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Optimization

Basic optimization

minimize fo(z)
subject to fi(x) <0,i=1,...,m

» 2 € R is variable (or decision variable)
» fo:R?— R is objective
» fi: RY — R are constraints

solution is * minimizing fy subject to constraints



Applications and examples

Operations research (1940s on)

» Facility placement: choose location of facility minimize cost of
transporting materials

» Portfolio optimization: minimize risk or variance subject to
expected returns of investments

Engineering and control (1980s on)

» Control: minimize expended energy subject to moving from
one location to another (variables are control inputs)

» Device design: (e.g.) minimize power consumption subject to
manufacturing limits, timing requirements, size

Statistics and machine learning (1990s on)

» minimize prediction error or model mis-fit subject to prior
information, sparsity, parameter limits



Convex optimization problems

minimize fo(z)
subect to fi(z) =0, 1,....m
hi(z) = bz, i=1,...,p

» objective fy and inequality constraints f; are convex:
FOa + (1= A)y) < Mf(@) + (1= N f(y) for0<A<1
» equalities h; are linear:

hi(z) = al'z

this is a technology



Linear programs

objective and constraints are linear

minimize ¢’

subject toAx <b, Fx =g



Quadratic programs

objective and inequality constraints are quadratic

minimize 27 Az + bTx

subjecttoxTR$+q?$+ri§O, 1=1,...

Frxr=g



Semidefinite programs

variables are matrices X € 8" = {X ¢ R"™" | X = X1},
constraints are in semidefinite order

minimize tr(CX)
subject to tr(A4;X) =b;, i=1,...,m
X*=0



Example: matrix completion

> partially observed matrix M € R*™ of movie ratings in
locations (7,7) €

» user i represented by vector u; € R", movie j by v;, and
Mij = ujv;

For X =UVT, U e R™", V € R™,

minimize rank(X)
subject to Xq = Mg

has convex relaxation
n
minimize Y " 0oi(X) = || X,
i=1

subject to X = Mg



Nuclear norm minimization

n
minimize Y 0i(X) = || X|,
i=1
subject to Xq = Mg
has equivalent semidefinite program

minimize tr(Z) + tr(W)
subject to Xq = Mg
[ Z -X

- - -
T W} =0, Z=0, W=0

in variables X € R"™*", Z € S", W ¢ S™



A few important calculus rules

Let f1, fo : R¢ = R be convex functions
» f(z) = afi(z) + Bf2(x) is convex for o, B > 0
» maxima of convex functions are convex:

f(x) = max{f1(z), fa(x)}

» even for an infinite index set A,

f(@) = sup fa(x)

acA

is convex



A failure of linear programming
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Example failure for linear programming

Frequency

0.05 0.20 0.25

relative crilasnge

Frequently lose 15-20% of profits



Example (Truss Design)

Problem: Choose thickness of bars to (1) minimize use of material
and (2) support desired load

Unloaded structure
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Robust optimization

objective fo : R™ — R, uncertainty setU, f; : R™ xU — R,
fi(x,u) convex in z for all u € U
general form
minimize fo(z)
subject to fi(x,u) <O0foralluel,i=1,...,m.

equivalent to
minimize fo(z)
subject to sup fi(z,u) <0,i=1,...,m.
ueU

» Bertsimas, Ben-Tal, EI-Ghaoui, Nemirovski (1990s—now)



Setting up robust problem

> can replace objective fy with sup, g, fo(z,u), rewrite as
minimize ¢

subject to sup fo(z,u) <t, sup fi(z,u) <0, i=1,....,m
u u

» equality constraints make no sense: a robust equality
a’ (x4 u) = b for all u € U?

three questions:

» is robust formulation useful?
» is robust formulation computable?
» how should we choose U?



A failure of linear programming
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Example failure for linear programming

Frequency

0.05 0.20 0.25

relative crilasnge

Frequently lose 15-20% of profits



Alternative robust LP

minimize ¢’ x

subject to (A+ A)z <b, all Aeld

where |Aq1] <.00005, |Aq2] < .0004, A;; = 0 otherwise

» solution z,opust has degradation provably no worse than 6%



Example (Truss Design)

Problem: Choose thickness of bars to (1) minimize use of material
and (2) support desired load

Unloaded structure
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How to choose uncertainty sets

> uncertainty set &/ a modeling choice

» common idea: let U be random variable, want constraints that
Pr(fi(2,U) > 0) < ¢ (1)

» typically hard (non-convex except in special cases)

» find set U such that Pr(U € U) > 1 — ¢, then sufficient
condition for (1)

filz,u) <0 foralluecl



Uncertainty set with Gaussian data

minimize ¢! x

subject to Pr(alz > b)) <e, i=1,...,m
coefficient vectors a; i.i.d. (@, ) and failure probability e
» marginally al'z ~ N (@l z, 27 Y1)
» for e = .5, just LP

T

minimize ¢’ x subject to a;frx <bj;,i=1,...,m

» what about e = .1,.97



Gaussian uncertainty sets

{z|Pr(ale>b) <e}={z|alz—b —d ' (e)VaTSz <0}

e=.9 €e=.) e=.1
(Source: ee364b, Stanford)



Robust problems are convex, so no problem?

not quite...
consider quadratic constraint

|Az + Bu|l, <1 for all |Jull,, <1

» convex quadratic maximization in u
» solutions on extreme points u € {—1,1}"

» and NP-hard to maximize (even approximately [Hastad])
convex quadratics over hypercube



Tractability

Important question: when is a robust LP still an LP (robust SOCP
an SOCP, robust SDP an SDP)

minimize ¢!z
subject to (A+U)z = b for U € U.
can always represent formulation constraint-wise, consider only one
inequality
(a+u)Tz <b forall ucld
» Simple example: U = {u € R" | |Ju|, < d}, then

ala + 8|z, <b



When are things tractable?

Duality typically used to get tractability
(but we're not going to do that)



Portfolio optimization (with robust LPs)

» d assets 1 = 1,...,d, random multiplicative return R; with
B[R] =pi > 1, i1 > po > -+ > pup,

» “certain” problem has solution xpom = €1,
- T . Ty _
maximize pu* x subjecttoxz”1 =1, z >0

» if asset ¢ varies in range u; + u;, robust problem
maximize Z inf  (u; +u)z; subjectto 17z =1, >0

and equivalent

maximize u’z —ulz subject to 1Tz =1, 2 =0



Portfolio optimization (tigher control)

v

Returns R; € [ — ug, p; + w;) with ER; = p;

» guarantee return with probability 1 — ¢
maximize, ¢ ©

n
subject to Pr<ZRixi > t> >1—¢ 2i1=1,2>0
i=1

v

value at risk is non-convex in x, approximate it?
> approximate with high-probability bounds

» less conservative than LP (certain returns) approach



Portfolio optimization: probability approximation

» Hoeffding's inequality

e (0~ o< t) <o (gt ).

i=1

> written differently

n n 1
2 +2
ZRifL’i < uT;z; — t(Zufzf) ] < exp (—2)
=1 1=1

» set t = /2log(1/e), gives robust problem

Pr

1
maximize u’ z—4/2log - ||diag(u)z||, subject to1Tz =1, z > 0.
€



Portfolio optimization comparison

3(

n—i)
10n

» data u; = 1.05 +
and u, =0

, uncertainty |u;] < u; = .05 + &

» nominal minimizer pom = €1

» conservative (LP) minimizer zcon = e, (guaranteed 5%
return),

» robust (SOCP) minimizer x, for value-at risk ¢ = 2 x 10~%



Portfolio optimization comparison
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Stochastic optimization

Data X and parameters 6 to learn, with loss
00,X)

Goal: Minimize the population risk

minimize L(0) = Ep, [((0, X)] = / 00, 2)dPy(z)
subject to 8 € ©
given an i.i.d. sample X1,..., X, i Py
Empirical risk minimization:

~ 1
0 =argminE5 [/(0, X)] = — 0, X;
in B, (66, )] = © 3~ 66.X)



Curly fries and intelligence

(Wi R} D] Technology Science  Culture Reviews Magazine

Liking curlyfneson
Facebook reveals your
high1Q

By PHILIPPA WARR
12 Mar 2013

What you Like on Facebook could reveal your race, age, IQ,
sexuality and other personal data, even if you've set that
information to "private”.

Unlikely to be robust to even small changes in the underlying data



Revisiting uncertainty sets

minimize fo(x)
subject to fi(x,u) <0, allu e U

the basic idea so far:

> assume uncertainty variable U, choose U so that
Pr(Ucl)>1—c¢
» use this U in problem above

When do we actually know Pr(U € U)?



Distributionally robust optimization

Idea: Replace distribution Py with “uncertainty” set P of possible
distributions around P

minimizegco L(0) = Ep,[¢(0, X)]

Big question: How do we choose the set P?

(i) Hypothesis testing, covariance, and other moment constraints

(i) Non-parametric approaches



Distributionally robust optimization

Idea: Replace distribution Py with “uncertainty” set P of possible
distributions around P

minimizegco L(6,P) := sup Ep[£(6, X)]
PeP

Big question: How do we choose the set P?

(i) Hypothesis testing, covariance, and other moment constraints

(i) Non-parametric approaches



A hypothesis testing approach

basic idea in hypothesis testing: for data X drawn from some
distribution

» have null hypothesis Hy : X ~ Py
» have a statistic 7' : X — R of observations X

» for level «, find threshold 7, such that
Py(T(X) > 1a(R)) <«

> reject null Hy if T(X) > 74
example
> nullis Ho: X; S N(0,1), i =1,...,n, T(X?) = [X,|

> threshold 7, = z1_/2



Hypothesis testing/confidence set duality

consider a collection of distributions P on space X
» let T, 7, (P) be a statistic with level « for distributions P € P
» sample X ~ P, observe t°° = T(X)

» confidence set
O(X) = {P e P | Prp(T(X) < 1°%) > a}

> then
Pr(PeC(X))>1—-a
example

» normal family
P={N(6,1)]| 0 R}

» confidence set (abusing notation) is means

C(XT) = Wn - Zl—a/ZaYn + Zl—a/2]



Asymptotic validity
We say a test is asymptotically of level o for Hy : X; I pif

limsup P(T'(X7) > 74(P)) < «

n—+00

» asymptotic confidence sets: for observations 9% = T'(X7),
C(X}) = {P € P| Prp(T(X]) < 15%) > a}

» Then as n — oo, get

liminf Pr(P € C(X7{)) >1 -«

n—o0



A distributionally robust formulation

Steps:
1. choose valid (maybe asymptotically) confidence set C'(X7)

2. take uncertainty set
P = C(XT)

3. solve robust problem

minimizegeo L(6, Py)

Theorem R
Let L}, = infgco L(6,Py) and 0,, € argming.g L(0,Py). Then

lim sup Pr(L(é\n) >Ly) <a.

n—oo



Example: portfolio optimization

v

random returns R; € R‘i for d assets, periods i =1,2,...
(assumed i.i.d.), mean returns 7 = E[R)]

> goal
maximize 71 0 subject to 6 = 0, 170 =1

central limit theorem:

_ 1 &
R”:EZ

i=1

v

3\'—‘

Z ~R)'

have
VSR, —7) <5 N(O, )

lots of distributional facts about Z ~ N(0, /) known

v



Example: portfolio optimization (continued)

» choose threshold 7, so that
Pr(|Z]5 > 7a) < a

» confidence set
_ 2
Py = {distributions P with Hﬁz;”%m - EP[R])H2 < Ta}
» optimization problem

maximizey inf {rT9 st |2 V2R, — )2 < Ta/n}



Example behavior

Wealth
a
o

AL

- 2005 2006 2007
Year

(Delage and Ye, 2010)




Asymptotic risks

Challenge: often very computationally hard to use valid
confidence sets (or risk is infinite)



Divergence-based uncertainty sets
The f-divergence between distributions P and Q is

D;(PIQ) = [ 1 (ZS) aQ

where f is some convex function with f(1) = 0.



Divergence-based uncertainty sets
The f-divergence between distributions P and Q is

Dy (P1Q) = [ 1(%5) @

where f is some convex function with f(1) = 0.
Familiar examples:

> f(t) = —logt gives Dy (P|Q) = Dy (Q| P)

f(t) = tlogt gives Dy (P|Q) = D (P|Q)
> f(t) = 3(t —1)? gives D,2 (P|Q)
> f(t) = 3(VE—1)? gives df, (P, Q)



Divergence-based uncertainty sets
The f-divergence between distributions P and Q is

D;(PIQ) = [ 1 (ZS) aQ

where f is some convex function with f(1) = 0.
Use uncertainty region

Py = {P: Dy (P|Py) < p}



Divergence-based uncertainty sets
The f-divergence between distributions P and @ is

D;(PIQ) = [ 1 (%) aQ

where f is some convex function with f(1) = 0.
Use uncertainty region

Py :=A{P: D (P|Py) < p}




Divergence-based robustness sets

Idea: Instead of using empirical distribution ]3n on sample
X1,...,X,, look at non-parametrically reweighted versions

Pupi={P: Dy (PIP,) < %}

and minimize

n

L0, Pn,) = sup Epll(6,X)] = sup szﬁ(ﬁ X;)
Pepn,p pepn,p i=1

. R L (00,X)—n P
_/\%f,n{EP" [Af< A >]+n“”}



Empirical likelihood (Owen 1990)

For data Z; € R*, define confidence ellipse

Bulp) = { Szl Yo~ 17 <
=1 1=1

then independently of distribution on Z € RF

Pr(E[Z] € En(p)) = Pr(xj < p).



Empirical likelihood (Owen 1990)

For data Z; € R*, define confidence ellipse

Bulp) = { Szl Yo~ 17 <
=1 1=1

then independently of distribution on Z € RF

Pr(E[Z] € En(p)) = Pr(xj < p).

0.5]

0.0

—=0.5]

1.0}

~1.5]
-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0




Empirical likelihood (Owen 1990)

For data Z; € R*, define confidence ellipse

Bulp) = { Szl Yo~ 17 <
=1 1=1

then independently of distribution on Z € RF

Pr(E[Z] € En(p)) = Pr(xj < p).

1.5
1.0

.

.
0.5 °

.

.
0.0 . °
L4 .
.

-1.0

~1.5]
-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0




Empirical likelihood (Owen 1990)

For data Z; € R*, define confidence ellipse

Bulp) = { Szl Yo~ 17 <
=1 1=1

then independently of distribution on Z € RF

Pr(E[Z] € En(p)) = Pr(xj < p).

15
1.0
o H
e e ° °®
0.5 °
o © o°
.
o A3 .
0.0| e @ . .
M .
.
e * .
-05

1.0}

~1.5]
-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0




Empirical likelihood (Owen 1990)

For data Z; € R*, define confidence ellipse

Bulp) = { Szl Yo~ 17 <
=1 1=1

then independently of distribution on Z € RF

Pr(E[Z] € En(p)) = Pr(xj < p).

1.5

1.0

o
0.5 . o“'o.' °
a2
o

. o

o SIS
L
° A T
-05 e ‘e
< .

1.0}

~1.5]
-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0




On variance expansions

Confidence ellipse for risk: Robust risk is

L(6.P0) —sup{zpz %) \Z f(l/n)sZ}

Theorem (D., Glynn, Namkoong 20)
Let f be convex with f"(1) = 2. Then

L(0,Pn,) = Zﬁ 0, X;) \/ZVar]gn(E(Q,X)) +O0p(n )

uniformly in 6 in compact sets



Experiment: Reuters Corpus (multi-label)

Problem: Classify documents as a subset of the 4 categories:

{Corporate, Economics, Government, Markets}

» Data: pairs 2 € R? represents document, y € {—1,1}* where
y; = 1 indicating x belongs j-th category.

Logistic loss, with © = {§ € R?: [|¢]|; < 1000}

d = 47,236, n = 804,414. 10-fold cross-validation.

Use precision and recall to evaluate performance

v

v

v

# Correct Recall # Correct
ecall =

Precision = — —
# Guessed Positive # Actually Positive




Experiment: Reuters Corpus (multi-label)

Table: Reuters Number of Examples

Corporate Economics Government Markets
381,327 119,920 239,267 204,820




Experiment: Reuters Corpus (multi-label)

Figure: Recall on common category (Corporate)
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Experiment: Reuters Corpus (multi-label)

Figure: Recall on rare category (Economics)
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Experiment: Reuters Corpus (multi-label)

Do well almost all the time intead of just on average

100 .
Il ERM
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90| ust]
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© 80+
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4 70t
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50 — —
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Total Economics



Moving beyond “certificates”

New challenge: doing well on sub-populations within data
» ML models increasingly used in high-stakes decisions
» Disease diagnosis, hiring decisions, driving vehicles
» Models often underperform on minority, other subpopulations
» As of 2015, only 1.9 percent of all studies of respiratory
disease included minority subjects despite African Americans
more likely to suffer respiratory ailments
» Only 2 percent of more than 10,000 cancer clinical trials

funded by the National Cancer Institute focused on a racial or
ethnic minority



Approaches: group-based or pure robustness

Given groups g € G with populations P,;, minimize

max Ep, [£(6; X)]

[Meinshausen & Biihlmann 15; Kearns et al. 19; Sagawa, Koh et
al. 19-20]

> requires pre-defined groups

» may be computationally challenging (if large numbers of

potentially intersecting groups)

alternative idea: pick worst-performing sub-population, optimize
that



Conditional value at risk and friends

for random variable Z € R, Z ~ Py, and ¢1—o(Z) = 1 — « quantile
of Z,

CVaR,(2) =E[Z | Z > q1-a(2)]
mf{a 'E[[Z - )]+ n}
= sup {EP[Z] | p(2) < 1}

po(z) ~ «
= sup {Ep[Z] | there exists Q, 8 < a s.t. P =8P+ (1 —B)Q}

intuition: choose worst sub-population of size at least «



Generalized conditional value at risk

Theorem (Kusuoka)

For any collection P of distributions, there is a collection of
distributions M on [0, 1] such that

1
sup Ep[Z] = sup/ CVaR,(Z2)p(da).
PeP pHEM JO

Interpretation: all distributionally robust formulations are mixtures
of conditional value at risk



Robustness sets from f-divergences

Proposition (D. & Namkoong 20)
For any f of the form f(t) = t* — 1, we have

. 1/k.
sup  Ep[Z] = inf {(1 +e(p)E [[Z —nlfs| "+ 77}
P:D¢(P|Po)<p K

where k, = ﬁ

Consider minimizing robust losses of the form

L0 {P: Dy (P|Py) <p})=  sup  Ep[l(0; X)]
P:Dy¢(P|Po)<p



Typical results (MNIST classification experiment)

» have dataset of MNIST handwritten digits (60,000 images of
digits 0-9)

» smaller dataset of typewritten digits

> training data is mixture of MNIST and typewritten digits



Error on MNIST handwritten digits
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Error on all typewritten digits
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Error on easy typewritten digit (3)
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Error on hard typewritten digit (9)
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A few parting thoughts

» Have not talked about statistical consequences

v

Still sometimes challenging to solve these at scale

v

Hybrids between knowing groups and not knowing groups

v

Connections with causality?
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The actual robustness challenge

Robustness to future data



CIFAR Generalization

100 CIFAR-10

901

801

New test accuracy (%)

701

80 90 100
Original test accuracy (%)

(Recht, Roelofs, Schmidt, Shankar 2019)



ImageNet Generalization

ImageNet

New test accuracy (top-1, %)
ul (@)} ~ o
< < < <

I
o

60 70 80
Original test accuracy (top-1, %)

(Recht, Roelofs, Schmidt, Shankar 2019)



An alternative idea

let’s build valid confidence into systems
Goal: get confidence regions C(x) such that for given level «

Pr(Y eC(X))>1—-«

Conformal inference (Vovk and colleagues): we can do this for any
model



Scoring functions

» Prediction or score s(z,y)

» confidence sets of the form

Clx) ={y | s(z,y) <7}



Split conformal inference

Define scores S; = s(X;,Y;), i =1,...,n, and threshold

_nt 1(1 — a)-quantile of {S1,...,5,}

Tn -
and confidence set
C(z) ={y | s(z,y) <7}

Theorem
If data are i.i.d., then

PI‘(Yn+1 S C(Xn_l,_l)) Z 1—oa.






Is this enough?
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1.00
0.98 4
0.96 1
‘_//\\
\_g
0.94 4
0.92 4




Banking data
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Boston housing data
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Delta ailerons data
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Kinematics data
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Distributionally robust confidence sets

Problem: Find confidence sets C(x) such that if
$(Xni1,Yi1) ~ P and s(X;,Y;) % Py where

Dy (P|Ro) <p

then
P(Yn+1 S C(Xn+1)) 2 11—«



Robust quantiles and validity under shift

Define
oo (ot -ar(155) )
_ -
gf7,1;(7') Zsup{ﬁ € [7’,1] :Bf (;) _|_(1 _ﬁ)f (1_;> Sp}
Proposition
We have

sup Quantile(a, P) = Quantile(g;ﬁl)(a),P)
P:D¢(P|Po)<p '



A coverage guarantee

Define

Cy(z) == {y | s(z,y) < Quantile(g;;(l - a),]sn)}

Theorem
If s(X;,Y;) id Py fori=1,...,n, and s(X,+1, Ynt1) ~ P, then
for p > Dy (P|Fp)

o)

PI‘(Yn+1 S Cp(Xn+1)) > l—a-— n



One experimental result
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A few parting thoughts



