
Automated Dependence Plots

David I. Inouye
Purdue University

dinouye@purdue.edu

Liu Leqi, Joon Sik Kim
Carnegie Mellon University

{leqil,joonsikk}@cs.cmu.edu

Bryon Aragam
University of Chicago

bryon@chicagobooth.edu

Pradeep Ravikumar
Carnegie Mellon University

pradeepr@cs.cmu.edu

Abstract

In practical applications of machine learning,
it is necessary to look beyond standard metrics
such as test accuracy in order to validate various
qualitative properties of a model. Partial depen-
dence plots (PDP), including instance-specific
PDPs (i.e., ICE plots), have been widely used as
a visual tool to understand or validate a model.
Yet, current PDPs suffer from two main draw-
backs: (1) a user must manually sort or select in-
teresting plots, and (2) PDPs are usually limited
to plots along a single feature. To address these
drawbacks, we formalize a method for automat-
ing the selection of interesting PDPs and extend
PDPs beyond showing single features to show
the model response along arbitrary directions,
for example in raw feature space or a latent
space arising from some generative model. We
demonstrate the usefulness of our automated
dependence plots (ADP) across multiple use-
cases and datasets including model selection,
bias detection, understanding out-of-sample be-
havior, and exploring the latent space of a gen-
erative model. The code is available at https:
//github.com/davidinouye/adp.

1 INTRODUCTION

Modern applications of machine learning (ML) involve a
complex web of social, political, and regulatory issues as
well as standard technical issues such as covariate shift or
training dataset bias. Although the most common valida-
tion metric is test set accuracy, the aforementioned issues
cannot be resolved by test set accuracy alone—and some-
times these issues directly oppose high test set accuracy
(e.g., privacy concerns). Especially in certain applications
such as autonomous cars or automated loan approval,
practitioners have become concerned with unexpected

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

and incorrect model behaviors, such as behaviors for data
points that were not seen during training or testing (e.g.,
classifying a person as part of the road or approving a
large fraudulent loan). Thus, average-based validation
may be insufficient to validate a model. Rather, given
the difficulty of specifying expected model behavior a
priori, qualitative methods for validating a model and
highlighting the most interesting or unusual model behav-
iors beyond average-based methods are needed.

One popular approach for qualitatively validating or un-
derstanding the effect of a particular feature on the model
response is a partial dependence plot (PDP) [8]. A
PDP plots the average model response across one fea-
ture marginalized over the other features and thus gives a
global view of the feature effect on the model response.
Because PDPs take an average over some features, they
may not be as effective at showing unusual behaviors that
may be important for certain applications as noted above.
To address this gap, instance-specific PDPs such as In-
dividual Conditional Expectation (ICE) plots [10] could
be used to show the PDP plot for a single target instance
rather than averaged over a set of instances. While PDPs
were invented many years ago, they have continued to be
widely used for understanding model behavior because
they are simple to interpret (e.g., [33]).

In order to investigate unusual behaviors for safety-critical
applications, practitioners must manually inspect O(nd)
instance-specific PDPs, where n is the number of samples
they want to investigate and d is the number of features.
This manual inspection is prohibitive, even for moderate
n and d. Additionally, because PDPs only consider a
single feature (i.e., axis-aligned directions), they can miss
important interactions between features which may be
critical in certain applications. One could use 2D PDP
heatmaps, however, this would increase the number of
plots from O(nd) to O(nd2). Thus, despite widespread
use, current PDPs suffer from two main drawbacks: (1) a
user must manually select interesting plots, and (2) PDPs
are usually limited to plots along a single feature.

https://github.com/davidinouye/adp
https://github.com/davidinouye/adp

To address these drawbacks, we formalize a method to
automate the selection of interesting PDP plots and to
extend PDPs to directional dependence plots, which show
the model response in more general directions—either
in raw feature space for tabular data or in a latent space
for, e.g., visual or textual data. An illustrative example of
such a directional dependence plot is given in Fig. 1. Here,
multiple features are being changed and the specific plot
is optimized to show the least monotonic direction. This
optimization, which is one of our key contributions, is
how we automate the selection of “interesting” or relevant
plots. We summarize our contributions as follows:

1. We formalize the concept of interestingness or un-
expectedness of dependence plots by defining two
classes of plot utility functions that have multiple
instantiations including utilities to compare two mod-
els and validate (or invalidate) certain properties such
as linearity, monotonicity, and Lipschitz continuity.

2. We generalize PDPs beyond axis-aligned directions
to consider the model response along sparse linear di-
rections. In particular, we optimize a specified utility
measure over sparse linear directions using a greedy
coordinate pairs algorithm. For tabular data where
the features are inherently interpretable, we optimize
for a sparse linear direction in the raw feature space.
For rich data such as images or text, we propose to
find sparse linear directions in a latent representation
space (e.g., via a VAE) but show the correspond-
ing images along this direction in the original raw
feature space.

3. We demonstrate the usefulness of the resulting au-
tomated dependence plots (ADPs) across multiple
use-cases and datasets including model selection,
bias detection, understanding out-of-sample behav-
ior, and exploring the latent space of a generative
model.

Related work. The importance of safety and robustness
in ML is now well-acknowledged [24, 31], especially
given the current dynamic regulatory environment sur-
rounding the use of AI in production [13, 32]. A popular
approach to auditing and checking models before deploy-
ment is “explaining” a black-box model post-hoc. Both
early and recent work in explainable ML rely on local
approximations (e.g., [11, 23]). Other recent papers have
studied the influence of training samples or features [5, 6].
These have been extended to subsets of informative fea-
tures [2, 5, 19] to explain a prediction. Other approaches
employ influence functions [18] and prototype selection
[34, 35]. A popular class of approaches take the perspec-
tive of local approximations, such as linear approxima-
tions [19, 23], and saliency maps [27, 28, 30]. A crucial

1659
19

1544
30

1430
41

1316
53

1202
64

1087
75

(amount, age)

1.5

2.0

2.5

Sc
or

e

LeastMonotonicUtility=0.017

Target
Model
BestPartial

Figure 1: The above example highlights the two key inno-
vations of our proposed automated dependence plots: (1)
Finding interesting plots by formalizing and optimizing
plot utility measures—in this case, the utility is based
on the non-monotonicity of the curve. (2) Optimizing
over directions that change multiple features rather than
only varying a single feature as in standard PDP plots (as
indicated on the x-axis). For the target loan application
(designated by the red point), the directional dependence
plot (solid line) shows the change in model scores (y-axis)
along a direction in which two numeric features (amount
and age) are varied. The plot was optimized so that the
model response along the plot is the least monotonic (for
comparison, the best monotone regression line is shown
via the dotted line; see Sec 2 for more details).

caveat with such approximation-based methods is that the
quality of the approximation is often unknown, and is
typically only valid in small neighborhoods of an instance
(although we note recent work on global approximations
[12]). In contrast to these previous feature selection meth-
ods, our approach leverages a utility measure to select
features or directions.

2 PLOT UTILITY MEASURES

In this section, we define two classes of utility measures
for generic dependence plots including PDP plots, ICE
plots, and our generalization to directional dependence
plots described in the next section. The intuition is that
the plot utility measure quantifies the “interestingness” or
relevance of a particular feature or direction. As we will
discuss in more detail in Sec. 4, it is implicit here that we
wish to maximize the utility (cf. (7)).

Notation. We assume that the input space is X = Rd—
we could consider categorical variables by showing bar
charts as in categorical PDP plots but for simplicity,
we will focus on continuous features. For instance-
specific plots, we will denote the target instance as
x0 2 Rd. Let f : Rd ! R be a black-box function,
i.e., we can query f to obtain pairs (x, f(x)). We do
not assume that f is differentiable or even continuous
in order to allow non-differentiable models such as ran-

dom forests. We will denote a plot by it’s correspond-
ing univariate function f̃(t) : R ! R, where we visu-
alize this function for some bounded interval, i.e., for
t 2 [a, b]—the bounds for standard PDP plots are usu-
ally based on the minimum and maximum values along
each feature but we will generalize this for directional
plots in the next section. For other multivariate func-
tions g(x), we will denote similarly the corresponding
univariate function as g̃(t). As an example, for PDP
f̃i(t) = E[f(. . . , xi�1, t, xi+1, � � �)] where the expecta-
tion is an empirical expectation with respect to some
dataset (often a training dataset) and t ranges over the
minimum and maximum of the i-th feature. For instance-
specific PDP (ICE), f̃i(t) = f(. . . , xi�1, t, xi+1, � � �)
where the input x is fixed to a target point x0 except
for the i-th feature—this can be seen as a PDP plot where
the dataset is a single point. We will denote U(f̃ , a, b) as
a plot utility function where we usually suppress the de-
pendence on the bounds a and b for simplicity and merely
denote the utility as U(f̃).

In the next subsections, we carefully develop and define
two general classes of plot utility measures. Both classes
of utilities compare to another plot, which we will show
as a dotted line as can be seen in Fig. 1. This helps
give the reader an interpretable reference for the utility
measure itself—e.g., showing the best bounded Lipschitz
approximation to the plot. Of course, we do not claim that
our proposed set of utility measures is exhaustive, and
indeed, this paper will hopefully lead to more creative
and broader classes of utility measures.

2.1 MODEL CONTRAST UTILITY MEASURES

A natural way to measure the utility of a plot with re-
spect to one model is to contrast it to the same plot based
on a different model. Given another multivariate model
gx0

(x) : Rd ! R, which could be defined with respect to
a target instance, we define the contrast utility measure:

Uc(f̃) =
R b
a
L(f̃(t), g̃x0(t))dt , (1)

where L is a loss function, e.g., squared or absolute loss,
and g̃x0

(t) is the corresponding plot function with respect
to gx0

(x). By maximizing Uc(f̃), we can find the plot
f̃ that differs the most from the baseline model g̃x0

(t).
The baseline could be another simple model like logis-
tic regression or some local approximation of the model
around the target instance such as explanations produced
by LIME [23]—this would provide a way to critique local
approximation methods and show where and how they
differ from the true model.

Example 1 (Variance of Plot). While the PDP paper [8]
did not propose ways for sorting or selecting interesting
plots, a commonly used method to sort PDP curves is

by the variance of the plot. The utility of a plot based
on variance can be seen as special case of the model
contrast utility where g̃(x) = c = E[f̃(s)] = 1/(b �
a)
R b
a
f̃(s)ds—i.e., an expectation of f̃ with respect to

a uniform distribution between a and b—and the loss
function is squared error. We will use this as the default
sorting mechanism for comparison in our experiments
because it is the simplest and seems to be common in
practice.

Example 2 (Contrast with Constant Model). Sometimes
we may want to create a contrast model that is dependent
on the target point x0. The simplest case is where the con-
trast model is a constant fixed to the original prediction
value, i.e., gx0

(x) = cx0
= f(x0) Note that in this case

the comparison function depends on x0. This contrast to
a constant model can find directions that deviate the most
from the prediction; this implicitly finds plots that are not
flat and significantly affect the prediction value.

Example 3 (Contrast with Validated Linear Model). Sup-
pose an organization has already deployed a carefully
validated linear model—i.e., the linear parameters were
carefully checked by domain experts to make sure the
model behaves reasonably with respect to all features.
The organization would like to improve the model’s per-
formance by using a new model, but wants to see how the
new model compares to their carefully validated linear
model to see where it differs the most. In this case, the or-
ganization could let the contrast model be their previous
model, i.e., gx0

(x) = gLinear(x) where g does not depend
on the target point x0.

Example 4 (Contrast Random Forest and DNN). An
organization may want to compare two different model
classes such as random forests and deep neural networks
(DNN) to diagnose if there are significant differences in
these model classes or if they are relatively similar. In
this case, the contrast model g(x) would be the random
forest or DNN.

Example 5 (Contrast with local approximations used for
explanations). We can also compare the true model with
explanation methods based on local approximation such
as LIME [23] or gradient-based explanation methods
[26, 28, 30]. We can simply use the local approximation
to the model centered at the target point as the contrast
model,i.e., gx0(x) = f̂x0(x), where f̂x0 is the local ap-
proximation centered around x0. Thus, the found diag-
nostic curve will show the maximum deviation of the true
model from the local approximation model being used for
an explanation. Importantly, this allows our diagnostic
method to assess the goodness of local approximation
explanation methods showing when they are reasonable
and when they may fail; see Fig. 2.

Figure 2: This plot illustrates using the model contrast
utility where gx 0 (dotted line) is an explanation model
based on the gradient similar to the local linear explana-
tion models in LIME [23]. Notice how it shows where the
approximation may be appropriate (duration > 46) and
where it might be far from the true model (duration < 46).

2.2 FUNCTIONAL PROPERTY
(IN)VALIDATION UTILITY MEASURES

In many contexts, a user may be more interested in vali-
dating (or invalidating) certain functional properties of a
model, such as monotonicity or smoothness. For example,
if it is expected that a model should be increasing with
respect to a feature (e.g., income in a loan scoring model),
then we'd like to check that this property holds true (at
least approximately). LetH be a class of univariate func-
tions~h : R ! R that represents a property that encodes
acceptable or expected behaviors. To measure deviation
of a plot from this class of functions, take the minimum
expected loss over allh 2 H :

Up(~f) = min
~h2H

Z b

a
L (~f (t); ~h(t))dt (2)

where as usual,L is a loss function. The minimization in
(2) is a univariate regression problem that can be solved
using standard techniques. This utility will �nd depen-
dence plots that maximally or minimally violate the func-
tional properties encoded byH.

Example 6(Linearity (in)validation via linear regression).
A user might want to view the plots that are the least linear
to see if there is some unusual plots that may need further
investigation. For this example, the class of functions
would merely be linear functions, i.e.,H is the set of
univariate linear functions. This problem could be solved
easily using standard linear regression methods.

Example 7(Monotonicity (in)validation via isotonic re-
gression). In many applications, it may be known that the
model output should behave simply with respect to certain
features. For example, one might expect that the score is
monotonic in terms of income in a loan scoring model.
In this case, the class of functions should be the set of
monotonic functions, i.e.,H is the set of all monotonic
functions. The resulting problem can be ef�ciently solved
using isotonic regression [1]—and this is what we do in

our experiments; see Fig. 4 for an example of validating
(or invalidating) the monotonic property.

Example 8 (Lipschitz-boundedness (in)validation via
constrained least squares). Another property that an or-
ganization might want to validate is whether the function
has a small Lipschitz constant along the curve. Formally,
they may wish to check if the following condition holds:

�
�
�
�
�

~f (t2) � ~f (t1)
t2 � t1

�
�
�
�
�

� L ; 8t1; t2 2 [a; b] (3)

whereL is a �xed Lipschitz constant. Thus, the corre-
sponding class of functionsH L is the set of Lipschitz
continuous functions with a Lipschitz constant less than
L . In practice, we can solve this problem via constrained
least squares optimization—similar to isotonic regression
(details in supplement). An example of using Lipschitz
bounded functions forH can be seen in Fig. 3. This utility
will �nd the curve that maximally violates the bounded
Lipschitz condition; this curve may also be useful in �nd-
ing where the model is particularly sensitive to changes
in the input since the derivative along the curve will be
larger than the Lipschitz constant.

Figure 3: Example of contrast utility function when the
function class is Lipschitz continuous withL � 5.

3 DIRECTIONAL DEPENDENCE
PLOTS

In this section, we formally de�ne a directional depen-
dence plot, which generalizes classical PDPs and instance-
speci�c PDPs. First, recall that a PDP~f i varies the
i -th feature and averages over the other features in a
dataset, i.e.,~f i (t) = Ex [f (x + tei)], whereei is the
i -th standard basis vector. In this form of~f i , the gen-
eralization to directions is quite straightforward as we
can replaceei by v wherev is an arbitrary unit vector:
~f v (t) = Ex [f (x + tv)]. The instance-speci�c depen-
dence plot with respect tox 0 is:

~f v ;x 0 (t) = f (x 0 + tv) : (4)

In future sections, we will often suppress the dependence
onv or x 0 if it is understood from the context. Because
this paper focuses on �nding unusual or interesting plots

