The Shrinkage-Delinkage Trade-off

An analysis of factorized Gaussian approximations for variational inference

Charles Margossian \& Lawrence Saul
© Flatiron Institute, Center for Computational Mathematics New York, NY

Variational inference

Variational inference

Usually $\operatorname{KL}(q \| p) \neq 0 .$. so what?

Factorized variational inference (F-VI)

$$
q(\mathbf{z})=\prod_{i=1}^{n} q\left(z_{i}\right)
$$

Factorized variational inference (F-VI)

$$
q(\mathbf{z})=\prod_{i=1}^{n} q\left(z_{i}\right)
$$

Applications

- Statistical Physics: mean-field approximation of Gibbs distributions.
- Bayesian Statistics: Learn the mean, variance, and quantile of interpretable variables.
- Machine Learning: deep generative models such as VAEs.

Fact: F-VI cannot estimate the correlations between different elements of \mathbf{z}.

Fact: F-VI cannot estimate the correlations between different elements of \mathbf{z}.

Common wisdom:

- $q\left(z_{i}\right) \neq p\left(z_{i}\right)$
- F-VI tends to underestimate the "uncertainty" of $p(\mathbf{z})$.

Fact: F-VI cannot estimate the correlations between different elements of \mathbf{z}.

Common wisdom:

- $q\left(z_{i}\right) \neq p\left(z_{i}\right)$
- F-VI tends to underestimate the "uncertainty" of $p(\mathbf{z})$.

Which notion of uncertainty should we use?

- Marginal variance, $\operatorname{Var}\left(z_{i}\right)$
- Entropy, $\mathcal{H}(p)=-\mathbb{E} \log p(\mathbf{z})$
- Frequentist intervals of Bayes estimators (Wang and Titterington, 2005)
$p(\mathbf{z})=\operatorname{Normal}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\mathbf{z} \in \mathbb{R}^{n}$ and $\operatorname{corr}_{p}\left(z_{1}, z_{2}\right)=\varepsilon$.
$p(\mathbf{z})=\operatorname{Normal}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\mathbf{z} \in \mathbb{R}^{n}$ and $\operatorname{corr}_{p}\left(z_{1}, z_{2}\right)=\varepsilon$. $q(\mathbf{z})=\operatorname{Normal}(\boldsymbol{\nu}, \mathbf{\Psi})$, where $\boldsymbol{\Psi}$ is diagonal.
$p(\mathbf{z})=\operatorname{Normal}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\mathbf{z} \in \mathbb{R}^{n}$ and $\operatorname{corr}_{p}\left(z_{1}, z_{2}\right)=\varepsilon$. $q(\mathbf{z})=\operatorname{Normal}(\boldsymbol{\nu}, \boldsymbol{\Psi})$, where $\boldsymbol{\Psi}$ is diagonal.

$n=2$ example (e.g MacKay,
2003; Bishop, 2006; Turner
and Sahani, 2011; Blei et al.,

2017)

$p(\mathbf{z})=\operatorname{Normal}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\mathbf{z} \in \mathbb{R}^{n}$ and $\operatorname{corr}_{p}\left(z_{1}, z_{2}\right)=\varepsilon$. $q(\mathbf{z})=\operatorname{Normal}(\boldsymbol{\nu}, \boldsymbol{\Psi})$, where $\boldsymbol{\Psi}$ is diagonal.

$n=2$ example (e.g MacKay, 2003; Bishop, 2006; Turner and Sahani, 2011; Blei et al., 2017)

© For FG-VI applied to Gaussian target, show

$$
\begin{aligned}
\operatorname{Var}_{q}\left(z_{i}\right) & \leq \operatorname{Var}_{p}\left(z_{i}\right) \\
\mathcal{H}(q) & \leq \mathcal{H}(p)
\end{aligned}
$$

(2) Relationship between variance shrinkage and entropy gap... or why the 2-D projections can be misleading

(3) Non-Gaussian targets

Factorized Gaussian Variational Inference (FG-VI)

$$
\begin{aligned}
& p(\mathbf{z})=\operatorname{Normal}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
& q(\mathbf{z})=\operatorname{Normal}(\boldsymbol{\nu}, \boldsymbol{\Psi}), \text { where } \boldsymbol{\Psi} \text { is diagonal. }
\end{aligned}
$$

Proposition

$K L(q \| p)$ is minimized by

$$
\begin{aligned}
\nu & =\boldsymbol{\mu} \\
\Psi_{i i} & =\frac{1}{\Sigma_{i i}^{-1}} .
\end{aligned}
$$

In general, $\Psi_{i i} \neq \Sigma_{i i}$.

Theorem

When FG-VI targets a Gaussian, we underestimate uncertainty in two ways,
© Variance shrinkage:

$$
\Psi_{i i} \leq \Sigma_{i i}, \quad \forall i
$$

(2) Entropy gap:

$$
\mathcal{H}(q) \leq \mathcal{H}(p)
$$

Theorem

When FG-VI targets a Gaussian, we underestimate uncertainty in two ways,
© Variance shrinkage:

$$
\Psi_{i i} \leq \Sigma_{i i}, \quad \forall i
$$

(2) Entropy gap:

$$
\mathcal{H}(q) \leq \mathcal{H}(p)
$$

Proof of (1) is intriguingly simple but not obvious.
Proof of (2):

$$
\begin{aligned}
\mathcal{H}(p)-\mathcal{H}(q) & =-\frac{1}{2} \log |\boldsymbol{\Psi}|-\left(-\frac{1}{2} \log |\boldsymbol{\Sigma}|\right) \\
& =\mathrm{KL}(q \| p) \\
& \geq 0
\end{aligned}
$$

How does the entropy gap relate to the variance shrinkage?

How does the entropy gap relate to the variance shrinkage?

Correlation matrix:

$$
C_{i j}=\frac{\Sigma_{i j}}{\sqrt{\Sigma_{i i} \Sigma_{j j}}}, \quad C_{i i}=1
$$

Shrinkage matrix:

$$
S_{i i}=\frac{\Sigma_{i i}}{\Psi_{i i}}=\Sigma_{i i} \Sigma_{i i}^{-1}
$$

How does the entropy gap relate to the variance shrinkage?

Correlation matrix:

$$
C_{i j}=\frac{\Sigma_{i j}}{\sqrt{\Sigma_{i i} \Sigma_{j j}}}, \quad C_{i i}=1
$$

Shrinkage matrix:

$$
S_{i i}=\frac{\Sigma_{i i}}{\Psi_{i i}}=\Sigma_{i i} \Sigma_{i i}^{-1}
$$

Theorem

(shrinkage-delinkage trade-off)

$$
\mathcal{H}(p)-\mathcal{H}(q)=\underbrace{\frac{1}{2} \log |\mathrm{~S}|}_{\geq 0}-\underbrace{\frac{1}{2} \log |\mathrm{C}|^{-1}}_{\geq 0} .
$$

- Two competing forces: shrinkage and delinkage.

Theorem

(shrinkage-delinkage trade-off)

$$
\mathcal{H}(p)-\mathcal{H}(q)=\underbrace{\frac{1}{2} \log |\mathrm{~S}|}_{\geq 0}-\underbrace{\frac{1}{2} \log |\mathrm{C}|^{-1}}_{\geq 0}
$$

Linked graphical model,

$$
p(\mathbf{z}) \neq \prod_{i} p\left(z_{i}\right)
$$

Delinked graphical model, $q(\mathbf{z})=\prod_{i} q\left(z_{i}\right)$
$n=10$
Example: squared exponential kernel

$$
\Sigma_{i j}=\exp \left(-\left(x_{i}-x_{j}\right)^{2} / \rho^{2}\right)
$$

$n=10$
Example: covariance with constant off-diagonal terms, ε.

$n=64$
Example: covariance with constant off-diagonal terms, ε.

Theorem

Suppose $\boldsymbol{\Sigma}$ has constant off-diagonal terms, $\varepsilon>0$. Then \checkmark Vanishing entropy gap:

$$
\lim _{n \rightarrow \infty} \frac{1}{n}(\mathcal{H}(p)-\mathcal{H}(q))=0
$$

x Arbitrarily bad variance shrinkage:

$$
\lim _{n \rightarrow \infty} S_{i i}=\Sigma_{i i} / \Psi_{i i}=\frac{1}{1-\varepsilon} .
$$

How do we reconcile these two pictures?

How do we reconcile these two pictures?

- Need to reason about the limit $n \rightarrow \infty$.
- What happens to the volume of the sphere and the ellipsoid in higher dimensions?

For Σ with constant off-diagonal, ε.
$\operatorname{Minimize} \operatorname{KL}(q \| p)$
$\operatorname{Minimize} \operatorname{KL}(p \| q)$
\checkmark Vanishing entropy gap
\boldsymbol{x} Variance shrinkage

For Σ with constant off-diagonal, ε.

Minimize $\mathbf{K L}(q \| p)$
\checkmark Vanishing entropy gap
x Variance shrinkage

$\operatorname{Minimize} \operatorname{KL}(p \| q)$

x Large entropy gap
\checkmark No variance shrinkage

Factorized variational inference (F-VI)

$$
q(\mathbf{z})=\prod_{i=1}^{n} q\left(z_{i}\right)
$$

Applications

- Statistical Physics: mean-field approximation of Gibbs distributions.
- Bayesian Statistics: Learn the mean, variance, and quantile of interpretable variables.
- Machine Learning: deep generative models such as VAEs.

Non-Gaussian models

8 schools model (non-centered parameterization)

Non-Gaussian models

8 schools model (non-centered parameterization)

- The inequality $\operatorname{Var}_{q}\left(z_{i}\right) \leq \operatorname{Var}_{p}\left(z_{i}\right)$ is violated.
- But $\frac{1}{n} \operatorname{trace}(\mathbf{S})=\frac{1}{n} \sum_{i} S_{i i} \geq 1$.

Trace(S) for a diversity of targets.

In all examples, variance shrinkage holds on average.

Empirical study for entropy gap

- Requires a method to estimate the normalizing constant, such as bridge sampling (Meng and Schilling, 2002; Gronau et al., 2020); but such methods use a (skewed) Gaussian approximation.

Empirical study for entropy gap

- Requires a method to estimate the normalizing constant, such as bridge sampling (Meng and Schilling, 2002; Gronau et al., 2020); but such methods use a (skewed) Gaussian approximation.
- Can show

$$
\mathcal{H}(p)-\mathcal{H}(q) \leq \frac{1}{2}(\log |\boldsymbol{\Sigma}|-\log |\boldsymbol{\Psi}|)
$$

This upper-bound is positive in all considered examples.

Empirical study for entropy gap

- Requires a method to estimate the normalizing constant, such as bridge sampling (Meng and Schilling, 2002; Gronau et al., 2020); but such methods use a (skewed) Gaussian approximation.
- Can show

$$
\mathcal{H}(p)-\mathcal{H}(q) \leq \frac{1}{2}(\log |\boldsymbol{\Sigma}|-\log |\boldsymbol{\Psi}|)
$$

This upper-bound is positive in all considered examples.

- Turner and Sahani (2011) provide a counter-example where FG-VI overestimates entropy.

Contributions

- Variance shrinkage
- Entropy gap
- Shrinkage-Delinkage trade-off
- Bounds on the shrinkage and delinkage terms.
- Non-Gaussian examples

Open questions

- More generally, how does the shrinkage-delinkage trade-off manifest?
- Under what conditions does F-VI underestimate entropy?
- What error do we introduce when minimizing other objective functions?

UAI paper ID: 149

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112. Giordano, R., Broderick, T., and Jordan, M. I. (2018). Covariances, robustness, and variational bayes. Journal of Machine Learning Research, 19:1-49.
Gronau, Q. F., Singmann, H., and Wagenmakers, E.-J. (2020). bridgesampling: An R package for estimating normalizing constants. Journal of Statistical Software, 92.
Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv:1312.6114.
Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei, D. (2017). Automatic differentiation variational inference. Journal of machine learning research, 18:1-45.
MacKay, D. J. (2003). Information theory, inference, and learning algorithms.
Margossian, C. C. and Mukherjee, S. (2021). Simulating ising and potts models at critical and cold temperatures using auxiliary gaussian variables. arXiv:2110.10801.
Meng, X. and Schilling, S. (2002). Warp bridge sampling. Journal of Computational and Graphical Statistics, 11:552-586.
Mukherjee, R., Mukherjee, S., and Yuan, M. (2018). Global testing against sparse alternatives under Ising models. Annals of Statistics, 46.
Parisi, G. (1988). Statistical Field Theory. Addison-Wesley.
Turner, R. E. and Sahani, M. (2011). Two problems with variational expectation maximisation for time-series models. In Barber, D., Cemgil, A. T., and Chiappa, S., editors, Bayesian Time series models, chapter 5, pages 109-130.

