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Many important research questions are rooted in causality
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Basic constraint-based causal discovery

Ground truth causal model
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Meanwhile, in the real world ...
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The rabbit and the fox
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Static equilibrium solutions
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Linear/discrete cyclic causal models
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Key implication

e directed global Markov property still holds [Spirtes,1994; Bongers et al.,2021]
e standard d-separation still applies ...

e ... butleads to a few extra quirks relative to acyclic models [Richardson,1996]

Goal
e discovery aims for Markov equivalence class (cyclic PAG)



Key cyclic terminology [richardson,1996/97]

cyclic graph with two virtual edges

e A and D are virtually adjacent if they are not adjacent, but have a common
child C in a cycle with A and/or D,

e an itinerary is a path over real and/or virtual edges (e.g. <A,C,B>)

e anitinerary is uncovered if no two nodes on the path are (virtually)
adjacent, other than the neighbours along the path

e an itinerary <A,C,D> is a conductor if C is ancestor of A or D, otherwise it is
a nonconductor,

e a nonconductor <A,C,B> is perfect if Cis a descendant of a common child
of A and B, otherwise it is imperfect



Key cyclic terminology [richardson,1996/97]

cyclic graph where <A,D,F> and <D,F,B> are
m.e. conductors w.r.t. uncovered itinerary <A,D,F,B>

e two triples <A,B,C> and <X,Y,Z> are mutually exclusive (m.e.) conductors
w.r.t. an uncovered itinerary <A,B,C,..,X,Y,Z> if each consecutive triple
along the itinerary is a conductor, all nodes are ancestor of each other but

not of A or Z, and no two nodes are (virtually) adjacent, except along the
itinerary itself



Cyclic Equivalence Theorem [Rrichardson,1997]

Two directed graphs G; and G are d-separation equivalent iff they have:

i. the same (virtual) adjacencies,

ii. the same unshielded conductors,

iii. the same perfect nonconductors, (= ‘v-structures’)

iv. the same m.e. conductors w.r.t. some uncovered itinerary,

v. if <A,X,B> and <A,Y,B> are unshielded imperfect nhonconductors in G; and
G,, then X is ancestor of Y in G; iff X is ancestor of Y in G,

vi. if <A,B,C> and <X,Y,Z> are m.e. conductors and <A,M,Z> is an
unshielded imperfect nonconductor in G; and G,, then M is a descendant of
B in G, iff M is a descendant of B in G,.

Example CET rule v : invariant edge D->E between two cycles C-D and E-F.



Cyclic partial ancestral graphs (CPAGs)

compact graphical representation to uniquely identify Markov equivalence
class {G} for cyclic directed graph G, similar to standard (acyclic) PAGs

CPAG

edge between each pair of (virtually) adjacent nodes,

arrowhead/tail marks to indicate invariant (non)ancestors, circle marks for
noncommitted edge marks,

dashed-underlined A — B «— C iff <A,B,C> is an imperfect nonconductor.

=\
(C—=) G“'@

Markov equivalent cyclic graphs CPAG with dashed underlined triples
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Reflecting on the CET - CPAG

the famous Cyclic Causal Discovery (CCD) algorithm [Richardson,1996] was
an efficient CET-based implementation to reconstruct a CPAG from data,
an analogous version based on d-separation could be used to establish
Markov equivalence between cyclic graphs,

yet, despite their central role in the CET, the dreaded ‘m.e. conductors on
an uncovered itinerary’ never need to be recorded explicitly in the CPAG ...

Motivating question

does this mean we can simplify the CET? (spoiler: yes!)



Introducing the CMAG

Key idea (based on the familiar DAG-MAG-PAG trilogy from acyclic graphs):

introduce the CMAG as intermediate ancestral representation,
rephrase CET in terms of invariant elements in Markov equivalent CMAGs

The cyclic maximal ancestral graph (CMAG) M for directed graph G has:

an edge between every pair of (virtually) adjacent nodes in G,
a tail mark X —=* Y iff X is an ancestor of Y in G,

arrowhead X <= Y iff X is not an ancestor of Y,

dashed-underlined A — E « B for v-structures in M with a virtual edge in G.

‘virtual v-structure’

| ®

directed cyclic graph cyclic MAG



Two sides of the same coin

What about the m.e. conductors?

e InaCMAG M, quadruple <X,Z,Z'Y> is a u-structure, iff there is an
uncovered path X - Z—-.. - Z" <Y in M,

e (Lemma 1) every u-structure in M matches a pair of m.e. conductors w.r.t.
an uncovered itinerary in G and v.v.,

e comparing with virtual v-structures, both can be seen as arcs into a cycle

Merge into one!

A triple <X,Z,Y> is a virtual collider triple iff it is a virtual v-structure, or it is
part of a u-structure <X,Z,Z"Y> or <X,Z2',Z,Y>.

B

5

virtual v-structure CMAG with u-structure <A,D,F,B>




Ancestral Cyclic Equivalence Theorem

Two CMAGs M; and M, are d-separation equivalent iff they have:
i. the same skeleton,

ii. the same v-structures,
iii. the same virtual collider triples,

iv. if <A, X,B> and <A, Y,B> are virtual collider triples in M; and M,, then X is
ancestor of Y in My iff X is ancestor of Y in M,.

—> Basis for efficient procedure to establish Markov equivalence
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Establishing Markov equivalence

Ancestral CET suggests straightforward Cyclic-Graph-to-CPAG procedure:
« convert directed graph G into CMAG M

« copy skeleton and v-structures in M to CPAG P

« use CMAG M to identify and orient virtual collider triples in CPAG P

« orient remaining edges between cycles via CET-rule (iv)

« compare resulting CPAGs

No need for d-separation tests!

« computational complexity scales as O(N?*d3)

« worst case O(N>) compared to previous O(N7)

* avg. scaling much better than worst case (for both versions)



Example: Cyclic-Graph-to-CPAG procedure
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Experimental results — computational complexity

o Running time CPAG reconstruction
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Conclusions & future work

New ancestral perspective on the CET proved very useful:

« significantly simplified CET characterization

« helpful intermediate CMAG representation

« fast, graphical procedure to establish Markov equivalence

Next steps
« recover maximally informative CPAG,

 merge d-separation (linear/discrete systems) and c-separation (nonlinear
systems) approaches via the CMAG,

Most promising

« formulation via ‘virtual collider triples’ suggests a natural extension of the
CET to unobserved confounders, similar to the acyclic case, in the form of
‘virtual triples with order’ [Ali et al,2009; Claassen&Bucur,2022]

Thank you!
(poster 504 @11:00)



