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Problem of Interest
B Consider a finite (but possibly large) number, T, of integration tasks

(f], ... TIrlfr]. (1)
Denote by T; := {f,, ;} the components of the " task:
i). anintegrand f; € £2(m;); a density 71; : X — [0, 00);

ii). only have access to very limited data.
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Preliminary
® Monte Carlo (MC) estimator for each task:

[f] == lNZf\; f(xi), DALy ~ 1.

Cons ®: large variance N~'V [f] (CLT).
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Preliminary
® Monte Carlo (MC) estimator for each task:

=3 T fOa), Dl ~T1
Cons ®: large variance N~'V [f] (CLT).

m Control Variates (CVs):
Estimate TT[f] by TT[f — g] + TT[g] where g € £2(m): TT[g] can be exactly computed
(Stein) and V. [f — gl is small (CLT).
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Preliminary
® Monte Carlo (MC) estimator for each task:

=3 T fOa), Dl ~T1
Cons ®: large variance N~'V [f] (CLT).

m Control Variates (CVs):
Estimate TT[f] by TT[f — g] + TT[g] where g € £2(m): TT[g] can be exactly computed
(Stein) and V. [f — gl is small (CLT).

» Step 1. Choose G such thatTT[g] can be exactly computed for all g € G.
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Preliminary
® Monte Carlo (MC) estimator for each task:

=3 T fOa), Dl ~T1
Cons ®: large variance N~'V [f] (CLT).

m Control Variates (CVs):
Estimate TT[f] by TT[f — g] + TT[g] where g € £2(m): TI[g] can be exactly computed
(Stein) and V. [f — gl is small (CLT).
» Step 1. Choose G such thatTT[g] can be exactly computed for all g € G.
v Stein operators S.: g(-;v) := Sxlu(-)] +vo with TT[S . [u]] = 0.
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Preliminary
® Monte Carlo (MC) estimator for each task:

=3 T fOa), Dl ~T1
Cons @: large variance N~V . [f] (CLT).

m Control Variates (CVs):
Estimate TT[f] by TT[f — g] + TT[g] where g € £2(m): TI[g] can be exactly computed
(Stein) and V. [f — gl is small (CLT).
» Step 1. Choose G such thatTT[g] can be exactly computed for all g € G.
v/ Stein operators S.: g(+;v) := Sx[u(-)] + vo with TT[S . [u]] = 0.
v Parametric Spaces: u:= uy,..
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Preliminary
® Monte Carlo (MC) estimator for each task:

=3 T fOa), Dl ~T1
Cons @: large variance N~V . [f] (CLT).

m Control Variates (CVs):
Estimate TT[f] by TT[f — g] + TT[g] where g € £2(m): TI[g] can be exactly computed
(Stein) and V. [f — gl is small (CLT).
» Step 1. Choose G such thatTT[g] can be exactly computed for all g € G.
v/ Stein operators S.: g(+;v) := Sx[u(-)] + vo with TT[S . [u]] = 0.
v Parametric Spaces: u:= uy,..

» Step 2. Select a g, from G by minimising Js(v).
Js(v) =L X7, (F(x) — glxi; ). (2

empirical est. of V- [f—g
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Control Variates Cont'd

»> Step 3. Construct a CV estimator with the remaining N — m samples:

MOV = TMCL F—Gm |+ 1G] ®3)
var. minimised!

= N (FO6) = (X)) + TT[Gm].
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Control Variates Cont'd

»> Step 3. Construct a CV estimator with the remaining N — m samples:

MOV = TMCL F—Gm |+ 1G] ®3)
var. minimised!

= N (FO6) = (X)) + TT[Gm].

CLT: VN—m (ﬁCVm - ﬂ[f]) % N(0, Vrrlf — gml).
= gm ~ f means Vy[f — g, close to zero and fast convergence rate!
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Control Variates Cont'd

»> Step 3. Construct a CV estimator with the remaining N — m samples:

MOV = TMCL F—Gm |+ 1G] ®3)
var. minimised!

= N (FO6) = (X)) + TT[Gm].

CLT: VN—m (ﬁCVm - ﬂ[f]) % N(0, Vrrlf — gml).
= gm ~ f means Vy[f — g, close to zero and fast convergence rate!

Cons @: need a large number of samples; ignore potential relationship among T tasks.
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Related Work

m Vector-valued Control Variates (vv-CVs) [Sun et al., 2021]:
» Reformat (1) as a vector-valued integration task

M == (A, ..., T T
» Derive matrix-valued Stein kernels Ky: TT;[g;] = 0 for t € [T] and g € H,.

Pros ©: exploit the relationship among integration tasks.
Cons ®: computational cost between O(T#) and O(T®).

Z.Sun, A. Barp, and F-X. Briol. “Vector-Valued Control Variates”. In ICML 2023.
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Motivation

The key challenge remains to be solved:

m How can we construct CVs at scale, sharing information across a
large number of tasks even with limited samples?
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Motivation

The key challenge remains to be solved:

m How can we construct CVs at scale, sharing information across a
large number of tasks even with limited samples?

Answer in brief:
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Motivation

The key challenge remains to be solved:

m How can we construct CVs at scale, sharing information across a
large number of tasks even with limited samples?

Answer in brief:
m Re-frame selecting effective CVs as optimisation tasks.
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Motivation

The key challenge remains to be solved:

m How can we construct CVs at scale, sharing information across a
large number of tasks even with limited samples?

Answer in brief:
m Re-frame selecting effective CVs as optimisation tasks.
m Utilise meta-learning to learn CVs fast.
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Our Proposed Method: Meta-learning Control Variates

B Set-up: For each task T; := {f;, i;}, we split the data D; into two disjoint sets S;
and Qr,

Si:={x, Vlegm(x), f[()(j)}j'-":’1, Q; :={x;, Vlog m;(X;), fI(X]')}/I'V:tm,JA'
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Our Proposed Method: Meta-learning Control Variates

B Set-up: For each task T; := {f;, i;}, we split the data D; into two disjoint sets S;
and Qr,
Si:={x, Vlegm(x), f[()(j)}j'-":’1, Q; :={x;, Vlog m;(X;), fI(X]')}/I'V:tm,JA'

m Two steps:
1. Learning a Meta-CV;

2. Task-specific CVs from the Meta-CV.
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Step I: Learning a Meta-CV
m An idealised Meta-CV as a CV whose parameters y satisfy,

Joy

arg min,, cpo+1 B¢ (¢ (v)] with 3¢ (v) := Ji(UPDATE [y, Vy J; (v); &)

Js,;

where [E; denotes expectation with respect to a uniformly sampled task index
te{t,..., Th
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Step I: Learning a Meta-CV
m An idealised Meta-CV as a CV whose parameters y satisfy,

Joy

arg min,, cpo+1 B¢ (¢ (v)] with 3¢ (v) := Ji(UPDATE [y, Vy J; (v); &)
——
Js,;
where [E; denotes expectation with respect to a uniformly sampled task index
te{t,..., Th

» UPDATE,(; ) — L-step gradient descent with step size «.

C. Finn, P. Abbeel, and S. Levine. “Model-Agnostic Meta-Learning for Fast Adaptation of Deep
Networks”. In ICML (2017).
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Step I: Learning a Meta-CV
m An idealised Meta-CV as a CV whose parameters y satisfy,

Joy

arg min,, cpo+1 B¢ (¢ (v)] with 3¢ (v) := Ji(UPDATE [y, Vy J; (v); &)
——
Js,;
where [E; denotes expectation with respect to a uniformly sampled task index
te{t,..., Th

» UPDATE,(; ) — L-step gradient descent with step size «.

» Optimising — gradient-based bi-level optimisation [Finn et al., 2017]
with Js, and Jg, as in (2).

C. Finn, P. Abbeel, and S. Levine. “Model-Agnostic Meta-Learning for Fast Adaptation of Deep
Networks”. In ICML (2017).
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Step I: Learning a Meta-CV
m An idealised Meta-CV as a CV whose parameters y satisfy,

Joy

arg min,, cpo+1 B¢ (¢ (v)] with 3¢ (v) := Ji(UPDATE [y, Vy J; (v); &)

Js,;

where [E; denotes expectation with respect to a uniformly sampled task index
te{t,..., Th

» UPDATE,(; ) — L-step gradient descent with step size «.

» Optimising — gradient-based bi-level optimisation [Finn et al., 2017]
with Js, and Jg, as in (2).

» g(;Vmeta) — the so-called Meta-CV.

C. Finn, P. Abbeel, and S. Levine. “Model-Agnostic Meta-Learning for Fast Adaptation of Deep
Networks”. In ICML (2017).
2023 9l15
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Step Il: Task-specific CVs from the Meta-CV
B Task-specific CVs g(-; 1) for TT;[f]:
» VL < UPDATEL (Ymeta, vyJS, (Ymeta) 5 ¢ ).

e observation
f(x)
Ix)
9yi(x)
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Step Il: Task-specific CVs from the Meta-CV
B Task-specific CVs g(-; 1) for TT;[f]:
> P} < UPDATE, (Vmeta, VyJs, (Tmeta) ; ¢ ).
» Estimate TT;[f,] with Q; by:
TIVIA] o= TV 1 — g (4] + TTlg(: 971)]
= i T (R06) — g(xi 1)) + TTlg (59741

e observation
f(x)
I(x)
9yi(x)
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Experiments — A Synthetic Example
Consider integrands of the form:

fy(x; a;) = cos (27Tar,1 + Z;; at,i+1xi) ,

with parameters a; € R9*", and let 7; be the uniform distribution on X = [0, 1]¢.
B a; controls the difficulty: larger a; — larger frequency.
m sample tasks <= sample a; ~ p.
b | = cF

025 —— Meta-CVs
|\ —+ wmc

s 8
fin} i
g 020 —+— Neural-CVs %
20.15 2
< 0.10 p
5" 5
2005 =
000 25 40 60 80 100 0005 3 4 5 6
Sample Size: N (d=2) Num. of Dim. d (N=10, L=1)
Effect of N; per task. Effect of Dimension d.
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Marginalization in Hierarchical Gaussian Processes
Sarcos robot arm: a canonical example for hierarchical Gaussian processes

regression.
Bayesian posterior predictive mean at an unseen state z*:

E[Y*‘ykq} = IE‘:X~7t(-|y1:q] [E[Y*|y1:q, )q]
m Integrand: f(x; z*) = E[Y*|y1.q, X] = Ko q(X)(Kq.q(X) 4+ 0215) " Y.
m Posterior of kernel hyperparameters 7t(x|yi.q).

m Each state zx corresponds to a task.
Expensive integrand f: O (g®) operations per evaluation.

T %%
ES

MC CF NCV  MCV-1 MCV-5 MCV-20 MCV-50 MCV-100

e
]

Estimated Absolute Error
)
=
&

14
=)
8

MCV-L: Meta-CVs with L inner updates.
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Theoretical Analysis

Let Ymeta be the output of the propose algorithm with gradient descent steps with model
hyper-parameters {...} Then, under {...} assumptions:

E[HEt[vat(?meta)]“?] =0 ( i + é ) :

Corollary

Further suppose that there exists | > 0 such that for all t and all v, V?Ja, (v) = W1
where I, is an identity matrix of size p+- 1. Then there exist constants Cy, C, > 0 such
that

EE|¥e —vilal € e+ &,

where y; is the (unique) minimiser of y — Jg,(v) ...
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Theoretical Analysis (Cont'd)

Back to the synthetic example:
fi(x; a;) = cos (27‘(81,1 + 27:1 a,,,-+1x,-) )

with parameters a; € R9*". 7, is the uniform distribution on X = [0, 1]9.
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Conclusion

m Meta-CVs work well for variance reduction with limited data by sharing
information among tasks.

m Meta-CVs is scalable in T and N,.

Find more (theories and experiments) in the paper:
Sun, Z., Oates, C. J. Briol, F-X. (2023). Meta-learning Control Variates: Variance
Reduction with Limited Data. In Proc. of UAI 2023.
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