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Missing data and causal inference

I We encounter missing data for a variety of reasons.
I Data collection, dropouts, censoring, death, etc.

I Causal inference and missing data are analogous in terminology, theory of
identification, and statistical inference.

I Causal inference has been viewed as a missing data problem, where
responses to some (hypothetical) treatment interventions are not observed.

I Missing data has also been viewed as a causal inference problem, where
missingness indicators are treated as intervenable treatments.

I Similar to the use of graphical models in causal inference, we may represent
missing data models graphically.

I The question is whether the encoded assumptions on a missing data graph
are testable or not? If so, how?
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Missing data notation

I X = (X1, . . . ,XK )T : a vector of K random variables

I Given a finite sample from p(X):

I R = (R1, . . . ,RK )T : binary missingness indicators

Rk = 1 if Xk is observed, and Rk = 0 otherwise

I X∗ = (X∗1 , . . . ,X∗K )T : coarsened version of X

X∗k = Xk if Rk = 1, and X∗k = ? otherwise

I Causal interpretation of the tuple (Xk ,Rk ,X∗k ):

I Rk : a treatment variable that can be intervened on

I Xk : a counterfactual – had we intervened and set Rk = 1

I X∗k : a factual variable

I For simplicity of notations, we assume all variables have missing values.
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Missing data models

I A missing data model is a set of distributions defined over variables in
{X ,R,X∗}.

I By chain rule of probability, we can factorize p(X ,R,X∗) as follows:

p(X)︸︷︷︸
target law

× p(R | X)︸ ︷︷ ︸
missingness mechanism︸ ︷︷ ︸

full law p(X ,R)

× p(X∗ | X ,R)︸ ︷︷ ︸
deterministic terms

.

I Consistency assumption: X∗k =
{

Xk if Rk = 1
? if Rk = 0

I Observed data law is p(R,X∗), where counterfactuals are marginalized out.
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A missing data workflow

1. Define the estimand (often done in the absence of missing data).
I A function of target law p(X) or full law p(X ,R).

2. Assume a model that links the counterfactual, factual, and missingness
indicator variables.

I Often using Directed Acyclic Graphs (DAGs) to encode the modeling
assumptions (Mohan et al., 2013; Bhattacharya et al., 2019).

3. Determine whether the estimand is identifiable in the assumed model.
I Focus on identification of the target and full laws (Bhattacharya et al.,

2019; Nabi et al., 2020, 2022).

4. If estimand is identifiable, find the best estimation strategy, and if it is not,
perhaps stronger assumptions are needed (or alternatively obtaining bounds).

5. Conduct sensitivity analysis to reflect on the assumptions.
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However . . .

I The validity of identification and estimation results using such techniques rely
on the independence assumptions encoded by the graph/model holding true.

I In order to test an independence assumption in a missing data model, we
have to examine its implications on the observed data distribution.

I This enables the design of empirical testing procedures from finite (but
partially unobserved) samples.

I Unfortunately, we may not always be able to test all the encoded
restrictions. But sometimes we can!

I The contributions of this work:
I We expand on testable implications of missing data models that resemble

ordinary conditional independencies in the underlying full law, but manifest
as generalized a.k.a. Verma independencies in the observed law.

I We design empirical tests for restrictions in three broad classes of missing
data models that use ideas from weighted likelihood-ratio tests and
odds-ratio parameterizations of joint distributions.
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Introducing missing data DAGs

I Define missing data models via restrictions on the full data distribution that can
be represented by a DAG (similar to causal inference).

I In missing data DAGs: (Mohan et al., 2013; Bhattacharya et al., 2019)

1. Observed and counterfactual variables appear on the same graph

2. There are certain edge restrictions: (marked in red)

Xi

Ri

X∗i

deterministic edges

Xi Xj

Ri

X∗i

Rj

X∗j

Xi Xj

Ri

X∗i

Rj

X∗j

“no interference”

I The “no interference” assumption can be relaxed (Srinivasan et al., 2023).
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Missing data DAG models

I Denote the missing data DAG (m-DAG) defined over V = (X ,R,X∗) via G(V ).

I The statistical model of m-DAG G(V ) is a set of distributions that factorize as:

p(X ,R,X∗) =
∏
Vi∈V

p(Vi | paG(Vi ))

=
∏

Vi ∈ {X ,R}

p(Vi | paG(Vi ))×
∏

X∗
i ∈ X∗

p(X∗i | Xi ,Ri ).

Familiar graphical concepts like d-separation and Markov properties carry over.

I Factorization: probability distribution as a set of small factors.
I Local Markov property: a small but complete set of indep constraints.

Vi ⊥⊥ ndG(Vi ) \ paG(Vi ) | paG(Vi ), ∀Vi ∈ V .

I Global Markov property: all independence constraints in the model.

Given X ,Y ,Z ∈ V : (X ⊥⊥d-sep Y | Z)G(V ) =⇒ (X ⊥⊥ Y | Z)p(V ).

I All three properties are equivalent.
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Examples: m-DAG models

X1 X2

R1 R2

X∗1 X∗2

MCAR

R1 ⊥⊥ R2,X1,X2

R2 ⊥⊥ R1,X1,X2

X1 O

R1

X∗1

MAR

R1 ⊥⊥ X1 | O

X1 X2

R1 R2

X∗1 X∗2

MAR

R1 ⊥⊥ X1,X2

R2 ⊥⊥ X1,X2 | R1,X∗1

X1 X2

R1 R2

X∗1 X∗2
Permutation (Robins, 1997)

R1 ⊥⊥ X1 | X2

R2 ⊥⊥ X1,X2 | R1,X∗1

X1 X2

R1 R2

X∗1 X∗2
Block-conditional (Zhou et al., 2010)

R1 ⊥⊥ X1,X2

R2 ⊥⊥ X1 | R1,X1

X1 X2

R1 R2

X∗1 X∗2
Block-parallel (Mohan et al., 2013)

R1 ⊥⊥ R2,X1 | X2

R2 ⊥⊥ R1,X2 | X1
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Nonparametric saturation

I Similar to DAGs, absence of an edge in a m-DAG implies a restriction of the
form A ⊥⊥ B | C . Is this restriction testable from observed finite samples?

I If all the restrictions encoded in a m-DAG are provably untestable (i.e., no
restriction on the observed data law), the full law Markov relative to the
m-DAG is said to be non-parametric saturated (NPS) (Robins, 1997).

I Permutation model is NPS (has a DAG representation) (Robins, 1997).
I No self-censoring model is NPS (has a chain graph representation)

(Shpitser, 2016; Sadinle and Reiter, 2017; Malinsky et al., 2021).

I Submodels of a non-parametric saturated model can still be tested using
partially observed data.
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Example: Permutation model is NPS

I Given an ordering on variables in X , indexed by k ∈ {1, . . . ,K}, each missingness
indicator Rk is independent of the current and past variables in X given the past
observed variables in R,X∗ and future variables in X , i.e.,

Rk ⊥⊥ X≺k+1 | R≺k ,X∗≺k ,X�k , ∀k (permutation model)

where V≺k = {V1, . . . ,Vk−1},V�k = {Vk+1, . . . ,VK} (Robins, 1997).

I The permutation model is an example of a non-parametric saturated model.
(This claim can be proved by deriving tangent space of the observed data law,
and realizing it includes all observed data distributions without any restrictions.)

I Example of m-DAG representation for the permutation model with two variables:
X1 X2

R1 R2

X∗1 X∗2

R1 ⊥⊥ X1 | X2, R2 ⊥⊥ X1, X2 | R1, X ∗1

I Submodels of the permutation model can still be tested:
Introducing sequential MAR and sequential MNAR as submodels.
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Sequential MAR model

I We call a missing data model a sequential MAR model if under an ordering
≺ that indexes variables by k = 1, . . . ,K , the following restrictions hold:

Rk ⊥⊥ X | R≺k ,X∗≺k , ∀k (sequential-MAR)

I In addition to the assumptions in the permutation model, the sequential
MAR model assumes the following independence restrictions:

Rk ⊥⊥ X�k | R≺k ,X∗≺k

I Example of a sequential MAR model (without the dashed edges) along with
its permutation supermodel (with the dashed edges) with three substantive
variables:

X1 X2 X3

R1 R2 R3

X∗1 X∗2 X∗3
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Prior developments on testable implications do not suffice

I Example of a MAR model (left) as a submodel of permutation model (right)

X1 X2

R1 R2

X∗1 X∗2

X1 X2

R1 R2

X∗1 X∗2

I We want to test the absence of X2 → R1 edge, i.e., whether R1 ⊥⊥ X2?

I Let’s apply the criterion proposed by Mohan and Pearl (2014):
I A d-separation condition displayed in a m-DAG is testable if the missingness

indicators associated with all partially observed variables involved in the
relation are either already present in the separating set, or can be added to
the set without spoiling the separation.

I R1 ⊥⊥d-sep X2 | R2 does not hold due to the open collider R2 on the path
R1 → R2 ← X∗1 ← X1 → X2.

I Therefore, one might conclude that R1 ⊥⊥ X2 is not testable.
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Testable implications using pattern-mixture parameterization

X1 X2

R1 R2

X∗1 X∗2

X1 X2

R1 R2

X∗1 X∗2

I Assume momentarily that X consists of binary variables.
I Let us compare number of parameters in the full law using m-DAG factorization

against the saturated observed data law using pattern-mixture factorization
(Rubin, 1976); p(R,X∗) = p(R)× p(X∗ | R).

I The full law p(R,X) requires 7 parameters:
3 for p(X), 1 for p(R1), and 3 for p(R2|R1,X∗1 ).

I Saturated observed law requires 8 parameters:
3 for p(R) and 5 for p(X∗|R).

I Thus, R1 ⊥⊥ X2 must impose constraints on the observed data law, at least in the
discrete case. This contradicts the earlier conclusions.

I Contradictions are expected as the criterion of Mohan and Pearl is sufficient
but not necessary for testability.
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Testing the sequential MAR model via Verma constraints

X1 X2

R1 R2

X∗1 X∗2

(a)

X1 X2

R1 R2

X∗1 X∗2

(b)

X1 X2 = X∗2

R1 R2 = 1

X∗1

(c)

I The issue with testing R1 ⊥⊥ X2 was the collider at R2, R1 → R2 ← X∗1
I From a causal perspective, removal of these edges corresponds to an

intervention on R2, resulting in the m-conditional DAG in (c).

I Following Pearl’s do-calculus notation, the corresponding intervention
distribution is denoted by p(X ,R1,X∗ | do(R2 = 1)), or p(. | do(R2 = 1)).

I This intervention distribution is obtainable via truncation of the full law
factorization by dropping the propensity score of R2, p(R2 | paG(R2)), i.e.,

p(. | do(R2 = 1)) = p(X ,R,X∗)
p(R2 | R1,X∗1 )

∣∣∣
R2=1

.
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Empirical tests via weighted likelihood ratio tests

X1 X2

R1 R2

X ∗1 X ∗2

MAR model

X1 X2

R1 R2

X ∗1 X ∗2

Permutation supermodel

X1 X2 = X ∗2

R1 R2 = 1

X ∗1

Intervention on R2

I Is R1 ⊥⊥ X2?

I Fit models for p(R1) and p(R1 | X2) and compare the goodness of fits.

I How to estimate parameters in p(R1 | X2;αr1)?

I Assume Pn[U(.;αr1)] = 0 with respect to the full law.
I Use a weighted estimating equation to estimate αr1 in p(R1 | X2;αr1)

Pn

[ R2

p(R2 | R1,X∗1 ; α̂r2)
× U(.;αr1)

]
= 0,
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Sequential MAR model with K = 3

X1 X2 X3

R1 R2 R3

X∗1 X∗2 X∗3

(a)

X1 X2 = X∗2 X3 = X∗3

R1 R2 = 1 R3 = 1

X∗1

(b)

X1 X2 X3 = X∗3

R1 R2 R3 = 1

X∗1 X∗2

(c)

I Null: Mo is the statistical model of the m-DAG in (a) without dashed edges

I Alternative: Ma is the permutation supermodel in (a) with the dashed edges

I Objective: testing absence of the dashed edges which imply

R1 ⊥⊥ X2,X3 and R2 ⊥⊥ X3 | R1,X∗1 .

I Solution: translate these into independence restrictions in

p(. | do(R2 = 1,R3 = 1)) and p(. | do(R3 = 1)).
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Sequential MAR model with K = 3 ctd.

X1 X2 X3

R1 R2 R3

X∗1 X∗2 X∗3

X1 X2 = X∗2 X3 = X∗3

R1 R2 = 1 R3 = 1

X∗1

X1 X2 X3 = X∗3

R1 R2 R3 = 1

X∗1 X∗2

I E.g., testing R1 ⊥⊥ X2,X3 entails fitting the parameters in p(R1 | X2,X3;βr1) using:

Pn

[ R2 × R3

p(R2 | paG(R2); β̂r2)× p(R3 | paG(R3); β̂r3)
× U(βr1)

]
= 0,

I Estimating βr3 is straightforward since p(R3 | paG(R3)) = p(R3 | R1,R2,X∗1 ,X∗2 ) is
a direct function of observed data.

I Estimating βr2 is more involved since p(R2 | paG(R2)) = p(R2 | R1,X∗1 ,X3) is not
a direct function of observed data.

I We can estimate βr2 using an intervention distribution where R3 is
intervened on, i.e., p(X ,R,X∗)/p(R3 | paG(R3)) evaluated at R3 = 1. This
means using p(R3 | paG(R3); β̂r3) as inverse weights to estimate βr2 .
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Generalization to K > 3

I In the general case with K variables, it is better to carry out tests backwards by
first testing restrictions involving RK−1, moving to RK−2, and so on.

I If the current test succeeds, the corresponding model for the null can be re-used
to produce weights for future estimating equations; if the test fails, then the
assumptions of sequential MAR does not hold.

I As we proceed with the tests, we
are restricted to fewer and fewer
samples which impacts the power
of our tests.

I A future direction is developing
semiparametric methods to use
data more efficiently.

I The general theory and the
corresponding algorithm are
described in the paper.
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Sequential MNAR model

I We call a missing data model a sequential MNAR model if under an ordering
≺ that indexes variables by k = 1, . . . ,K , the following restrictions hold:

Rk ⊥⊥ X≺k+1,X∗≺k | R≺k ,X�k , ∀k (sequential-MNAR)

I In addition to the assumptions in the permutation model, the sequential
MNAR model assumes the following independence restrictions:

Rk ⊥⊥ X∗≺k | R≺k ,X�k , ∀k

I Example of a sequential MNAR model (without the dashed edges) along with
its permutation supermodel (with the dashed edges) with three substantive
variables:

X1 X2 X3

R1 R2 R3

X∗1 X∗2 X∗3

I The additional restrictions can be tested using similar ideas as in the
sequential MAR model (discussed in detail in the paper.)
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Example: No self-censoring model is NPS

I No variable directly causes its own missingness status, i.e.,

Rk ⊥⊥ Xk | R−k ,X−k , ∀k (no self-censoring)

where V−k = V \ Vk (Shpitser, 2016; Sadinle and Reiter, 2017).

I The no self-censoring model is an example of a non-parametric saturated model.
(see Malinsky et al. (2021) for more details.)

I Example of m-DAG representation for the no self-censoring model with two
substantive variables:

X1 X2

R1 R2

X∗1 X∗2

R1 ⊥⊥ X1 | R2, X2, R2 ⊥⊥ X2 | R1, X1

I Submodels of the no self-censoring model can still be tested:
Introducing block-parallel MNAR as submodels.
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Block-parallel MNAR model

I We call a missing data model a block-parallel MNAR model if the following
restrictions hold:

Rk ⊥⊥ R−k ,Xk | X−k , ∀k (block-parallel MNAR)

I In addition to the assumptions in the no self-censoring model, the
block-parallel MNAR model assumes the following independence restrictions:

Rk ⊥⊥ Rj | X , ∀j 6= k.

I Example of a block-parallel MNAR model (without the dashed edges) along
with its no self-censoring supermodel (with the dashed edges) with three
substantive variables:

X1 X2 X3

R1 R2 R3

X∗1 X∗2 X∗3
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Testing the block-parallel model via odds ratio parameterization

X1 X2

R1 R2

X ∗1 X ∗2

MNAR model

X1 X2

R1 R2

X ∗1 X ∗2

No self-censoring supermodel

I Is R1 ⊥⊥ R2 | X?

I This translates into whether or not OR(R1 = 0,R2 = 0 | X) = 1?

I The odds ratio parameter can be estimated using the estimating equation
Pn
[
U(.;OR)

]
= 0, where

U(.;OR) = R1 × R2

p(R = 1 | X) × p(R = 0 | X)− (1− R1)(1− R2), and

p(R = 1 | X) = p(R1 = 1 | R2 = 1, X2)× p(R2 = 1 | R1 = 1, X1),
p(R = 0 | X) = p(R1 = 0 | R2 = 1, X2)× p(R2 = 0 | R1 = 1, X1)× OR(R1 = R2 = 0 | X).

I The generalization to K > 2 is discussed in the paper.
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The role of supermodels in designing empirical tests

The (sequential) MNAR model (a) was treated as a submodel of the permutation
model (b), but it can also be treated as a submodel of:

I The saturated no self-censoring model (c), or

I The so-called criss-cross model (d).

X1 X2

R1 R2

X∗1 X∗2

(a)

X1 X2

R1 R2

X∗1 X∗2

(b)

X1 X2

R1 R2

X∗1 X∗2

(c)

X1 X2

R1 R2

X∗1 X∗2

(d)

I However, the test statistic is not identifiable under the criss-cross supermodel.

I Neither the target law nor the full law is identified in (d); counterexamples
are provided in the paper.
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Extensions to settings with unmeasured confounders
I What if there exist variables that are not just missing but completely unobserved?
I Summarize the observed data distribution with a missing data acyclic directed

mixed graph (ADMG).

X1 X2

R1 R2

U3
X∗1 X∗2

U1

U2

(a) G(V ,U)

X1 X2

R1 R2

X∗1 X∗2

(b) G(V )

X1: smoking, X2: lung cancer
U1: genotypic traits, U2: occupation, U3: ethnicity

I Generalization of the results to m-ADMGs is simple as long as the full law
remains identified.

I There exist sound and complete identification results for full laws
representable via m-DAGs or m-ADMGs (Nabi et al., 2020).
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Summary

I Designing empirical tests for restrictions in three broad classes of missing data
models via weighted likelihood-ratio tests and odds-ratio parameterizations.

X1 X2

R1 R2

X ∗1 X ∗2

Permuation-model
(Robins; 1997)

X1 X2

R1 R2

X ∗1 X ∗2

MNAR submodel

X1 X2

R1 R2

X ∗1 X ∗2

MAR submodel

X1 X2

R1 R2

X ∗1 X ∗2

No self-censoring
(Malinsky et al., 2021)

X1 X2

R1 R2

X ∗1 X ∗2

MNAR submodel

X1 X2

R1 R2

X ∗1 X ∗2

Criss-cross model
Neither full nor target law is ID.

(Nabi and Bhattacharya, 2023)

(Guo et al., 2023)

I Developing estimation methods that would complement our proposals by allowing
a more efficient use of data in performing goodness-of-fit tests.

I Designing data-driven structure learning approaches.
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Appendix: Permutation model

How do models differ in telling a story about the missingness mechanisms?

I X1: true smoking status of an individual.

I X2: diagnosis of bronchitis.

I R1,R2: encode whether these variables have been measured or not.

I X2 → R1
A doctor inquires about the patient’s
smoking status on a suspected diagnosis of
bronchitis before administering the test.

I R1 → R2 ← X∗1
Whether the true bronchitis status is
measured via a diagnostic test depends on
the doctor’s awareness of the individual’s
smoking status (R1) and their observed value
of smoking (X∗1 ).

(smoking) X1 X2 (bronchitis)

R1 R2

X∗1 X∗2

MNAR: permutation

(Robins, 1997)



Appendix: Block-conditional model

How do models differ in telling a story about the missingness mechanisms?

I X1: true smoking status of an individual.

I X2: diagnosis of bronchitis.

I R1,R2: encode whether these variables have been measured or not.

I R1 has no parent
Inquiry into smoking status is random (e.g.,
as in random screening programs or surveys).

I R1 → R2 ← X1
Administration of a diagnostic test depends
on the inquiry into smoking, as well as the
potentially unobserved past history of
smoking.

(smoking) X1 X2 (bronchitis)

R1 R2

X∗1 X∗2

MNAR: block-conditional

(Zhou et al., 2010)



Appendix: Block-parallel model

How do models differ in telling a story about the missingness mechanisms?

I X1: true smoking status of an individual.

I X2: diagnosis of bronchitis.

I R1,R2: encode whether these variables have been measured or not.

I R1 ← X2
Inquiry into smoking status depends on a
suspected diagnosis of bronchitis.

I R2 ← X1
Administration of the diagnostic test
depends on the suspected smoking status of
an individual.

(smoking) X1 X2 (bronchitis)

R1 R2

X∗1 X∗2

MNAR: block-parallel

(Mohan et al., 2013)



Appendix: Simulations

I Results on testing sequential MAR models.

I (top row) The sequential MAR model captures the true underlying
missingness mechanism.

I (bottom row) The assumptions of sequential MAR model are violated.
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