Provably Efficient Adversarial Imitation Learning with Unknown Transitions

Tian Xu*, Ziniu Li*, Yang Yu‡, Zhi-Quan Luo‡

Nanjing University, China

UAI 2023

Contributors

Tian Xu (NJU)

Ziniu Li (CUHKSZ)

Yang Yu (NJU)

Zhi-Quan Luo (CUHKSZ)

What to expect from this talk?

- For machine learning researchers:
 - Key principles in imitation learning (IL) algorithms.
 - The error decomposition theory (foundation of machine learning theory) for IL.
- For reinforcement learning/imitation learning researchers:
 - Theoretical analysis framework for adversarial imitation learning (AIL).
 - A new AIL algorithm with better theoretical guarantee.

Contents

1. Background and Problem Setup

- 2. Main Results
- 3. Algorithmic Designs and Analysis
- 4. Summary

What is Imitation Learning?

Imitation Learning (a.k.a., learning from demonstrations)

"Efficiently learn a desired behavior by imitating an expert's behavior" [Takayuki et al., 2018]

Policy trained to imitate a running clip.

imitate to follow instructions [OpenAI., 2023]

Markov Decision Process

• Consider a finite-horizon Markov Decision Process $\mathcal{M} = \left(\mathcal{S}, \mathcal{A}, H, \{P_h\}_{h \in [H]}, \{r_h\}_{h \in [H]}, \rho\right)$

- Policy $\pi = \{\pi_1, \dots, \pi_H\}$ with $\pi_h: S \to \Delta(\mathcal{A})$.
- Policy value: $V^{\pi} = \mathbb{E}\left[\sum_{h=1}^{H} r_h\left(s_h, a_h\right) \middle| s_1 \sim \rho; a_h \sim \pi_h\left(\cdot | s_h\right), s_{h+1} \sim P_h\left(\cdot | s_h, a_h\right)\right]$
- State (-action) distributions: $d_h^{\pi}(s) := \mathbb{P}(s_h = s | \pi), \ d_h^{\pi}(s, a) := \mathbb{P}(s_h = s, a_h = a | \pi)$

Imitation Learning Set-up

- **Task:** Given a dataset that contains expert trajectories, the learner aims to learn a policy that matches the expert performance.
 - Expert trajectory (*H* state-action pairs) collected by a deterministic expert policy π^{E} :

$$\operatorname{tr} = \{(s_1, a_1), \dots, (s_H, a_H)\} \sim \pi^{\mathrm{E}}$$

• Expert dataset (*n* expert trajectories):

$$\mathcal{D}^{\mathrm{E}} = \left\{ \mathrm{tr}^{1}, \dots, \mathrm{tr}^{n} \right\}$$

• Criterion (Imitation Gap): the policy value gap between the learner $\hat{\pi}$ and expert π^{E} .

$$V^{\pi^{\mathrm{E}}} - V^{\widehat{\pi}}$$

Adversarial Imitation Learning (AIL)

AIL mimics the expert policy via **state-action distribution matching** [Abbeel and Ng, 2004; Syed and Schapire, 2007; Ho and Ermon, 2016].

$$\min_{\pi} \sum_{h=1}^{H} \phi\left(d_h^{\pi}, \widehat{d_h^{\pi^{\mathrm{E}}}}\right)$$

- Here $\phi(\cdot, \cdot)$ is a divergence measure and $\widehat{d_h^{\pi^E}}$ is the empirical version of $d_h^{\pi^E}$.
- As $d_h^{\pi^E}$ is unknown, AIL needs to establish the empirical distribution from the expert dataset.
- As d_h^{π} is unknown, AIL needs to evaluate it from environment interactions.

Expert Sample Efficiency

Interaction Efficiency

Empirical Observation: Expert Dataset

AIL methods (e.g., GAIL, FEM, GTAL) outperforms BC significantly in terms of **expert sample complexity**. Figure is from [Ho and Ermon, 2016].

Empirical Observation: Environment Interaction

AIL methods (e.g., GAIL, DAC, ValueDICE) require substantial **environment interactions**. Figure is from [Kostrikov et al., 2010].

Theoretical Study of AIL with Unknown Transitions

Problem set-up:

The learner aims to recover a policy $\hat{\pi}$ with small imitation gap $V^{\pi^E} - V^{\hat{\pi}}$.

Research Goal:

The expert sample complexity (m) and interaction complexity (n) required to ensure $V^{\pi^E} - V^{\hat{\pi}} \leq \varepsilon$ for a small tolerated error ε .

Contents

1. Background and Problem Setup

2. Main Results

- 3. Algorithmic Designs and Analysis
- 4. Summary

Main Results

Simulation Study

MB-TAIL outperforms the other methods when the number of interactions exceeds 500.

Algorithmic Framework with Unknown Transitions

State-action distribution matching with total variation distance:

Model-based AIL:

Algorithm 1 Meta-algorithm for AIL with Unknown Transitions

Require: Expert demonstrations \mathcal{D} .

- 1: $\widehat{P} \leftarrow$ Invoke an exploration algorithm A to collect *n* trajectories and learn a transition model. 2: $\widetilde{d}_h^{\pi^{E}} \leftarrow$ Apply an algorithm B to estimate the expert state-action distribution.
- 3: $\bar{\pi} \leftarrow \text{Apply an optimization algorithm C to solve the distribution matching problem with the expert estimation <math>\tilde{d}_h^{\pi^{\text{E}}}$ under transition model \hat{P} .

Ensure: Policy $\bar{\pi}$.

Theoretical Analysis for Model-based AIL

Definition 1 (Uniform Policy Evaluation, UPE)

A learned transition model \widehat{P} is (ε, δ) -PAC for UPE if

$$\mathbb{P}\left(\text{ for any } r, \pi \in \Pi, \left| V^{\pi, P, r} - V^{\pi, \widehat{P}, r} \right| \le \varepsilon \right) \ge 1 - \delta$$

Definition 2 (ε_{EST} -accurate Estimation)

An estimation
$$\widetilde{d}_{h}^{\pi^{\mathrm{E}}}$$
 is $\varepsilon_{\mathrm{EST}}$ -accurate for $d_{h}^{\pi^{\mathrm{E}}}$ if $\sum_{h=1}^{H} \left\| \widetilde{d}_{h}^{\pi^{\mathrm{E}}} - d_{h}^{\pi^{\mathrm{E}}} \right\|_{1} \leq \varepsilon_{\mathrm{EST}}$

Definition 3 (ε_{OPT} -optimal Policy)

A policy $\bar{\pi}$ is ε_{OPT} -optimal for the distribution matching problem with \widehat{P} and $\widetilde{d}_{h}^{\pi^{\text{E}}}$ if $\sum_{h=1}^{H} \left\| d_{h}^{\bar{\pi},\widehat{P}} - \widetilde{d}_{h}^{\pi^{\text{E}}} \right\|_{1} \leq \min_{\pi \in \Pi} \sum_{h=1}^{H} \left\| d_{h}^{\pi,\widehat{P}} - \widetilde{d}_{h}^{\pi^{\text{E}}} \right\|_{1} + \varepsilon_{\text{OPT}}.$

Error Decomposition Theory

Proposition 1 (Error Decomposition in AIL)

Suppose that

- (a) an exploration algorithm A can interact with the env. and output a learned transition model \hat{P} that is ($\varepsilon_{\text{EXP}}, \delta_{\text{EXP}}$)-PAC for UPE;
- (b) an algorithm B can establish ε_{EST} -accurate estimation $\widetilde{d}_h^{\pi^{\text{E}}}$ with probability at least $\geq 1 \delta_{\text{EST}}$;

(c) with \widehat{P} in (a) and $\widetilde{d}_h^{\pi^{\rm E}}$ in (b), an algorithmic C returns an $\varepsilon_{\rm OPT}$ -optimal policy $\overline{\pi}$.

Then applying algorithms A, B and C under the above framework could return a policy $\bar{\pi}$ with

$$\mathbb{P}\left(V^{\pi^{\mathrm{E}}} - V^{\bar{\pi}} \leq 2\varepsilon_{\mathrm{EXP}} + 2\varepsilon_{\mathrm{EST}} + \varepsilon_{\mathrm{OPT}}\right) \geq 1 - \delta_{\mathrm{EXP}} - \delta_{\mathrm{EST}}$$

Three types of errors in AIL's training: exploration error, estimation error and optimization error.

Contents

- 1. Background and Problem Setup
- 2. Main Results

3. Algorithmic Designs and Analysis

4. Summary

Part (a): Controlling the Exploration Error

Applying reward-free exploration methods [Chi et al., 2021] can learn the desired transition model.

Lemma 1 (Theorem 1 of [Ménard et al., 2021])

The reward-free exploration algorithm RF-Express can learn a transition model \hat{P} that is (ε, δ) -PAC for uniform policy evaluation, if the number of trajectories collected by RF-Express satisfies

$$n \gtrsim \frac{H^3|\mathcal{S}||\mathcal{A}|}{\varepsilon^2} \left(|\mathcal{S}| + \log\left(\frac{|\mathcal{S}|H}{\delta}\right)\right).$$

Connection with AIL: both RFE and AIL needs to solve RL problems with different rewards.

Part (b): Controlling the Estimation Error

• The maximum likelihood estimator (MLE) is considered in the literature [Abbeel and Ng, 2004; Syed and Schapire, 2007; Shani et al., 2022].

$$\widetilde{d}_{h}^{\pi^{\mathrm{E}}}(s,a) = \frac{\sum_{\mathrm{tr}\in\mathcal{D}} \mathbb{I}\left\{\mathrm{tr}_{h}(\cdot,\cdot) = (s,a)\right\}}{|\mathcal{D}|}$$

where $tr_h(\cdot, \cdot)$ indicates the specific state-action pair of trajectory tr in time step h.

• To obtain an ε -accurate estimation, the expert sample complexity required by the MLE is $\tilde{\mathcal{O}}(\frac{H^2|\mathcal{S}|}{\varepsilon^2})$ [Xu et al., 2022] while the minimax optimal one is $\tilde{\mathcal{O}}(\frac{H^{3/2}|\mathcal{S}|}{\varepsilon})$ with known transitions [Rajaraman et al., 2020].

Part (b): Transition-aware Estimator

timestep: *h*

• Start with the marginal formulation:

$$d_h^{\pi^{\mathrm{E}}}(s,a) = \sum_{\mathrm{tr}_h} \mathbb{P}^{\pi^{\mathrm{E}}}(\mathrm{tr}_h) \mathbb{I}\left\{\mathrm{tr}_h(\cdot,\cdot) = (s,a)\right\}$$

• Then we have the following decomposition:

$$d_{h}^{\pi^{\mathrm{E}}}(s,a) = \sum_{\substack{\operatorname{tr}_{h} \in \operatorname{Tr}_{h}^{\mathcal{D}_{1}} \\ \vdots = \bigstar}} \mathbb{P}^{\pi^{\mathrm{E}}}\left(\operatorname{tr}_{h}\right) \mathbb{I}\left\{\operatorname{tr}_{h}(\cdot,\cdot) = (s,a)\right\} + \underbrace{\sum_{\substack{\operatorname{tr}_{h} \notin \operatorname{Tr}_{h}^{\mathcal{D}_{1}} \\ \vdots = \bigstar}} \mathbb{P}^{\pi^{\mathrm{E}}}\left(\operatorname{tr}_{h}\right) \mathbb{I}\left\{\operatorname{tr}_{h}(\cdot,\cdot) = (s,a)\right\}}_{\vdots = \bigstar}$$

timestep: *h*

Part (b): Transition-aware Estimator

• To estimate the term \blacklozenge , we can establish the MLE using \mathcal{D}_1^c .

• To estimate the term **\$**:

Part (b): Transition-aware Estimator

$$d_h^{\pi^{\mathrm{E}}}(s,a) = \sum_{\mathrm{tr}_h \in \mathrm{Tr}_h^{\mathcal{D}_1}} \mathbb{P}^{\pi^{\mathrm{E}}}(\mathrm{tr}_h) \mathbb{I}\left\{\mathrm{tr}_h(\cdot,\cdot) = (s,a)\right\} + \sum_{\mathrm{tr}_h \notin \mathrm{Tr}_h^{\mathcal{D}_1}} \mathbb{P}^{\pi^{\mathrm{E}}}(\mathrm{tr}_h) \mathbb{I}\left\{\mathrm{tr}_h(\cdot,\cdot) = (s,a)\right\}$$

$$\widetilde{d}_{h}^{\pi^{\mathrm{E}}}(s,a) = \frac{\sum_{\mathrm{tr}_{h} \in \mathcal{D}_{\mathrm{env}}^{\prime}} \mathbb{I}\{\mathrm{tr}_{h}(\cdot,\cdot) = (s,a), \mathrm{tr}_{h} \in \mathrm{Tr}_{h}^{\mathcal{D}_{1}}\}}{|\mathcal{D}_{\mathrm{env}}^{\prime}|} + \frac{\sum_{\mathrm{tr}_{h} \in \mathcal{D}_{1}^{c}} \mathbb{I}\{\mathrm{tr}_{h}(\cdot,\cdot) = (s,a), \mathrm{tr}_{h} \notin \mathrm{Tr}_{h}^{\mathcal{D}_{1}}\}}{|\mathcal{D}_{1}^{c}|}$$

Lemma 2

Let \mathcal{D} be the expert dataset. Fix $\varepsilon \in (0,1)$ and $\delta \in (0,1)$; suppose $H \geq 5$. The transition-aware estimator $\tilde{d}_h^{\pi^{\mathrm{E}}}$ is ε -accurate with probability at least $1 - \delta$, if

$$|\mathcal{D}| \gtrsim rac{H^{3/2}|\mathcal{S}|}{arepsilon} \log\left(rac{|\mathcal{S}|H}{\delta}
ight), \ |\mathcal{D}_{\mathrm{env}}'| \gtrsim rac{H^2|\mathcal{S}|}{arepsilon^2} \log\left(rac{|\mathcal{S}|H}{\delta}
ight).$$

- At a high level, the new estimator utilizes the transition information from environment interactions to improve the estimation.
- The expert sample complexity matches the lower bound [Rajaraman et al., 2021] in the known transition setting in terms of H and ε .

Part (c): Controlling the Optimization Error

• Transform the original minimization problem into a minimax one via the dual form of l_1 -norm.

$$\min_{\pi \in \Pi} \sum_{h=1}^{H} \left\| d_h^{\pi, \widehat{P}} - \widetilde{d}_h^{\pi^{\mathrm{E}}} \right\|_1 \iff \max_{w \in \mathcal{W}} \min_{\pi \in \Pi} \sum_{h=1}^{H} \sum_{(s,a)} w_h(s,a) \left(\widetilde{d}_h^{\pi^{\mathrm{E}}}(s,a) - d_h^{\pi, \widehat{P}}(s,a) \right).$$

- Applying online gradient descent [Shalev-Shwartz et al., 2014] solves this minimax problem.
 - For w, apply online projected gradient descent with objective $\underbrace{\sum_{h=1}^{n} \sum_{(s,a) \in S \times A} w_h(s,a) \left(d_h^{\pi^{(t)}, \widehat{P}}(s,a) \widetilde{d}_h^{\pi^{\mathrm{E}}}(s,a) \right)}_{:=f^{(t)}(w)}$
 - For π , solve the RL problem with the reward function $w^{(t+1)}$ and \hat{P} .

Lemma 3

The gradient-based optimization procedure can return an ε -optimal policy, if

$$T \gtrsim \frac{H^2|\mathcal{S}||\mathcal{A}|}{\varepsilon^2}, \quad \eta^{(t)} := \sqrt{\frac{|\mathcal{S}||\mathcal{A}|}{8T}}.$$

MB-TAIL: Putting All Together

Algorithm 2 Model-based Transition-aware AIL

Require: Expert demonstrations \mathcal{D} .

1: Invoke RF-Express to collect n trajectories and learn an empirical transition function \widehat{P} .

2: Randomly split \mathcal{D} into two equal parts: $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_1^c$.

3: Learn $\pi' \in \Pi_{BC}(\mathcal{D}_1)$ by BC and roll out π' to obtain dataset \mathcal{D}'_{env} with $|\mathcal{D}'_{env}| = n'$.

4: Obtain the transition-aware estimator $\widetilde{d}_h^{\pi^{\rm E}}$ with \mathcal{D} and $\mathcal{D}'_{\rm env}$.

5: $\bar{\pi} \leftarrow$ Apply the gradient-based optimization method with the estimation $\tilde{d}_h^{\pi^{\rm E}}$ under transition model \hat{P} . Ensure: Policy $\bar{\pi}$.

Theorem 1

Fix $\varepsilon \in (0, 1)$ and $\delta \in (0, 1)$. Under the unknown transition setting, consider MB-TAIL and $\bar{\pi}$ is the output policy, if the expert sample complexity and the interaction complexity satisfy

$$m = \widetilde{\mathcal{O}}\left(\frac{H^{3/2}|\mathcal{S}|}{\varepsilon}\right), \ n' + n = \widetilde{\mathcal{O}}\left(\frac{H^3|\mathcal{S}|^2|\mathcal{A}|}{\varepsilon^2}\right)$$

then with probability at least $1 - \delta$, we have $V^{\pi^{\mathrm{E}}} - V^{\bar{\pi}} \leq \varepsilon$.

Contents

- 1. Background and Problem Setup
- 2. Main Results
- 3. Algorithmic Designs and Analysis

4. Summary

Summary

- This paper proposes a provably efficient AIL method with minimax optimal expert sample complexity and improved interaction complexity.
 - An algorithmic framework, which establishes a connection between AIL and reward-free exploration.
 - A better expert state-action distribution estimator with unknown transitions.
 - A provably efficient optimization procedure for AIL.
- We also extend MB-TAIL to the function approximation setting and prove that it can achieve expert sample and interaction complexity free of |S|, showing its generalization ability.

Paper: https://arxiv.org/abs/2306.06563

Code: <u>https://github.com/tianxusky/tabular-ail</u>