On Inference and Learning With Probabilistic Generating Circuits

Juha Harviainen

Vaidyanathan Peruvemba Ramaswamy

Mikko Koivisto

UAI 2023

Overview

Introduction

Probabilistic Generating Circuit (PGC)

- Tractable probabilistic model (TPM)
- Encodes the joint probability distribution of binary variables
- Probability generating polynomial (PGP)

 $\begin{array}{l} 0.150z_1z_2z_3 + 0.025z_2z_3 + 0.150z_1z_3 + 0.025z_3 \\ + 0.250z_1z_2 + 0.050z_2 + 0.300z_1 + 0.050 \end{array}$

X_1	X_2	X_3	$\Pr(\cdot)$	+
0	0	0	0.050	0.025 -0.05
1	0	0	0.300	XX
0	1	0	0.050	
1	1	0	0.250	$+$ \times z_1 z_2
0	0	1	0.025	
1	0	1	0.150	1 z_1 $+$ $+$
0	1	1	0.025	
1	1	1	0.150	1 z_2 2 z_3

Probabilistic Generating Circuit (PGC)

- Tractable probabilistic model (TPM)
- Encodes the joint probability distribution of binary variables
- Probability generating polynomial (PGP)

 $\begin{array}{l} 0.150z_1z_2z_3 + 0.025z_2z_3 + 0.150z_1z_3 + 0.025z_3 \\ + 0.250z_1z_2 + 0.050z_2 + 0.300z_1 + 0.050 \end{array}$

X_1	X_2	X_3	$\Pr(\cdot)$	+
0	0	0	0.050	0.025 -0.05
1	0	0	0.300	$\mathbf{x} \mathbf{x}$
0	1	0	0.050	
1	1	0	0.250	$+$ \times z_1 z_2
0	0	1	0.025	
1	0	1	0.150	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0	1	1	0.025	
1	1	1	0.150	1 z_2 2 z_3

Probabilistic Generating Circuits

- Polynomial-time marginal inference¹
- Goal: Evaluate $Pr({X_i = 1}_{i \in A}, {X_j = 1}_{j \in B})$
- Solution: Assign

$$z_i \mapsto \begin{cases} t, & i \in A \\ 0, & i \in B \\ 1, & i \notin A \cup B \end{cases}$$

• Extract the coefficient of the term $t^{|A|}$

¹ Zhang, H., Juba, B., Van den Broeck, G. Probabilistic Generating Circuits. ICML'21.

Inference and Learning of PGCs

Probabilistic Generating Circuits

• Solution: Assign

$$z_i \mapsto \begin{cases} t, & i \in A \\ 0, & i \in B \\ 1, & i \notin A \cup B \end{cases}$$

- Extract the coefficient of the term $t^{|A|}$
- Example: Let $A = \{2\}$ and $B = \{3\}$
- We have $\Pr(X_2 = 1, X_3 = 0) = 0.3$

Relationship to Other TPMs

PGCs strictly more expressive efficient than¹

- Decomposable probabilistic circuits (PCs)
- Determinantal point processes (DPPs)

Above TPMs' relationship studied by Zhang et al.²

Harviainen, Ramaswamy & Koivisto

Inference and Learning of PGCs

² Zhang, H., Holtzen, S., Van den Broeck, G. On the Relationship Between Probabilistic Circuits and Determinantal Point Processes. UAI'20.

Our Contributions

Speedups on marginal probability queries in three different cases.

[this talk]

A proof of NP-completeness of detecting infeasible PGCs.

A sketch of a framework for learning PGCs that avoids this issue. [this talk]

Faster Inference

General Case

- Previous work: $O(mn \log n \log \log n)$ with m nodes and n variables
- At most m operations over polynomials of degree n
- Consider instead assigning $t = 0, 1, \dots, |A|$ in time O(mn)
- This determines the univariate polynomial uniquely
- Apply polynomial interpolation and extract the coefficient of $t^{|A|}$

Decomposable Circuits

- **Decomposability**: no indeterminate appears in both subcircuits of any multiplication gate
- For decomposable PGCs, it is sufficient to track highest-degree terms

Theorem

There is a **linear-time algorithm** for marginal inference on decomposable PGCs

Determinantal Forms

• A determinant of a matrix can encode a PGP:

$$\frac{1}{13} \det \begin{pmatrix} z_1 + 2z_2 & z_1 & z_1 & -z_1 \\ 1 + z_2 & -z_3 & z_5 & 0 \\ z_2 & 1 & 2 & z_4 \\ -z_2 & 0 & z_5 & 0 \end{pmatrix}$$
$$= \frac{1}{13} (2z_1 z_2 z_3 + z_1 z_2 z_3 z_4 + z_1 z_2 z_3 z_5 + \dots + 2z_2 z_3 z_4 z_5)$$

- Support for marginal queries by evaluating a real-valued determinant
- With $A = \{1, 2, 3\}$ and $B = \{4\}$ we want terms $2z_1z_2z_3$ and $z_1z_2z_3z_5$
- Assign values for indeterminates and zero out certain entries

$$\frac{1}{13} \det \begin{pmatrix} 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix} = \frac{1}{13}(2+1)$$

Learning

• Unfortunately, learning PGCs seems to be hard:

Theorem

It is NP-hard to check if a PGC encodes a valid probability distribution

- SAT is reducible to finding a term with a negative coefficient
- Moderate-size circuits still verifiable!

Learning Compound Circuits

- Have the PGC consist of many subcircuits
- Subcircuits verifiable independently

Markov Chain simulation

- Initialize: Pick any feasible solution
- Ø Move: Pick a candidate solution from the local neighborhood
- 3 Accept or reject: Replace current solution by the candidate if valid
- Iterate: Go to step 2
 - Each step an engineering problem of its own
 - Implementation left for future work

Concluding Remarks

Concluding Remarks

- Inference is fast but learning is hard
- Many open implementation details
- Are there classes of PGCs that are fast to validate (on average)

Thank you!