequence of normalized ordered weights
λkσ(1)

Λ >
λkσ(2)

Λ > . . . is drawn from the Poisson Dirich-
let distribution of parameter α(Pitman, 1996), which
is the distribution of the ordered weights in a draw
from a Dirichlet process (Teh, 2010). The limit may
give useful hints on the behavior of the model with a
large number of covariates.

The model could also be directly extended by replac-
ing the Gamma prior by the larger family of general-
ized inverse Gaussian distributions, which admits the
Gamma distribution as a special case, and is also a
conjugate prior for the complete-likelihood. Hence,
the full conditional distribution of λkj follows a gen-
eralized inverse Gaussian distribution. The use of this
distribution may offer more flexibility in the modelling
of the tails of the prior for the parameters λkj .
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(a) Sparse Logit.
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(c) PL-Gibbs with additional features.

Figure 4: Decision boundaries for iris dataset (feature 3 and 4).

Finally, it should be noted that the model studied in
this paper has been suggested by Caron & Doucet
(2012). However, no discussion of the algorithms, nor
any study on the fit of this model to data were dis-
cussed there.

A Bayesian sparse multinomial
logistic regression

In this Appendix, we provide a Gibbs sampler for
sparse multinomial logistic regression. The likelihood
is given by (1) and a sparsity-promoting prior is im-
posed on the regression weights βkj , k = 1, . . . ,K − 1
and j = 1, . . . , p. More specifically, we consider the
following hierarchical prior:

βkj |τkj ∼ N (0, τkj) , τkj ∼ Exp

(
θ

2

)
.

This model ensures that marginally βkj follows a
double-exponential (a.k.a. Laplace) distribution of pa-
rameter θ. It is routinely used in Bayesian generalized
linear mode to induce sparsity Genkin et al. (2007);
Park & Casella (2008); Griffin & Brown (2010).We fur-
ther assume a Gamma prior for the hyperparameter θ
for conjugacy reasons (see below (20)):

θ ∼ Gam(c, d) .

As noted by Park & Casella (2008), the improper prior
p(θ) ∝ 1

θ should be avoided in this model as it leads
to an improper posterior for θ.

We can define a Gibbs sampler for the above model
by using auxiliary variables uk, k = 1, . . . ,K − 1 as
defined in (Holmes & Held, 2006). We therefore can
define a Gibbs sampler to sample from the full poste-
rior distribution p(β, u, τ, θ|y). The sampler is defined
as follows at each iteration:

• For k = 1, . . . ,K − 1:

– Sample uk, βk|β−k, u−k, {τkj} as described
in (Holmes & Held, 2006; van der Lans, 2011;
Holmes & Held, 2011)

– For j = 1, . . . , J , sample

1

τkj
∼ iGauss

(√
θ2

β2
kj

, θ2

)
.

• Sample θ as follows:

θ|{τkj} ∼ Gam

Kp+ c,
∑
k

∑
j

τkj
2

+ d

 . (20)

The notation iGauss (a, b) denotes the inverse-
Gaussian distribution with density given by

p(x) =

√
b

2π
x−3/2 exp

(
−b(x− a)2

2a2x

)
.
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