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Statistical Data Model
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Random tensors with low-rank structure

We consider n data points: (x1 ⊗ x2 ⊗ x3)ijk = x1ix2jx3k

Xi ∈ Ca ⇔ Xi = (−1)aµ1 ⊗ · · · ⊗ µk + Zi ∈ Rp1×···×pk

where [Zi]i1...ik
∼ N (0, 1) i.i.d. and denote M = µ1 ⊗ · · · ⊗ µk.

▶ Generalizes the classical model (k = 1), i.e. xi = (−1)aµ1 + zi.
▶ Even for k ≥ 2, the standard approach consists in flattening the data.
▶ What is the optimal classifier? Theoretical misclassification?
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Supervised Learning

Given X = [X1, . . . , Xn] ∈ Rp1×···pk×n and y = [y1, . . . , yn] ∈ {−1, 1}n

Denote X = X(k+1) ∈ Rn×P with P =
∏k

i=1 pi.

We study the Ridge classifier

min
w

∥y − Xw∥2 + γ∥w∥2 ⇔ w∗ =
(

X⊤X + γI
)−1

X⊤y

For some γ ≫ ∥X⊤X∥ (optimal for the above data model)

w =
1

√
np

X⊤y

where p =
∑k

i=1 pi. In tensor notations, the decision function is

fR(X̃i) = ⟨W, X̃i⟩
C1
≶
C2

0 W ≡
1

√
np

X ×k+1 y

with X̃i a test datum independent of X.

Assumption. pi = O(n) and ∥M∥ = O(1).
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Data Flattening

Theorem. For X̃i independent of X

1
σ

(
fR(X̃i) − ma

) D−→ N (0, 1) ⇒ E = Q

( |ma|
σ

)
where ma = (−1)a∥M∥2√

n
p

and σ =
√

n
p

∥M∥2 + P
p

.
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Figure: n = 200, shape (15, 30, 20) and ∥M∥ = 3.
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Tensor-based Classification

Given the data model, we have

W =
√

n

p

k⊗
i=1

µi +
1

√
p

Z

with Z = 1√
n

∑n

i=1 yiZi (Universality with CLT!).

Tensor-Ridge classifier is defined as

fTR(X̃i) =

〈
λ∗

k⊗
i=1

u∗
i , X̃i

〉
C1
≶
C2

0

where (best rank-one approximation of W)

(
λ∗, {u∗

i }k
i=1

)
= arg min

λ∈R+,ui∈Spi−1

∥∥∥∥∥W − λ

k⊗
i=1

ui

∥∥∥∥∥
2

F

Remark. The above MLE is NP-hard but feasible if ∥M∥ ≥ O(P 1/4/p1/2).
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Random Tensor Theory

▶ Spiked Tensor Model:

T = β

k⊗
i=1

xi +
1

√
p

Z → (λ∗, u∗
i ) = arg min

λ>0,∥ui∥=1

∥∥∥∥∥T − λ

k⊗
i=1

ui

∥∥∥∥∥
Theorem (Seddik et al. 2023)a. As pi → ∞ with pi∑k

j=1
pj

→ ci ∈ (0, ∞),

there exists βs > 0 s.t. for all β > βs:

λ∗ a.s.−→ λ̄, |⟨xi, u∗
i ⟩| a.s.−→ qi(λ̄)

where λ̄ satisfies f(λ̄, β) = 0 with{
f(z, β) = z + g(z) − β

∏k

i=1 qi(z), qi(z) =
√

1 −
g2

i
(z)

ci

g(z) =
∑k

i=1 gi(z), g2
i (z) − (g(z) + z)gi(z) − ci = 0

aMEA.Seddik, R.Couillet, M.Guillaud, “When Random Tensors meet Random Matrices”, Annals
of Applied Probability, 2023 (arXiv:2112.12348).
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Tensor-based Classification

Theorem. For X̃i independent of X

1
σ

(
fTR(X̃i) − ma

) D−→ N (0, 1) ⇒ E = Q

( |ma|
σ

)
where ma = (−1)aσ∥M∥

∏k

j=1 qj (σ) and f

(
σ, ∥M∥

√
n
p

)
= 0.
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Figure: n = 200, shape (15, 30, 20) and ∥M∥ = 3.
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Misclassification Errors

0 2 4
0

0.2

0.4

∥M∥

M
isc

la
ss

ifi
ca

tio
n

er
ro

r

pi =(20, 15, 5), n =50

0 2 4
0

0.2

0.4

∥M∥

pi =(20, 15, 5), n =1000

Tensor (Th.)
Oracle
Ridge (Th.)
Tensor (Sim.)
Ridge (Sim.)

0 2 4
0

0.2

0.4

∥M∥

M
isc

la
ss

ifi
ca

tio
n

er
ro

r

pi =(10, 7, 5, 15, 13), n =50

0 2 4
0

0.2

0.4

∥M∥

pi =(10, 7, 5, 15, 13), n =1000

2nd August 2023 Uncertainty in Artificial Intelligence



Learning from
Low-Rank Tensor
Data: a Random
Tensor Theory

Perspective

MEA. Seddik

Statistical Data Model

Supervised Learning

Data Flattening

Tensor-based Classification

Misclassification Errors

Unsupervised Learning

Linear and Tensor-based
Clustering

Theoretical Performances

/Supervised Learning 9/12

Phase Diagram
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Linear and Tensor-based Clustering

▶ Linear clustering: compute the left singular vector of

X = X(k+1) = y ⊗ flatten(M) + Z ∈ Rn×P ⇒ ŷℓ

▶ Tensor-based clustering: compute the best rank-one approximation of

X = M ⊗ y + Z ∈ Rp1×···×pk×n ⇒ ŷT

Theorem (Linear Clustering). The estimated class for Xi is given by sign(ŷℓ
i )

1
σℓ

(√
nŷℓ

i − αyi

) D−→ N (0, 1) ⇒ E = Q

(
αℓ

σℓ

)
where αℓ = κ

(
∥M∥

√
n

P +n
, n

P +n

)−1 and σℓ =
√

1 − α2
ℓ
.

Theorem (Tensor Clustering). The estimated class for Xi is given by sign(ŷT
i )

1
σT

(√
nŷT

i − αyi

) D−→ N (0, 1) ⇒ E = Q

(
αT
σT

)
where αT = qk+1 (λ∗), σT =

√
1 − α2

T and f

(
λ∗, ∥M∥

√
n

p+n

)
= 0.
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Linear and Tensor-based Clustering

▶ Linear clustering: compute the left singular vector of

X = X(k+1) = y ⊗ flatten(M) + Z ∈ Rn×P ⇒ ŷℓ

▶ Tensor-based clustering: compute a best rank-one approximation of

X = M ⊗ y + Z ∈ Rp1×···×pk×n ⇒ ŷT

Linear (error= 6.3%) Tensor (error= 0.1%)

Figure: n = 200, shape (15, 30, 20) and ∥M∥ = 3.
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Theoretical Performances
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▶ Possible clustering if ∥M∥ ≥ O
(

(P × n)1/4/(p + n)1/2
)

.
▶ Optimal clustering with the tensor approach.
▶ What about the NP-hard region?

Thank you for your attention!
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