
Establishing Markov equivalence in 
cyclic directed graphs

Tom Claassen & Joris M. Mooij
Radboud University Nijmegen, University of Amsterdam

39th Conference on UAI
Pittsburgh, 2 August, 2023



1 Causal discovery and cyclic models

Outline

2 The Cyclic Equivalence Theorem (CET)

An ancestral perspective on the CET3

4 Establishing Markov equivalence and beyond



Many important research questions are rooted in causality

benefits of exercise and healthy nutrition human activity and climate change

racial and gender bias in AI Covid vaccine efficacy
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predator-prey interaction cell microbiology processes

economic growth cycles methane climate feedback

Meanwhile, in the real world …



The rabbit and the fox

periodic solution over time

rabbit :

fox:

Lotka-Volterra equations

CYCLIC CAUSAL DISCOVERY

A different, non-linear SCM with the same structure could correspond to:

X = ✏X (⇠ N (0, 1))

Y = ✏Y (⇠ N (0, 1))

Z = W ⇤ Y + ✏Z (⇠ N (0, 1))

W = Z ⇤X + ✏W (⇠ N (0, 1))

In this system, the only independence relation that holds in p(V) is: X ??p Y |�. In particular, it

is not necessarily true that X ??pY |ZW . It implies that for cyclic models in general d-separation

is no longer sufficient, and we have to resort to alternatives such as �-separation.

This is an important difference between linear and non-linear SCMs, that only applies to non-

recursive models: in acyclic models there is no difference in implied independence relations for

different functional forms of the structural equations.

Note that for the reconstruction process (the stated goal of our article) using an independence

oracle we have no a priori means of deciding which of the two applies, and so we have to take

both into account. It will however turn out to be sometimes possible to recognize this from the

independencies observed.

4.1 Extra Equations / models for prezzi

Typical predator-prey model:
dx

dt
= ↵x� �xy

dy

dt
= �xy � �y

dx

dt
= f(x, F )� �g(x, y)

dy

dt
= �g(x, y)� h(y,H)

4.2 DAGs with self-loops as intermediate between cyclic and acyclic models

Note that an SCM corresponding to a DAG is equivalent to one where each variable has a self-loop
Xi ! Xi of strength ↵ii 2 (0, 1), and all incoming edges (other parameters in row i of the structural
coefficient matrix A) are multiplied by (1�↵ii). This can now be thought of as a dynamic system,
where given some random initial values for all the Xi, the system gradually moves to the stationary
solution (I �A)�1 · ✏, with speed ‘proportional’ to 1/max(↵ii), i.e. instantaneous for very weak
self loops, and more ‘viscous’ when there are self loops close to 1.

4.3 Cyclic equivalence class

One additional aspect to take into account is that different structural SCMs can be indistinguishable
in terms of observed in/dependencies.

Definition 8 The equivalence class P of an SCM M is the probabilistic equivalence class of an

SCM M0
with underlying graph G, .... (dah)

17



Static equilibrium solutions
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observed equilibrium

with `damping’: equilibration towards unique, static solution
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Linear/discrete cyclic causal models

linear cyclic Gaussian SCM

TSJ

4. STRUCTURAL CAUSAL MODELS

Graphical causal models can be represented in the form of so-called structural equation models
(SEMs). When the equations represent causal mechanisms, then it is also called a structural causal
model (SCM). We will use the terms interchangeably here.

Definition 7 A structural causal model (SCM) is a tuple M := hX, ✏, f ,P(✏)i, with X = {X1, .., Xn}
a finite set of endogenous variables, ✏ = {✏1, .., ✏n} a corresponding set of exogenous variables,

P(✏) a probability measure on ✏ (representing externally induced intrinsic noise on each variable),

and f a set of functions, the so-called structural equations for each of the variables Xi 2 X, of the

form

Xi = fi

⇣
X

(i)
, ✏i

⌘
(1)

with X
(i) ✓ X \Xi.

A structural causal model corresponds to a structural equation model (SEM) where the structural
equations represent underlying causal mechanisms.

If there exists an ordering such that 8i : X(i) ✓ {X1, ..., Xi�1}, then the SCM is recursive

(acylic), and the structure of the SCM can be represented in the form of a unique implied directed
acyclic graph G, such that 8Xi 2 V : Xi = fi (Pa(Xi)G , ✏i). If not, then the SCM is non-recursive,
and may contain cycles and/or self-cycles. If the error terms are independent, then this corresponds
to no unobserved confounders, and the corresponding graph is a directed graph. Error terms that are
not independent correspond to one or more unobserved confounders, indicated in the corresponding
DMG by a bidirected edge. Note: this does not imply distributional equivalence (see mDAGs,
Evans(2016)), but does imply Markpv equivalence with the actual underlying structure.

In the rest of this article we will assume that our causal systems correspond to an underlying
cyclic or acyclic SCM, in the sense that the joint probability distribution P over X satisfies the
structural equation property (?), which implies that for the given structure there exists some instan-
tiation of f and P(✏) such that the joint distribution P obtains. (factors according to the graph? ...)
Note again that not all endogenous variables in the system need to be observed in the data (V ✓ X):
we only assume that there is some underlying SCM for which the structural equation property holds
w.r.t. the marginal over the observed variables in the model.

Example 1 Figure ??(a) shows a cyclic SCM over four variables. An example instantiation of the

corresponding structural equations is:

X = ✏X (⇠ N (0, 1))

Y = ✏Y (⇠ N (0, 1))

Z = ↵ZWW + ↵ZY Y + ✏Z (⇠ N (0, 1))

W = ↵WZZ + ↵WXX + ✏W (⇠ N (0, 1))

In this system, the only two independence relations that hold in p(V) are: X ??p Y |�, and

X ??p Y |ZW . This corresponds to the fact that d-separation still applies for this type of model.

Note however that there is no acyclic model that could imply just these two independence relations.
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matching causal graph G

W Z

X Y

eYeX

eZeW

Key implication
• directed global Markov property still holds [Spirtes,1994; Bongers et al.,2021]

• standard d-separation still applies …
• … but leads to a few extra quirks relative to acyclic models [Richardson,1996]

Goal
• discovery aims for Markov equivalence class (cyclic PAG)



Key cyclic terminology [Richardson,1996/97]

• A and D are virtually adjacent if they are not adjacent, but have a common 
child C in a cycle with A and/or D,

• an itinerary is a path over real and/or virtual edges (e.g. <A,C,B>)
• an itinerary is uncovered if no two nodes on the path are (virtually) 

adjacent, other than the neighbours along the path

• an itinerary <A,C,D> is a conductor if C is ancestor of A or D, otherwise it is 
a nonconductor,

• a nonconductor <A,C,B> is perfect if C is a descendant of a common child 
of A and B, otherwise it is imperfect

C D

A B

C D

A B

cyclic graph with two virtual edges



Key cyclic terminology [Richardson,1996/97]

• two triples <A,B,C> and <X,Y,Z> are mutually exclusive (m.e.) conductors 
w.r.t. an uncovered itinerary <A,B,C,..,X,Y,Z> if each consecutive triple 
along the itinerary is a conductor, all nodes are ancestor of each other but 
not of A or Z, and no two nodes are (virtually) adjacent, except along the 
itinerary itself

cyclic graph where <A,D,F> and <D,F,B> are 
m.e. conductors w.r.t. uncovered itinerary <A,D,F,B>

DC E F

A B

DC E F

A B



Cyclic Equivalence Theorem [Richardson,1997]

Two directed graphs G1 and G2 are d-separation equivalent iff they have:
i. the same (virtual) adjacencies,
ii. the same unshielded conductors,
iii. the same perfect nonconductors, (= ‘v-structures’)
iv. the same m.e. conductors w.r.t. some uncovered itinerary,
v. if <A,X,B> and <A,Y,B> are unshielded imperfect nonconductors in G1 and 

G2, then X is ancestor of Y in G1 iff X is ancestor of Y in G2,
vi. if <A,B,C> and <X,Y,Z> are m.e. conductors and <A,M,Z> is an 

unshielded imperfect nonconductor in G1 and G2, then M is a descendant of 
B in G1 iff M is a descendant of B in G2.

Example CET rule v : invariant edge D->E between two cycles C-D and E-F.

DC E F

A B



Cyclic partial ancestral graphs (CPAGs)

• compact graphical representation to uniquely identify Markov equivalence 
class {G} for cyclic directed graph G, similar to standard (acyclic) PAGs

CPAG
• edge between each pair of (virtually) adjacent nodes,
• arrowhead/tail marks to indicate invariant (non)ancestors, circle marks for 

noncommitted edge marks,
• dashed-underlined A → B ← C iff <A,B,C> is an imperfect nonconductor.

C D

A B

C D

A B

C D

A B

Markov equivalent cyclic graphs CPAG with dashed underlined triples
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Reflecting on the CET - CPAG

• the famous Cyclic Causal Discovery (CCD) algorithm [Richardson,1996] was 
an efficient CET-based implementation to reconstruct a CPAG from data,

• an analogous version based on d-separation could be used to establish 
Markov equivalence between cyclic graphs,

• yet, despite their central role in the CET, the dreaded ‘m.e. conductors on 
an uncovered itinerary’ never need to be recorded explicitly in the CPAG …

Motivating question
• does this mean we can simplify the CET? (spoiler: yes!)



Introducing the CMAG

Key idea (based on the familiar DAG-MAG-PAG trilogy from acyclic graphs):
• introduce the CMAG as intermediate ancestral representation,
• rephrase CET in terms of invariant elements in Markov equivalent CMAGs

The cyclic maximal ancestral graph (CMAG) M for directed graph G has:
• an edge between every pair of (virtually) adjacent nodes in G,
• a tail mark X ⎯⎯* Y iff X is an ancestor of Y in G,

• arrowhead X ←* Y iff X is not an ancestor of Y,
• dashed-underlined A → E ← B for v-structures in M with a virtual edge in G.

DC E F

A B

DC E F

A B

directed cyclic graph cyclic MAG

‘virtual v-structure’



Two sides of the same coin

DC E F

A B

virtual v-structure CMAG with u-structure <A,D,F,B>

DC E F

A B

What about the m.e. conductors?
• In a CMAG M, quadruple <X,Z,Z’,Y> is a u-structure, iff there is an 

uncovered path X → Z ⎯ .. ⎯ Z’ ← Y in M. 
• (Lemma 1) every u-structure in M matches a pair of m.e. conductors w.r.t. 

an uncovered itinerary in G and v.v.,

• comparing with virtual v-structures, both can be seen as arcs into a cycle

Merge into one!
A triple <X,Z,Y> is a virtual collider triple iff it is a virtual v-structure, or it is 
part of a u-structure <X,Z,Z’,Y> or <X,Z’,Z,Y>. 



Ancestral Cyclic Equivalence Theorem 

Two CMAGs M1 and M2 are d-separation equivalent iff they have:
i. the same skeleton,
ii. the same v-structures,
iii. the same virtual collider triples,
iv. if <A,X,B> and <A,Y,B> are virtual collider triples in M1 and M2, then X is 

ancestor of Y in M1 iff X is ancestor of Y in M2.

Þ Basis for efficient procedure to establish Markov equivalence
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Establishing Markov equivalence

Ancestral CET suggests straightforward Cyclic-Graph-to-CPAG procedure:
• convert directed graph G into CMAG M
• copy skeleton and v-structures in M to CPAG P
• use CMAG M to identify and orient virtual collider triples in CPAG P
• orient remaining edges between cycles via CET-rule (iv)
• compare resulting CPAGs

No need for d-separation tests!
• computational complexity scales as O(N2*d3) 
• worst case O(N5) compared to previous O(N7)
• avg. scaling much better than worst case (for both versions)



Example: Cyclic-Graph-to-CPAG procedure

D

C

E F

A B

DC E F

A B

D

C

E F

A B

two directed cyclic graphs

(maximally informative) CPAG

DC E F

A B

D

C

E F

A B

corresponding CMAGs



Experimental results – computational complexity



Conclusions & future work

New ancestral perspective on the CET proved very useful:
• significantly simplified CET characterization 
• helpful intermediate CMAG representation
• fast, graphical procedure to establish Markov equivalence

Next steps
• recover maximally informative CPAG,
• merge d-separation (linear/discrete systems) and s-separation (nonlinear 

systems) approaches via the CMAG,

Most promising
• formulation via ‘virtual collider triples’ suggests a natural extension of the 

CET to unobserved confounders, similar to the acyclic case, in the form of 
‘virtual triples with order’ [Ali et al,2009; Claassen&Bucur,2022]

Thank you!  
(poster 504 @11:00)


