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This Talk

● Why Mixup? 
● Overview of Mixup Data Generation
● HMix and HILL MixE Suite
● Learning with Human Relabelings 
● Taking Stock and Looking Ahead
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Why Mixup?

● Simple generative process

● Powerful and popular regularizer + calibrator
● Cognitive neuroscience suggests misalignment 

Zhang et al, 2017

Data Mixing Policy:

Label Mixing Policy:
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CalibrationGeneralization Robustness

Szegedy et al, 2014; Hendrycks and Dietterich, 2019; Bhatt et al, 2021; Thomas and Uminisky, 2022
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Is human relabeling scalable?
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Relabeling with (In-Filled) Human Perceptual Judgments 

● Fit logistic functions per category boundary
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Interface Modified from 
Collins*, Bhatt*, Weller, 2022
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HILL MixE Suite 
Interfaces H-Mix Data

https://github.com/cambridge-mlg/hill-mixup 
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For more details, 
please check out our paper + poster :)

H-Mix Data + HILL MixE Suite interfaces at our repo:
https://github.com/cambridge-mlg/hill-mixup 

More questions? Thoughts?
kmc61@cam.ac.uk 

https://github.com/cambridge-mlg/hill-mixup
mailto:kmc61@cam.ac.uk

