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Backgrounds

Figure: Mixup for Image Classification

Modeling the uncertainty of in-between samples.
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Mixup formulation

With coefficient λ ∼ Beta(α, α), for λ ∈ [0,1], α ∈ (0,∞).
Mixup generates a virtual in-between sample,

x̃ = λxi + (1− λ)xj,

ỹ = λyi + (1− λ)yj,

where (xi, yi) and
(
xj, yj

)
are two feature-target vectors drawn at

random from the training data.

The mixup hyper-parameter α controls the strength of
interpolation between feature-target pairs, recovering the Empirical
Risk Minimization (ERM) principle as α→ 0.
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Smoother feature space

Figure: Illustrative sample referred from [Zhang et al., 2018]. The green
and orange dots represent different classes. Blue shading indicates the
probability p(y = 1|x). Mixup yields a smoother decision boundary in
feature space than ERM.
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Applications

Mixup now has been widely applied to various areas, including

▶ Image classification/ generation
▶ Out-of-Distribution/Domain Generalization
▶ Node and graph classification
▶ Time Series Prediction .....
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Implicit Regularization

Implicit Regularization, also referred to Implicit Bias, characterizes
the underlying term to be optimized when training an algorithm.

Figure: [Soudry et al., 2018] show the implicit bias (margin
maximization) of Gradient Descent (GD) on binary classification with
logistic regression.

[UAI 2023] Mixup Enhanced from the Implicit Regularization



Implicit Regularization of Mixup

▶ Activated feature:

h(fθ(x)) =

{
log

(∑
j exp(fθ(x)(j))

)
Softmax

log (1 + exp (fθ(x))) Sigmoid

▶ Loss function: ℓ(θ, (x, y)) = h(fθ(x))− y⊤fθ(x)
▶ Mixup data: x̃i,j(λ) = λxi + (1− λ)xj, and ỹi,j(λ)

▶ Mixup loss:

Lmix
n (θ, S) :=

1
n2

n∑
i,j=1

E
λ∼Beta(α,β)

l(θ, x̃i,j(λ), ỹi,j(λ))
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Implicit Regularization of Mixup

Theorem 1

Let aλ = 1− λ, ℓ(θ, (x, y)) ≜ h(fθ(x))− y⊤fθ(x) be the loss
function and ∀θ ∈ Θ functions fθ(·) in a CK manifold. Then the
implicit regularization of Mixup is:

Lmix
n (θ, S) = Lstdn (θ, S) + R

R =
1
n

n∑
i=1

Eλ∼Dλ
x′∼DX

( K∑
k=1

ak
λ

k!
Jk

h(fθ)∆
⊗k
i − aλy⊤i ∆i + aK

λψ̂i,x′(aλ)
)

where Jh(fθ)(xi) = g(fθ(xi))
⊤ and

∆i =

K∑
k=1

ak−1
λ

k!
Jk

fθ(xi)(x′ − xi)
⊗k + aK−1

λ ψi,x′(aλ).
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Implication of Theorem 1

1. Minimizing mixup loss is equivalent to adding an implicit
regularization R to ERM loss.

2. R mainly depends on the directional derivatives, since ψ̂i,x′

and ψi,x′ are the remainder terms in Taylor expansion of order
O(K) and with probability 1,

lim
aλ→0

ψ̂i,x′(aλ) = 0, lim
aλ→0

ψi,x′(aλ) = 0.

3. The function fθ(·) should be at least twice continuously
differentiable.
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Toy example: Linear Logistic Binary Classification

We follow [Soudry et al., 2018] to conduct an experiment on
separable data.

(a) Normalized w(t) (b) Training loss

Figure: On a linear model fw, training fw with ERM or Mixup yields the
same implicit bias (loss decreases, norm of w(t) explodes). In other
words, the implicit bias of Mixup vanishes on the linear model.
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Same implicit bias on Linear Model

(a) Angle gap (b) Margin gap

Figure: Implicit bias of binary classification with logistic regression on
the linear model. From the results we can see, both Mixup and GD are
maximizing the margin and have similar convergence rates.
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Conclusion

▶ Minimizing mixup loss is equivalent to adding an implicit
regularization to ERM loss.

▶ The implicit regularization has a complicated form.
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Limitation

[✗] Minimizing the implicit regularization of Mixup in Theorem 1
explicitly is impractical.

[✓] Retaining Mixup with an extra regularization is a
computationally efficient alternative way.

[✗] Using high-order approximations suffers a heavy computational
burden in deep learning.

[✓] Regularize model with only first-order (dominate)
approximation.
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Proposed MixupE

The first-order directional derivative is captured by

D1
θ,S :=

1
n
Eλ∼Dλ

[aλ]
n∑

i=1

q(xi)

q(xi) = (g(fθ(xi))− yi)
⊤Jfθ(xi)(E[x′]− xi).

Unfortunately, computing Jacobian in deep models at each step is
expensive. We can approximate q(xi),

q(xi) ≈ q̂(xi) = (yi − g(fθ(xi)))
⊤fθ(xi), (1)

▶ Normalization : Ex′∼DX
[x′] = 0

▶ ReLU : Jfθ(xi)xi ≈ fθ(xi)

[UAI 2023] Mixup Enhanced from the Implicit Regularization



Proposed MixupE

The first-order directional derivative is captured by

D1
θ,S :=

1
n
Eλ∼Dλ

[aλ]
n∑

i=1

q(xi)

q(xi) = (g(fθ(xi))− yi)
⊤Jfθ(xi)(E[x′]− xi).

Unfortunately, computing Jacobian in deep models at each step is
expensive. We can approximate q(xi),

q(xi) ≈ q̂(xi) = (yi − g(fθ(xi)))
⊤fθ(xi), (1)

▶ Normalization : Ex′∼DX
[x′] = 0

▶ ReLU : Jfθ(xi)xi ≈ fθ(xi)

[UAI 2023] Mixup Enhanced from the Implicit Regularization



Proposed MixupE

To avoid negativity, the regularization will be

R(θ, S) =
Eλ∼Dλ

[aλ]
n

n∑
i=1

|q̂(xi)|.

Then, the final (normalized) loss will be

L(θ, S) := η̂
(

Lmix
n (θ, S) + ηR(θ, S)

)
,

η̂ =
|Lmix

n (θ, S)|
|Lmix

n (θ, S) + ηR(θ, S)|
,

where η̂ is a scaling factor that depends on the magnitudes of
Lmix

n (θ, S) and R(θ, S).
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MixupE Implementation

For each iteration,

1. Sample λ ∼ Beta(α, β)

2. Mixup data with X̃, Ỹ ← λ(X,Y) + (1− λ)Permute(X,Y)
3. Mixup Loss Lmix

n (θ,X) = ℓ(fθ(X̃), Ỹ)
4. Compute first-order directional derivatives that

q̂(X) = fθ(X)⊗ (Y − Softmax(fθ(X)))

5. Get additional loss R(θ,X) =
Eλ∼Dλ

[aλ]
n

∑n
i=1 |q̂(xi)|

6. Total loss L(θ, S) = η̂
(
Lmix

n (θ, S) + ηR(θ, S)
)
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Generalization Guarantee

▶ GLM [Zhang et al., 2020]: h(fθ(x)) = A(θ⊤x)
▶ Constraint Θ = {x→ fθ(x)| supx |q̂(x)| ≤ γ}.
▶ Expected risk of MixupE: L̃(θ) = ESL(θ, S)

Theorem 2

Suppose A(·) is LA-Lipchitz, X ,Y and Θ are all bounded, then
exist constants B > 0, such that for all θ ∈ Θ, we have

L̃(θ) ≤ η̂Lmix
n (θ, S) +

2η̂ηLAγX√
n(1 + LA)

+ B

√
log(1/δ)

2n
(2)

with probability at least 1− δ.

Θ̂ : {∥θ∥22 ≤ ξ} ⇒ R(Θ̂, S) = Eϵ sup
∥xi∥2

2≤X

1
n

n∑
i=1

ϵiθ
⊤xi ≤

√
ξX√
n
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Image Classification Test Error (%)

PreActResNet50 CIFAR10 CIFAR100 SVHN

ERM 4.71±0.062 24.68±0.349 2.80±0.201

Mixup 4.53±0.041 23.03±0.471 2.65±0.017

MixupE 3.53±0.047 20.23±0.507 2.42±0.021

PreActResNet101

ERM 4.21±0.069 23.20±0.362 2.95±0.019

Mixup 4.43±0.049 23.05±0.383 2.79±0.015

MixupE 3.35±0.049 18.86±0.376 2.35±0.019

Wide-Resnet-28-10

ERM 4.24±0.101 22.20±0.108 2.82±0.049

Mixup 3.03±0.091 19.38±0.113 2.48±0.117

MixupE 2.94±0.048 17.12±0.111 2.29±0.168
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Other tasks
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Generalization – Stronger regularization

Figure: textitMixupE has a higher training loss but lower test loss than
Mixup and ERM (Wide-Resnet-28-10).
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Robustness – Generalize to Novel Deformations

Table: Test accuracy on novel deformations. All models are trained on
normal CIFAR-100.

Test Set Deformation Mixup Manifold Mixup Ours

Rotation U(−20,20) 56.48 60.08 62.23
Rotation U(−40,40) 36.78 42.13 43.08
Shearing U(−28.6,28.6) 60.01 62.85 63.94
Shearing U(−57.3,57.3) 39.70 44.27 43.87
Zoom In (60% rescale) 13.12 11.49 15.66
Zoom In (80% rescale) 50.47 52.70 54.22
Zoom Out (120% rescale) 61.62 63.59 61.39
Zoom Out (140% rescale) 42.02 45.29 36.58
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Q & A

Thank you!
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