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Abstract

Influence diagrams allow for intuitive and yet
precise description of complex situations in-
volving decision making under uncertainty.
Unfortunately, most of the problems de-
scribed by influence diagrams are hard to
solve. In this paper we discuss the complexity
of approximately solving influence diagrams.
We do not assume no-forgetting or regularity,
which makes the class of problems we address
very broad. Remarkably, we show that when
both the treewidth and the cardinality of the
variables are bounded the problem admits a
fully polynomial-time approximation scheme.

1 INTRODUCTION

Influence diagrams are well-known graphical models
of decision making under uncertainty which allow for
compact and intuitive representation of complex situ-
ations, and relatively fast inference [7–9, 17].

Most of the algorithms for inference with influence di-
agrams require a total ordering over the decisions and
unlimited memory. The first assumption is called reg-
ularity and is graphically equivalent to the existence
of a directed path comprising all decision variables
in the diagram. The second assumption, called no-
forgetting, states that decisions are made in light of all
previously disclosed information. Graphically, it im-
plies that the parent set of a decision node contains all
previous decision nodes and their parents. These con-
ditions allow an optimal solution to be obtained by
dynamic programming [19], but impose an inherent
exponential worst-case complexity, since the output
might include a decision function over exponentially
many values (e.g., a table prescribing a value for the
last decision for each one of the exponentially many
assignments of the other decision variables).

There are two common approaches to avoid the ex-
ponential complexity. The first one is to insert arcs
entering decision variables in a way that makes them
insensitive to the previous decisions, thus decreasing
the size needed to represent its corresponding solu-
tion [8, 14]. This, however, implies observing quan-
tities that were initially deemed unobservable, which
might be undesirable or even unfeasible. The second
approach is to relax no-forgetting and work with a lim-
ited memory, that is, to assume that not all previous
decisions and observations are known and considered
when making a decision [10, 13, 20]. Graphically, it
corresponds to dropping arcs until the maximum size
of a decision function becomes manageable. The lat-
ter approach, which gives rise to limited memory in-
fluence diagrams [10], is additionally justified by situ-
ations where decisions have to be taken independently
of one another, as in team decision analysis [1, 6]; for
such cases, some of the no-forgetting arcs are inher-
ently absent.

Removing arcs from the original graph can make the
problem harder. This essentially occurs because the
problem might no longer be solvable by standard dy-
namic programming approaches. Zhang, Qi, and Poole
[21] and more recently Lauritzen and Nilsson [10] de-
termined sufficient conditions under which even influ-
ence diagrams that violate no-forgetting can be solved
exactly by dynamic programming. Any diagram of
bounded treewidth meeting these conditions can be
thus solved efficiently. As de Campos and Ji [4]
showed, however, even structurally very simple cases
can fail to meet these conditions and be hard to solve.
In fact, we have recently shown that even singly con-
nected diagrams of treewidth equal to two, with deci-
sion variables having no parents and variables taking
on a bounded number of states are NP-hard to solve,
and that the problem is inapproximable if the cardi-
nality of the variables is unbounded [12].

In this paper, we resume our investigation and an-
alyze the impact of the number of value nodes and



variable cardinality on the theoretical complexity of
solving (limited memory) influence diagrams. We do
not assume no-forgetting or regularity. We show that
if the treewidth is bounded, the number of value vari-
ables do not affect the asymptotic complexity. Most
importantly, we show that if the cardinalities of the
variables are also bounded, the problem admits a fully
polynomial-time approximation scheme.

2 INFLUENCE DIAGRAMS

To help introduce the notation and illustrate concepts,
consider the following example of a decision problem
where an agent first needs to select one among the

actions d
(1)
1 , . . . , d

(i)
1 , which causes one of c

(1)
1 , . . . , c

(j)
1

outcomes to obtain with probability P (c1|d1), and gen-
erates a reward of U(c1). Then, without observing the
value c1, a second agent needs to select one among the

actions d
(1)
2 , . . . , d

(k)
2 , which generates one of the out-

comes c
(1)
2 , . . . , c

(`)
2 with probability P (c2|c1, d2) and a

reward of U(c2). The overall utility U(d1, c1, d2, c2)
of the agents’ actions their corresponding outcomes is
given by the sum of the intermediate rewards, that is,
U(d1, c1, d2, c2)=U(c1) + U(c2).

In the language of influence diagrams, the quantities
and events of interest are represented by three distinct
types of variables. Chance variables represent events
on which the decision maker has no control, such as
outcomes of tests or consequences of actions; decision
variables represent the alternatives a decision maker
has at each decision step; finally, value variables are
used to represent immediate rewards. In the exam-
ple, we can represent the decision of the first agent, its
outcome, and the corresponding reward by a decision
variable D1, a chance variable C1 and a value vari-
able V1, respectively. Similarly, we can represent the
second decision, its outcome and the corresponding re-
ward by a decision variable D2, a chance variable C2

and a value variable V2. Regarding the notation, we
denote variables by capital letters and identify them
with the set of values they can assume; generic and
particular values are denoted in lower case. For in-
stance, a generic action of the first agent is represented

as d1 ∈ D1 = {d(1)1 , . . . , d
(i)
1 }, while the corresponding

set of possible rewards (which depend on the outcome

c1) is given by V1 ={U(c
(1)
1 ), . . . , U(c

(j)
1 )}.

The functional dependencies between the variables in
the model can be compactly represented by a directed
acyclic graph (DAG) whose nodes are in a one-to-one
correspondence to the (decision, chance and value)
variables of the problem. For simplicity, we identify
nodes with their associated variables. Hence, we can
talk about the parents Pa(X) of a variable X, its chil-

D1

C1V1

D2

C2 V2

Figure 1: Influence diagram for the problem in the
example.

dren Ch(X), or yet its family Fa(X) = Pa(X) ∪ {X}
of X. The arcs entering decision variables represent
the set of variables whose values will be known by
the time the corresponding decision is made, either
because they are observed at this time (e.g., an out-
come of a previous decision or an action taken by a
different agent) or remembered (e.g., a previous deci-
sion or observation). The problem in the example can
be depicted as a DAG in Figure 1 (as usual, chance,
decision and value variables are represented by ovals,
squares and diamonds, respectively). The existence
of the dashed arc connecting D1 to D2 depends on
whether the decision of the first agent is known by the
second agent at the time the latter acts. It is present
if the second agent knows (and takes into account) the
decision of the first agent, and it is absent otherwise.

An influence diagram is a tuple (C,D,V,G,P,U),
where C, D and V are the sets of chance, decision and
value variables, respectively, G is a DAG over C∪D∪V,
P is a set containing one (conditional) probability dis-
tribution P (C|Pa(C)) per chance variable C in C, and
U is a set containing one reward function U(Pa(V ))
per value variable V . Thus, an influence diagram
specifies both a joint probability distribution P (C|D)=∏
C∈C P (C|Pa(C)) of the outcomes conditional on the

decisions, and a utility U(C,D)=
∑
V ∈V U(Pa(V )) over

outcomes and decisions.

2.1 The Strategy Selection Problem

For any decision variable D ∈ D, a policy is a condi-
tional probability distribution P (D|Pa(D)) prescrib-
ing a (possibly randomized) action for each state of
the parents. We say that a policy P (D|Pa(D)) is pure
if for every assignment to the parents it assigns all
the mass to a single action d ∈ D. A strategy is a
set S = {P (D|Pa(D)) : D ∈ D} containing a policy
for each decision variable. A strategy S induces a(n
unconditional) joint probability distribution over deci-
sions and outcomes by

PS(C,D) = P (C|D)
∏
D∈D

P (D|Pa(D)) ,

and has an associated expected utility given by

ES =
∑
C,D

PS(C,D)U(C,D) .



The primary use of an influence diagram is the strategy
selection problem, which consists in finding a strategy
S∗ that maximizes the expected utility, that is, to find
S∗ such that ES∗ ≥ ES for all S. The value ES∗ is
called the maximum expected utility and is denoted
shortly by MEU. Most algorithms for finding optimal
strategies have complexity at least exponential in the
treewidth of the influence diagram, which is a measure
of its resemblance to a tree and is better formalized by
the notion of tree decomposition.

A tree decomposition of an influence diagram is a tree-
shaped graph where each node is associated to a subset
of the chance and decision variables in the diagram.
The decomposition satisfies the family preserving and
the running intersection properties, namely, that the
family of each decision and chance variable, as well as
the parent set of each value variable, is contained in
at least one set associated to a node of the tree, and
that the graph obtained by dropping nodes that do
not contain any given chance or decision variable is
still a tree. The treewidth of a tree decomposition is
the maximum number of variables associated to a node
minus one. The treewidth of an influence diagram is
the minimum treewidth of a tree decomposition of it.

For a fixed integer k, Bodlaender [2] showed that for
any diagram one can in linear time either obtain a
tree decomposition of treewidth at most k or know
that it does not exist. Hence, for any diagram of
bounded treewidth we can obtain in linear time an op-
timal tree decomposition, that is, a tree decomposition
whose treewidth equals the treewidth of the diagram.
Moreover, any tree decomposition can be turned into
a binary tree decomposition (i.e., one in which each
node has at most three neighbors) of same treewidth
in linear time [18]. Given a tree decomposition T with
m nodes, we denote by X1, . . . ,Xm the sets of vari-
ables associated to nodes 1, . . . ,m, respectively. Thus,
X1 ∪ · · · ∪ Xm=C ∪ D.

Given an influence diagram, we can evaluate the ex-
pected utility of any strategy S in time and space at
most exponential in its treewidth. Hence, if a dia-
gram has bounded treewidth, we can obtain ES for any
strategy S in polynomial time [9, Chapter 23]. Obtain-
ing the optimal strategy in this way is however unfea-
sible for any moderately large problem, as the number
of strategies is too high. In fact, de Campos and Ji [4]
showed that even in diagrams of bounded treewidth
the strategy selection problem is NP-hard. We have
recently [12] strengthened their result by showing that
the problem is already NP-hard in singly connected
diagrams of treewidth equal to two and variables as-
suming at most three values. The result uses a reduc-
tion from the partition problem to a influence diagram
whose underlying graph is a tree and contains a single

value variable. One might then wonder whether allow-
ing more than one value variable affects the difficulty
of the problem. The answer, as the following result
shows, is no.

Theorem 1. For any influence diagram I, there is an
influence diagram I ′ containing a single value variable
such that any strategy S for I is also a strategy for I ′
and obtains the same expected utility. Moreover, the
treewidth of I ′ is at most the treewidth of I plus three.

Proof. Let I=(C,D,V,G,P,U) be an arbitrary influ-
ence diagram and consider, without loss of generality,
a binary tree decomposition T of I such that for every
value variable Vi in V there is a leaf node in the tree
whose associated set of variables is Pa(Vi).

1 Assume
additionally that the tree is rooted at a node r and
that the leaf nodes `1, `2, . . . , `q associated to the sets
Pa(V1),. . . ,Pa(Vq), respectively, where q = |V| denotes
the number of value variables, are ordered in such a
way that they agree with an in-order tree traversal of
the tree decomposition, that is, in a depth-first tree
traversal of T rooted at r, the node `1 precedes `2,
which precedes `3, and so on. Let U and U be upper
and lower bounds, respectively, on the reward func-
tions in U , with U > U .

Now consider a diagram I ′= (C′,D, {V },G′,P ′, {U}),
which contains a single value variable V instead of the
q value variables of I and an augmented set of chance
variables C′ = C ∪ {W1, . . . ,Wq, O1, . . . , Oq}, where
W1, . . . ,Wq, O1, . . . Oq are binary variables. Further-
more, the subgraph of G′ obtained by considering
only nodes in C and D is identical to G with the
chance variables W1, . . . ,Wq replacing the value vari-
ables V1, . . . , Vq, respectively. Also, the variables
O1, . . . , Oq are arranged in a chain such that W1 is
the parent of O1, W2 and O1 are the parents of O2

and so forth, as in Figure 2(b). Each variable Wi, for
i = 1, . . . , q, is associated to a probability distribution

P (Wi|Pa(Vi)) such that P (w
(1)
i |Pa(Vi))=(U(Pa(Vi))−

U)/(U − U). Each variable Oi, i = 1, . . . , q, is associ-
ated to a probability distribution P (Oi|Oi−1,Wi) (we

assume O0 = ∅) such that P (o
(1)
i |o

(1)
i−1, w

(1)
i ) = 1 and

P (o
(1)
i |o

(1)
i−1, w

(2)
i ) = (i − 1)/i and P (o

(1)
i |o

(2)
i−1, w

(1)
i ) =

1/i and P (o
(1)
i |o

(2)
i−1, w

(2)
i ) = 0 (P (o

(1)
1 |w

(1)
1 ) = 1 and

P (o
(1)
1 |w

(2)
1 ) = 0). Finally, the value node V , with Oq

as sole parent, is associated to a utility function U(Oq)

1Any binary tree decomposition can be transformed to
meet this requirement by repeatedly selecting a node i as-
sociated to a superset of the parents of a value variable Vi
not meeting the requirement, and then adding two nodes
j and k such that the children of i become children of j,
and k is a child of i; the node j is associated to the set of
variables associated to i, while k is associated to Pa(Vi).
Note that the treewidth is unaltered by these operations.



V1 V2 · · · Vq

C,D
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W1 W2 Wq

O1 O2 · · · Oq V

C,D
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Figure 2: (a) Influence diagram with multiple value
variables. (b) Its equivalent influence diagram contain-
ing a single variable as used in the proof of Theorem 1.

such that U(o
(1)
q )=qU and U(o

(2)
q )=qU .

To show that the treewidth of I ′ is not greater than
the treewidth of I by more than three, we build a
tree decomposition T ′ for I ′, based on the tree de-
composition T , as follows. First, we take each node
`i of T and include Wi, Oi and Oi−1 in Xi (Oi−1 is
included for i > 1), which is enough to cover their
families and to satisfy the family preserving property.
Note that at this stage T ′ does not satisfy the running
intersection property, because Oi−1 appears in both
`i−1 and `i but not necessarily in every (set associated
to a) node in between. Finally, we walk around the
tree T ′ in a Euler tour tree traversal where each edge
is visited exactly twice, and we include Oi−1 in each
node of T ′ that appears between `i−1 and `i during
the walk.2 By doing so we guarantee that the running
intersection property is also satisfied. Since the Euler
tour tree traversal visits each leaf once and each in-
ternal node at most three times, the procedure inserts
three new variables in the sets associated to `1, . . . , `q
and at most three variables Oi in the sets associated
to non-leaf nodes, and therefore does not increase the
treewidth of the decomposition by more than three.

It remains to show that the diagrams are equivalent
with respect to the expected utility of strategies. Let
S be a strategy for I. Then S is also a strategy for
I ′ (because the two diagrams share the same decision
variables and graph over C,D). First, we need to show
that for i=1, . . . , q it follows that

P (o
(1)
i |C,D) =

1

i

( i∑
j=1

P (w
(1)
j |C,D)

)
,

which we do by induction in i. The basis (i = 1)

follows trivially, because P (o
(1)
1 |w

(1)
1 ) = 1 by defini-

2An Euler tour tree traversal of T rooted at r is a list of
2m−1 symbols produced by calling ET (r), where ET (i) is
a recursive function that takes a node i with left children
j and right children k (if they exist) and prints out i, calls
ET (j) (if j exists), prints out i again, calls ET (k) (if k
exists), and then prints out i once more.

tion, so according to the graph structure we have that

P (o
(1)
1 |C,D) = P (w

(1)
1 |C,D). Now assume by hypoth-

esis of the induction that the above result is valid for
every 1 ≤ i ≤ k < q. Then P (o

(1)
k+1|C,D)

=P (o
(1)
k+1|o

(1)
k , w

(1)
k+1)P (o
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,

which shows that the result holds also for i = k + 1.

We can now show that for any strategy S the as-
sociated expected utility E′S in I ′ equals the asso-
ciated expected utility ES in I. Let C′′ = C′ \
{Oq}. By definition, E′S =

∑
C′,D PS(C′,D)U(C′,D) =∑

C′,D PS(C′,D)U(Oq), which is equal to∑
C′′,D

PS(C′′,D)
(
qUP (o(1)q |C′′,D) + qUP (o(2)q |C′′,D)

)
=qU +

∑
C′′,D

PS(C′′,D)q(U − U)P (o(1)q |C′′,D)

=qU + q(U − U)
∑
C,D

PS(C,D)P (o(1)q |C,D)

=qU + q(U − U)
∑
C,D

PS(C,D)
1

q

q∑
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P (w
(1)
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=qU + q
U − U
q

∑
C,D

PS(C,D)

q∑
i=1

P (w
(1)
i |Pa(Vi))

=qU + (U − U)
∑
C,D

PS(C,D)

q∑
j=1

U(Pa(Vi))− U
U − U

=qU +
U − U
U − U

∑
C,D

PS(C,D)

q∑
i=1

[U(Pa(Vi))− U ]

=qU − qU +
∑
C,D

PS(C,D)

q∑
i=1

U(Pa(Vi)) ,



which is equal to
∑
C,D PS(C,D)U(C,D) = ES .

Cooper [3] showed that in any influence diagram con-
taining a single value variable the (single) utility func-
tion can be re-normalized to take values on the interval
[0, 1] without affecting the optimality of the strategies.
Together with the above result, this allows us, without
loss of generality, to focus exclusively on influence dia-
grams containing a single value variable taking values
on the interval [0, 1].

Under the usual assumptions of complexity theory,
when a problem is NP-hard to solve the best avail-
able options are (i) trying to devise an algorithm that
runs efficiently on many instances but has exponential
worst-case complexity, or (ii) trying to develop an ap-
proximation algorithm that for all instances provides
in polynomial time a solution that is provably within
a certain range of the optimal solution. We have in-
vestigated option (i) in a recent work [11, 12], and
showed empirically that a sophisticate variable elimi-
nation algorithm can, in spite of its exponential worst-
case complexity, solve a large number of problems in
feasible time. In the remainder, we study the theoret-
ical feasibility of option (ii). Given 0 < ε < 1, we say
that a procedure is an ε-approximation algorithm for
the strategy selection problem if for any influence dia-
gram it finds a strategy S such that MEU ≤ (1+ε) ES .
The algorithm is said to be a fully polynomial-time ap-
proximation scheme if it runs in time polynomial in
the input and in 1/ε for any given ε. The following
result implies that without assuming a bounded num-
ber of states per variable approximating the strategy
selection problem in polynomial time by virtually any
reasonable factor is NP-hard, and option (ii) is most
likely unfeasible.

Theorem 2 ([12]). Given a singly connected influence
diagram of bounded treewidth, for any 1 < 1 + ε < 2θ,
there is no polynomial-time ε-approximation algorithm
unless P=NP, where θ is the number of numerical
parameters (i.e., probabilities and rewards) needed to
specify the problem.

The result is obtained by a reduction from the SAT
problem, similarly to the proof of inapproximability of
MAP in Bayesian networks given by Park and Dar-
wiche [16]. According to the above result, algorithms
like SPU [10] or mini-bucket elimination [5], which find
a strategy in polynomial time, cannot guarantee that
the worst-case ratio between the expected utility of
that strategy and the maximum expected utility is
greater than 2−θ, even if the input is constrained to
influence diagrams of bounded treewidth. Since the
factor 2−θ quickly approaches zero as the size of the
problem increases, efficient algorithms eventually pro-
duce very poor solutions. As we show in the rest of

the paper, this is no longer true if we assume that
both the treewidth of the diagram and the cardinality
of the variables are bounded. In this case, we show
constructively the existence of a fully polynomial-time
approximation scheme.

3 FINDING PROVABLY GOOD
STRATEGIES

Our first step in showing the existence of a fully
polynomial-time approximation scheme for the strat-
egy selection problem is to devise an algorithm
that obtains provably good strategies, that is, an ε-
approximation scheme which returns, for any ε > 0, a
strategy S satisfying MEU ≤ (1+ε) ES . The algorithm
(scheme) we devise is a generalization of the MPU al-
gorithm [11, 12] to the case of (provably good) approxi-
mate inference in influence diagrams, and it consists in
propagating sets of probability potentials over a tree
decomposition. The idea behind the propagation of
sets of potentials is that the expected utility of each
strategy can be computed by propagating a (single)
potential over the same tree decomposition, and so the
propagated sets account for the simultaneous evalua-
tion of many different strategies. To be efficient, some
of these computations are halted early on, so that not
every strategy has its expected value computed. The
difficulty is in guaranteeing that within the evaluated
strategies (i.e., those whose expected values were ac-
tually computed) there is at least one which achieves
the desired approximation factor 1 + ε.

Let α be a real value greater than one, and K be a set
of nonnegative functions (called potentials) over a set
of variables X . We say that K′ ⊆ K is a α-covering
of K if for every potential P (X ) in K there is Q(X )
in K′ such that P (X ) ≤ αQ(X ). We also define the
potential 1(X ) which returns one for every assignment
to the variables in X .

For any decision variableD, let PD denote the set of all
pure policies for D. Hence, PD is a set containing |D|γ
distributions P (D|Pa(D)), where |D| is the number
of values D can assume and γ =

∏
X∈Pa(D) |X| is the

number of assignments to its parents (i.e., the number
of different combinations of values the parent variables
can jointly assume).

The procedure in Algorithm 1 takes an influence dia-
gram (which we assume contains a single value vari-
able taking values on [0, 1]), a tree decomposition of
the diagram, and a nonnegative value ε, and com-
putes an expected utility ES induced by some strategy
S such that MEU ≤ (1 + ε)ES , that is, it is an ε-
approximation for computing the maximum expected
utility. To keep things simple for now, let us assume



Algorithm 1 Finding Provably Good Strategies

Require: A positive number ε, an influence diagram
I and a tree decomposition T with m nodes

Ensure: The value E satisfies MEU ≤ (1 + ε) E
1: // INITIALIZATION
2: let α=1 + ε/(2m)
3: let K1, . . . ,Km be singletons containing the poten-

tials 1(X1), . . . , 1(Xm), respectively
4: for each chance variable C do
5: find a node i in T such that Fa(C) ⊆ Xi
6: set Ki ← Combine(Ki, {P (C|Pa(C))})
7: end for
8: for each decision variable D do
9: find a node i in T such that Fa(D) ⊆ Xi

10: set Ki ← Combine(Ki,PD)
11: end for
12: find a node i in T such that Pa(V ) ⊆ Xi
13: set Ki ← Combine(Ki, {U(Pa(V ))})
14: // PROPAGATION
15: select a node r as the root of T
16: label all nodes as inactive
17: while there is an inactive node i do
18: select an inactive node i whose children are all

active
19: set Ai ← Combine(Ki, Cj : j ∈ Ch(i))
20: set Bi ← SumOut(Ai,Xi \ XPa(i))
21: set Ci ← Covering(Bi, α)
22: label i as active
23: end while
24: let E=max{µ : µ ∈ Cr}

this is our goal. We will see later on how to modify
the algorithm to also provide the strategy S, not only
its expected value, and thus devise an ε-approximation
algorithm for the strategy selection problem.

The algorithm is similar in spirit to the computation
of marginal queries in Bayesian networks by junction
trees [8], but differs radically in that it stores and
propagates sets of probability potentials, instead of
storing and propagating single probability potentials.
Like junction-tree algorithms for Bayesian networks,
the algorithm contains an initialization step, where the
sets of probability potentials are assigned to nodes of
the tree decomposition, and a propagation step, where
messages are sent from the leaves towards the root
node. The propagation finishes when the root receives
a message from every child, and obtains a set of val-
ues Cr (since Pa(r) = ∅, the set Br marginalizes out
all variables from each potential P (Xr) in Br, hence
producing real numbers).

The operations Combine and SumOut are analogous
to the multiplication and marginalization of probabil-
ity potentials but operate over sets, that is, the for-

mer returns the set of all potentials obtained by pair-
wise multiplication of the potentials in the sets given
as arguments, whereas the latter returns the set ob-
tained by summing out the variables in the second
argument from every potential in the first argument.
More formally, given a list of sets K1, . . . ,Kn contain-
ing potentials over the sets of variables Y1, . . . ,Yn,
respectively, we define the Combine operation as
Combine(K1, . . . ,Kn) = {P (Y1) · · ·P (Yn) : P (Yi) ∈
Ki, i = 1, . . . , n}; given a set K of potentials over the
set of variables Y and a subset Z ⊆ Y, the SumOut
operation is given by SumOut(K,Z) = {

∑
Z P (Y) :

P (Y) ∈ K}. Finally, the Covering operation returns
an α-covering for the argument, where α=1 + ε/(2m)
is set according to the approximation factor ε and the
number of nodes in the tree m. For the moment, let
us ignore how α-coverings are actually obtained. We
shall get back to this point later on.

The algorithm begins by assigning each probability
distribution associated to a chance variable to a node
of the tree decomposition. If two or more such func-
tions are assigned to the same node i, the result is a
singleton Ki containing their multiplication. The algo-
rithm then assigns policies to nodes in much a similar
way, except that the sets associated to nodes which
have been chosen in the second loop are no longer sin-
gletons. Finally, the utility function is associated to
a node of the tree. For example, if the tree decom-
position contained only a single node with all decision
and chance variables associated to it, the result of the
initialization step would be a single set K1 containing
all joint probability distributions PS(C,D) induced by
strategies S. On the other hand, if for each (decision,
chance and value) variable X there were exactly one
node i in the tree such that Fa(X) ⊆ Xi, then after the
initialization step the set Ki, for i = 1, . . . ,m, would
be equal to the singleton {P (X|Pa(X))}, if the node i
were associated to the family of a chance variable X,
to the singleton {U(Pa(X))}, if i were the node asso-
ciated to the parents of the value variable V , or to the
set of policies PX , if i was associated to the family of
a decision variable X.

The propagation step starts by rooting the tree de-
composition T at an arbitrary node r. This allows us
to organize the neighbors of a node in the tree as the
parent (i.e., the one closer to the root) and the children
(the ones farther from the root), and defines a direc-
tion for the propagation of messages, which consists in
selecting a node i satisfying the condition (which ini-
tially only leaves do) and computing the correspond-
ing sets of potentials Ai, Bi and Ci. The first two
are set analogous to the potentials produced during a
junction-tree propagation in a Bayesian network. The
message set Ci is obtained by removing elements from



Bi in a way that satisfies the α-covering condition (we
will get back to this). Once all nodes have been pro-
cessed (including the root), the algorithm produces a
solution E by seeking the highest value in the set Cr.
To show that this value is indeed the expected utility
of a feasible strategy S such that MEU ≤ (1 + ε) ES ,
we need to introduce some additional notation.

For any node i of the tree decomposition, let T [i] be
the subtree rooted at i, that is, the graph obtained by
removing all nodes which are not descendants of i or
i itself. Let also X = X1 ∪ · · · ∪ Xm = C ∪ D denote
all variables in the tree. We denote by X [i] the set
of all variables associated to the nodes in T [i], that
is, X [i] =

⋃
j∈T [i] Xj (hence Xi ⊆ X [i]). We define a

function σ : X → {1, . . . ,m} that returns for each vari-
able X the node i to which its associated (probability,
policy or utility) potential was assigned in the initial-
ization step. Given a node i, the function U(Pa(V ); i)
returns the utility function U(Pa(V )) if σ(V ) = i and
one otherwise. Finally, let Yi=Xi ∩ XPa(i) be the sep-
arator set of i and Pa(i).

Lemma 3. The value E computed by the procedure
in Algorithm 1 is the expected utility ES associated to
some valid strategy S.

Proof. First we show by induction in the nodes from
the leaves toward the root that for any node i any
potential P (Yi) in Bi or Ci satisfies

P (Yi) =
∑

X [i]\XPa(i)

∏
C:σ(C)∈T [i]

P (C|Pa(C))

∏
D:σ(D)∈T [i]

P (D|Pa(D))
∏
j∈T [i]

U(Pa(V ); j)

for some partial strategy {P (D|Pa(D)) : D ∈
D, σ(D) ∈ T [i]}. Consider a leaf node i. Then the
induction hypothesis is trivially satisfied by applying
the definitions of the Combine and SumOut opera-
tions, and noting that T [i] contains only the node i.
Now consider an internal node i and assume that for
every child j of i the induction hypothesis holds. Then
for any P (Yi) in Bi or in Ci it follows that P (Yi)

=
∑

Xi\XPa(i)

∏
C:σ(C)=i

P (C|Pa(C))
∏

D:σ(D)=i

P (D|Pa(D))

U(Pa(V ); i)
∏

j∈Ch(i)

P (Yj)

=
∑

X [i]\XPa(i)

∏
C:σ(C)∈T [i]

P (C|Pa(C))

∏
D:σ(D)∈T [i]

P (D|Pa(D))
∏
j∈T [i]

U(Pa(V ); j) ,

which satisfies the induction hypothesis. The result of
the lemma is thus obtained by applying the induction

result to the root node r. For any µ ∈ Cr we have that

µ =
∑
X

∏
C

P (C|Pa(C))
∏
D

P (D|Pa(D))U(Pa(V ))

for some strategy S={P (D|Pa(D))}.

Theorem 4. The value E satisfies MEU ≤ (1 + ε) E.

Proof. Let S∗ = {P ∗(D|Pa(D)) : D ∈ D} denote an
optimal strategy. We first show by induction from the
leaves toward the root that for any node i there is a
P (Yi) ∈ Ci such that P ∗(Yi) ≤ αsiP (Yi), where

P ∗(Yi) =
∑

X [i]\XPa(i)

∏
C:σ(C)∈T [i]

P (C|Pa(C))

∏
D:σ(D)∈T [i]

P ∗(D|Pa(D))
∏
j∈T [i]

U(Pa(V ); j) ,

and si is the number of nodes in T [i]. Consider a
leaf node i. Then the induction hypothesis holds since
P ∗(Yi) ∈ Bi by design and by definition of α-covering
there is P (Yi) ∈ Ci such that P ∗(Yi) ≤ αP (Yi). As-
sume the induction holds for all children j of a node i.
By design, there is P (Yi) ∈ Bi such that

P (Yi) =
∑

Xi\XPa(i)

∏
C:σ(C)=i

P (C|Pa(C))

∏
D:σ(D)=i

P ∗(D|Pa(D))U(Pa(V ); i)
∏

j∈Ch(i)

P (Yj) ,

and by using the inductive hypothesis it follows that
P ∗(Yi) ≤ α

∑
j∈Ch(i) sjP (Yi) . And since Ci is an α-

covering of Bi, there is Q(Yi) ∈ Ci such that P (Yi) ≤
αQ(Yi), and thus P ∗(Yi) ≤ α1+

∑
j∈Ch(i) sjQ(Yi) =

αsiQ(Yi). Since by Lemma 3, every µ ∈ Cr corre-
sponds to the expected utility of some strategy S, it
follows from the induction result on r that there is
ES ∈ Cr such that MEU ≤ αm ES , and since E max-
imizes over µ ∈ Cr, we have that MEU ≤ αm E =
(1 + ε/(2m))m E. Finally, it follows from the inequal-
ity (1 + 2x) ≥ (1 + x/k)k, valid for every positive real
x ≤ 1 and positive integer k, that MEU ≤ (1+ε) E.

Recall from Section 2 that for any influence diagram
of bounded treewidth we can obtain a binary tree
decomposition of minimum treewidth in linear time.
Assume, without loss of generality, that such a mini-
mum treewidth binary tree decomposition is given as
input to the approximation algorithm, and let ω be
the treewidth of the influence diagram given as input
and κ be the maximum number of values a decision or
chance variable can assume. The complexity of the al-
gorithm is bounded by the complexity of computing a
potential P (Yi) in a set Bi times the cardinality of the



largest set Bi plus the complexity of the initialization
step and the complexity of the Covering operation.
Computing a P (Yi) requires 2

∏
X∈Xi

|X| multiplica-
tions and

∏
X∈Xi\XPa(i)

|X| additions, and hence takes

O(κω) time, which is polynomial in the cardinality of
the (chance and decision) variables (since ω is assumed
to be bounded by a constant). The complexity of
the initialization step is bounded by the complexity
of combining the sets of policies PD with the sets Ki
for each decision variable. Each decision variable has
at most κκ

ω

policies, which makes this step exponen-
tial in κ. Although it is possible to transform the dia-
gram so that the complexity of the initialization step
becomes polynomially bounded in κ [12, Prop. 7], we
refrain from doing so here because it would make the
algorithm more complicated, and it would not change
the worst-case running time, which we know from The-
orem 2 that cannot be polynomial in κ.

Regarding the cardinality of the sets Ci and the com-
plexity of the Covering operations, in principle, we
would like to be able to implement Covering in way
that it takes polynomial time in its argument and pro-
vides an α-covering that is as small as possible. The
former requirement is easily met by sequentially in-
specting an element P (Yi) in Bi and inserting it into
Ci only if there is no other Q(Yi) in Bi such that
P (Yi) ≤ αQ(Yi). This procedure takes time polyno-
mial in the cardinality of Bi and in |Yi|, but does not
guarantee that the size of the obtained set is bounded,
and in the worst case we might simply output Ci=Bi
at every node i, which would cause Cr to contain as
many as

∏m
i=1 |K|i or O(κκ

mω

) elements. As we show
in the next section, there is a better way of finding
α-coverings (in polynomial time) that guarantees that
the cardinality of the sets Ci remains bounded in the
(size of the influence diagram given as) input (mea-
sured in bits and using a reasonable encoding) if the
cardinality of any variable is bounded.

Before introducing the fully polynomial-time approxi-
mation scheme, there is a minor detail we have post-
poned in the discussion, which is how to modify the
algorithm to provide not only the expected value but
also a strategy that obtains that value. This can
be easily implemented by associating to any poten-
tial generated during the algorithm the policies that
were used either directly or indirectly to produce
it. More specifically, let δ be a dictionary, which
is initialized with δ[1(Xi)] ← {} for i = 1, . . . ,m,
δ[P (C|Pa(C))] ← {} for every C in C, δ[U(Pa(V ))] ←
{}, and δ[P (D|Pa(D))] ← {P (D|Pa(D))} for ev-
ery D in D and P (D|Pa(D)) in PD. We rede-
fine the operations Combine and SumOut to up-
date δ as the computations are done as follows. Let
K be the output of Combine(K1, . . . ,Kn). Then

for every P (Y1) · · ·P (Yn) ∈ K, where P (Y1) ∈
K1, . . . , P (Yn) ∈ Kn, we assign δ[P (Y1) · · ·P (Yn)] ←
δ[P (Y1)] ∪ · · · ∪ δ[P (Yn)]. Likewise, let K be the out-
put of SumOut(K′,Z). Then δ[

∑
Z P (Y)]← δ[P (Y)]

for every
∑
Z P (Y) in K, where P (Y) ∈ K′. The

Covering operation does not need modification since
it returns a subset of its argument. Finally, we obtain
a strategy S such that ES = E from δ[E]. Note that
these additional operations do not change the asymp-
totical running time complexity, and can be efficiently
implemented using pointers to the original functions,
incurring a very small increase in the space complexity.

4 A FULLY POLYNOMIAL-TIME
APPROXIMATION SCHEME

When the maximum cardinality of a variable κ is as-
sumed bounded, the complexity of computing each po-
tential P (Yi) in the procedure in Algorithm 1 as well
as the cardinalities of the sets Ki are bounded by a
constant. Hence, the only difficulty one needs to over-
come in order to devise a fully polynomial-time ap-
proximation scheme out of that procedure is to guar-
antee that the operation Covering returns sets Ci
whose cardinality is polynomially bounded by the in-
put size, where the latter is defined as the number of
bits needed to encode all numerical parameters (i.e.,
probabilities and utilities) as well as the variables and
the underlying graph of the diagram. For definiteness,
we assume the numerical parameters are specified as
rational numbers in a reasonable way. The procedure
in Algorithm 2 partitions the space Y over which the
potentials in the input set K are specified in hyper-
rectangles such that the ratio of any two potentials
falling in the same rectangle is at most α. Thus, we
can provide an α-covering of K by letting K′ be a set
obtained by selecting exactly one element from each
non-empty rectangle.3 Remarkably, we show that the
number of elements in K′ is a polynomial function of
the size of the influence diagram (in bits).

The next result, which is inspired by a similar result
by Papadimitriou and Yannakakis [15], relates the car-
dinality of the output of the Covering procedure in
Algorithm 2 with the size in bits of the input set K.

Lemma 5. Let K be a set of potentials P (Y) whose
range is contained in [0, 1]. Then the set K′ obtained
by the procedure in Algorithm 2 is an α-covering of
K with at most (1 − blogα tc)η elements, where t is
the smallest (strictly) positive number in the range of
a potential in K and η =

∏
X∈Y |X| is the number of

assignments to Y.

3The notation blogα P (Y)c denotes a function F (Y)
such that F (y) = blogα P (y)c if P (y) 6= 0 and F (y) = 0
otherwise, where y is an assignment to Y.



Algorithm 2 Finding A Small α-Covering

Require: A set K of potentials over a set of variables
Y, a value α > 1

Ensure: K′ is an α-covering of K
1: let K′ and L initially be empty sets
2: for each P (Y) in K do
3: if blogα P (Y)c is not in L then
4: insert blogα P (Y)c into L
5: insert P (Y) into K′
6: end if
7: end for

Proof. To see that K′ is an α-covering of K, note
that by design if a potential P (Y) ∈ K is not in
K′ then the latter contains a potential Q(Y) ∈ K
such that blogα P (Y)c = blogαQ(Y)c, which implies
P (Y) ≤ αQ(Y).

Regarding the cardinality of K′, first note that there
are −blogα tc (distinct) integers between t and one (the
minus sign is because t ≤ 1). Now consider a poten-
tial P (Y) ∈ K. By assumption, the range of P (Y) is
contained in [0, 1], and for each assignment y to Y we
have that either P (y) ≥ t or P (y) = 0. Hence, for
each y there are only (1−blogα tc) distinct values the
number blogα P (y)c can assume, and therefore only
(1− blogα tc)η possibilities for blogα P (Y)c.

The following result is an immediate consequence of
the above result which shows that the cardinality of
any set Ci is polylogarithmic in the smallest positive
number being specified by a potential in Bi.
Corollary 6. For i = 1, . . . ,m, the set Ci contains
O([1− blogα tic]κ

ω

) elements, where ti is the smallest
(strictly) positive number in a potential in Bi.

We can now state the main result of this paper.

Theorem 7. There is a fully polynomial-time ap-
proximation scheme for influence diagrams of bounded
treewidth and bounded variable cardinality.

Proof. Assume, without loss of generality, that the in-
fluence diagram given as input contains only one value
variable taking values in [0, 1]. Let t denote the small-
est (strictly) positive numerical parameter in the spec-
ification (i.e., the smallest nonzero probability or util-
ity specified by the diagram), and let b denote the size
of the diagram (in bits). Since the input probabili-
ties and utilities are (by assumption) rational num-
bers, each positive input number is not smaller than
2−b (otherwise we would need more than b bits to en-
code it). Any potential P (Y) in a set Bi is obtained by
multiplying and marginalizing the functions specified
by the diagram, and hence any value P (y) in P (Y) is

a polynomial in the numerical parameters in the in-
put. Moreover, since each variable in the network is
associated to a function over at most κκ

ω

numbers,
the polynomial has degree at most O(nκκ

ω

) ≤ O(n),
where n is the number of variables. In particular,
the smallest positive value ti in a potential in Bi, for
i = 1, . . . ,m, is also a polynomial in the numerical
parameters of the input of degree O(n), and since
these are either zero or some number greater than
or equal to 2−b, it follows that ti ≥ 2−bO(n). Thus,
we have from Corollary 6 that the cardinality of any
set Ci is O([1− blogα 2−bO(n)c]κω

) ≤ O([bn/ ln(α)]κ
ω

).
But since α = 1 + ε/2m, we have from the inequality
ln(1 + x) ≥ x/(1 + x) valid for all x > 0 that

O

([
bn

ln(α)

]κω)
≤O
([
bn

1 + ε
2n

ε
2n

]κω)
≤O
([

bn2

ε

]κω)
.

Hence, for i = 1, . . . ,m the number of elements in any
Ci is polynomial in b, n and 1/ε.

4.1 CONCLUSION

Influence diagrams provide a very expressive language
to describe decision problems under uncertainty, espe-
cially if no-forgetting and regularity are not required.
Finding an optimal strategy for such problems is NP-
hard even in diagrams of bounded treewidth and very
simple structure (e.g., a tree), which makes approx-
imation algorithms an interesting alternative. Here
again the problem shows itself to be hard. Without as-
suming that variables have bounded cardinality, there
is no polynomial-time approximation algorithm unless
P=NP. As we show here, neither restricting the dia-
grams to a single value variable makes the problem
easier to solve or approximate.

In this paper, we give some hope in light of so many
negative results by showing that when the diagram
has bounded treewidth and the variables take on a
bounded number of values, there is a fully polynomial-
time approximation algorithm for the (optimal) strat-
egy selection problem. Although our proof is con-
structive, the algorithm we provide is not expected
to be practical for any reasonably large problem due
to the huge constants hidden in the asymptotic analy-
sis. Nevertheless, the existence of such an scheme shall
motivate researchers to investigate more efficient ap-
proximation algorithms to solve influence diagrams of
low treewidth and low variable cardinality.
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