
The Shrinkage-Delinkage Trade-off
An analysis of factorized Gaussian approximations

for variational inference

Charles Margossian
& Lawrence Saul

Flatiron Institute, Center for
Computational Mathematics

New York, NY

Image credit: Gabriele Veldkamp and Markus Maurer, CC



Variational inference

q∗ = argmin
q∈Q

KL(q || p)

Usually KL(q || p) 6= 0... so what?
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Factorized variational inference (F-VI)

q(z) =

n∏
i=1

q(zi).

Applications

Statistical Physics: mean-field approximation of Gibbs
distributions.
Bayesian Statistics: Learn the mean, variance, and
quantile of interpretable variables.
Machine Learning: deep generative models such as VAEs.
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Fact: F-VI cannot estimate the correlations between
different elements of z.

Common wisdom:

q(zi) 6= p(zi)
F-VI tends to underestimate the “uncertainty” of p(z).

Which notion of uncertainty should we use?

Marginal variance, Var(zi)
Entropy, H(p) = −E log p(z)
Frequentist intervals of Bayes estimators (Wang and
Titterington, 2005)
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p(z) = Normal(µ,Σ), with z ∈ Rn and corrp(z1, z2) = ε.

q(z) = Normal(ν,Ψ), where Ψ is diagonal.

ε = 0.75, n = 2
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Plan

1 For FG-VI applied to

Gaussian target, show

Varq(zi) ≤ Varp(zi)

H(q) ≤ H(p)

2 Relationship between
variance shrinkage and
entropy gap... or why the
2-D projections can be
misleading

3 Non-Gaussian targets



Factorized Gaussian Variational Inference (FG-VI)

p(z) = Normal(µ,Σ)

q(z) = Normal(ν,Ψ), where Ψ is diagonal.

Proposition

KL(q||p) is minimized by

ν = µ

Ψii =
1

Σ−1
ii

.

In general, Ψii 6= Σii.



Theorem

When FG-VI targets a Gaussian, we underestimate uncertainty
in two ways,

1 Variance shrinkage:

Ψii ≤ Σii, ∀i.

2 Entropy gap:
H(q) ≤ H(p).

Proof of (1) is intriguingly simple but not obvious.

Proof of (2):

H(p)−H(q) = −1

2
log |Ψ| −

(
−1

2
log |Σ|

)
= KL(q||p)
≥ 0.
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How does the entropy gap relate to the variance shrinkage?

Correlation matrix:

Cij =
Σij√
ΣiiΣjj

, Cii = 1.

Shrinkage matrix:

Sii =
Σii

Ψii
= ΣiiΣ

−1
ii

Theorem

(shrinkage-delinkage trade-off)

H(p)−H(q) =
1

2
log |S|︸ ︷︷ ︸
≥0

− 1

2
log |C|−1︸ ︷︷ ︸
≥0

.

I Two competing forces: shrinkage and delinkage.
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Theorem

(shrinkage-delinkage trade-off)

H(p)−H(q) =
1

2
log |S|︸ ︷︷ ︸
≥0

− 1

2
log |C|−1︸ ︷︷ ︸
≥0

.

z1 z2

z3

Linked graphical model,
p(z) 6=

∏
i p(zi)

z1 z2

z3

Delinked graphical model,
q(z) =

∏
i q(zi)



n = 10
Example: squared exponential kernel

Σij = exp(−(xi − xj)2/ρ2)

H(p) − H(q)

Squared exponential kernel
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n = 10
Example: covariance with constant off-diagonal terms, ε.

Constant off−diagonal
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Theorem

Suppose Σ has constant off-diagonal terms, ε > 0. Then

3 Vanishing entropy gap:

lim
n→∞

1

n
(H(p)−H(q)) = 0

7 Arbitrarily bad variance shrinkage:

lim
n→∞

Sii = Σii/Ψii =
1

1− ε
.



How do we reconcile these two pictures?

ε = 0.999, n = 64
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I Need to reason about the limit n→∞.

I What happens to the volume of the sphere and the
ellipsoid in higher dimensions?
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For Σ with constant off-diagonal, ε.

Minimize KL(q || p)

3 Vanishing entropy gap

7 Variance shrinkage

Minimize KL(p || q)

7 Large entropy gap

3 No variance shrinkage
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Factorized variational inference (F-VI)

q(z) =

n∏
i=1

q(zi).

Applications

Statistical Physics: mean-field approximation of Gibbs
distributions.
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Non-Gaussian models

8 schools model (non-centered parameterization)
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The inequality Varq(zi) ≤ Varp(zi) is violated.

But 1
n trace(S) = 1

n

∑
i Sii ≥ 1.
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Trace(S) for a diversity of targets.
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In all examples, variance shrinkage holds on average.



Empirical study for entropy gap

I Requires a method to estimate the normalizing constant,
such as bridge sampling (Meng and Schilling, 2002; Gronau
et al., 2020); but such methods use a (skewed) Gaussian
approximation.

I Can show

H(p)−H(q) ≤ 1

2
(log |Σ| − log |Ψ|).

This upper-bound is positive in all considered examples.

I Turner and Sahani (2011) provide a counter-example where
FG-VI overestimates entropy.
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Contributions

I Variance shrinkage

I Entropy gap

I Shrinkage-Delinkage
trade-off

I Bounds on the shrinkage
and delinkage terms.

I Non-Gaussian examples

Open questions

I More generally, how does
the shrinkage-delinkage
trade-off manifest?

I Under what conditions
does F-VI underestimate
entropy?

I What error do we
introduce when
minimizing other
objective functions?

UAI paper ID: 149
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