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Abstract

Causal models are fundamental tools to under-
stand complex systems and predict the effect of
interventions on such systems. However, de-
spite an extensive literature in the population—
or infinite-sample—case, where distributions
are assumed to be known, little is known about
the statistical rates of convergence of various
methods, even for the simplest models. In
this work, allowing for cycles, we study linear
structural equations models with homoscedas-
tic Gaussian noise and in the presence of in-
terventions that make the model identifiable.
More specifically, we present statistical rates
of estimation for both the LLC estimator intro-
duced by Hyttinen, Eberhardt and Hoyer and a
novel two-step penalized maximum likelihood
estimator. We establish asymptotic near min-
imax optimality for the maximum likelihood
estimator over a class of sparse causal graphs
in the case of near-optimally chosen interven-
tions. Moreover, we find evidence for practical
advantages of this estimator compared to LLC
in synthetic numerical experiments.

1 INTRODUCTION

Directed graphical models (Pearl, 2009; Spirtes et al.,
2000) provide a useful framework for interpretation, in-
ference, and decision making in many areas of science
such as biology, sociology, and environmental sciences
(Friedman et al., 2000; Duncan, 1966; Keats and Hitt,
1988). Unlike their undirected counterparts that merely
encode the structure of probabilistic dependence between
random variables directed graphical models reveal causal
effects that are the basis of scientific discovery (Pearl,
2009).
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Most frequently, the model is assumed to be governed
by a directed acyclic graph (DAG) G = (V,E), where
V = {X1, . . . , Xp} are the variables of an observed sys-
tem and E is a set of edges such that there is no directed
cycle in G. In such models, known as Bayes networks
(Pearl, 2009), the variables follow a joint distribution
that factorizes according to the graph G in the sense that
node i is independent of other nodes conditionally on its
parents. The absence of cycles allows for a direct in-
terpretation of the causal structure between the variables
X1, . . . , Xp whereby a directed edge corresponds to a
causal effect. At the same time, most complex systems
showcase feedback loops that can be both positive and
negative, and the need to extend Bayes networks to al-
low for cycles was recognized long ago.

A large body of work focuses on learning Bayes net-
works from observational data, that is, data drawn in-
dependently from the joint distribution of (X1, . . . , Xp).
Observational data is rather abundant but even in the
acyclic cases, it is known to lead to a severe lack of
identifiability: Such data, even in infinite abundance,
can only yield an equivalence class—the Markov equiv-
alence class—of DAGs that are all compatible with
the conditional independence relation in the given data.
While a DAG in the Markov equivalence class can al-
ready yield decisive scientific insight (Maathuis et al.,
2009), searching over the space of DAGs is often com-
putationally hard. Many algorithms have been pro-
posed over the years such as the PC algorithm (Spirtes
et al., 2000) and Greedy Equivalence search (Chickering,
2002) and max-min hill-climbing (Tsamardinos et al.,
2006), but all of them rely on the notion of faithful-
ness of the distribution, i.e., the assumption that all con-
ditional dependence relations that could be compatible
with the DAG G are actually fulfilled by the distribu-
tion of X . In fact, for consistency of these algorithms,
one needs to assume that these dependencies observe
a signal-to-noise ratio that allows to detect them with
high probability (Kalisch and Bühlmann, 2007; Loh and



Bühlmann, 2014; van de Geer and Bühlmann, 2013). Ex-
tensions that allow certain kinds of cycles, (Richardson,
1996; Richardson and Spirtes, 1996; Schmidt and Mur-
phy, 2009; Itani et al., 2010; Lacerda et al., 2008) have
been proposed but at the expense of having an increased
number of graphs in each equivalence class.

Recent breakneck advances in data collection processes
such as the spread of A/B testing for online market-
ing or targeted gene editing with CRISPR-Cas9 are con-
tributing to the proliferation of interventional data, the
gold standard for causal inference. With unlimited in-
terventions on any combination of nodes, learning a di-
rected graphical model becomes a trivial task. However,
exhaustively performing all interventions is a daunting
and costly task and recent work has focused on finding
a small number of interventions for several classes of
DAGs (Shanmugam et al., 2015; Kocaoglu et al., 2017).
For graphs with cycles, Hyttinen et al. (2012) have char-
acterized the system of interventions necessary to learn
a parametric linear structural equation model (SEM)
(Bielby and Hauser, 1977; Bollen, 1989), in which all
variables are real-valued and the causal relationships
given by the edges E are linear. Formally, the special case
of this model we consider here postulates that the fol-
lowing equation holds (in distribution) for observational
samples from X:

X = B∗X + Z, Z ∼ N (0, I), (1.1)

where we exclude explicit self-loops by assuming that
the diagonal of B∗ ∈ IRp×p is zero. By writing X =
(I − B∗)−1Z and assuming that the corresponding in-
verse matrix exists, this allows us to handle underly-
ing graphs that are cyclic. A more general form of this
model, additionally allowing for latent confounders and
unknown noise variances, has been extensively studied
in Hyttinen et al. (2012). There, it is shown that if we
have access to data from a sufficiently rich system of in-
terventions, i.e., if enough variables are randomized and
are thus made independent of the influence of their par-
ents encoded in B∗, then on a population level, B∗ is
identifiable by a method of moments type estimator that
the authors call LLC (for linear, latent, causal).

In this paper, we present upper and lower bounds for
the reconstruction of B∗ in Frobenius norm for classes
of sparse B∗, corresponding to graphs with bounded in-
degree, using multiple observations for each interven-
tion setup. We also provide upper bounds for the orig-
inal LLC estimator with `1-penalization term as well as
an `1-penalized maximum likelihood estimator, all under
the simplifying assumption that the noise or disturbance
variables Z are Gaussian, independent of each other, and
have unit variance. Moreover, we provide numerical ev-
idence that a non-convex ADMM type algorithm can be

used to find a solution to this maximum likelihood prob-
lem, albeit without convergence guarantees.

1.1 RELATED WORK

It is known that several variants of the model (1.1)
are identifiable from observational data, including non-
linear SEMs (Hoyer et al., 2009) or non-Gaussian
noise (Shimizu et al., 2006). Linear SEMs with Gaussian
noise can be identifiable under additional assumptions,
for example when the components of the noise have
equal variances and the underlying graph is a DAG (Loh
and Bühlmann, 2014; Peters and Bühlmann, 2014), when
the underlying graph is random and sparse (Abraham-
sen and Rigollet, 2018), or when the noise variables ful-
fill certain additional identifiability conditions (Ghoshal
and Honorio, 2018). Moreover, in the DAG case, lower
bounds for general exponential family models are avail-
able (Ghoshal and Honorio, 2017). Similarly, struc-
tural assumptions that lead to identifiability from obser-
vational data also arise in Independent Component Anal-
ysis (Shimizu et al., 2006; Abrahamsen and Rigollet,
2018).

Moreover, many more approaches to dealing with cy-
cles and/or interventions are known, such as convex reg-
ularizers in an exponential family model (Schmidt et al.,
2007; Schmidt and Murphy, 2009), independence test-
ing (Itani et al., 2010), Independent Component Analysis
(Lacerda et al., 2008), noisy path queries (Bello and Hon-
orio, 2018), and adapting Greedy Equivalence Search to
handle interventional data (Hauser and Bühlmann, 2012;
Wang et al., 2018). From the above, it seems that the
linear Gaussian case is somewhat of a worst-case exam-
ple for identifiability of the ground truth matrix, espe-
cially when allowing cycles, and thus warrants the in-
vestigation of controlled interventions to eliminate am-
biguity, which is the main contribution of Hyttinen et al.
(2012). Similar models have been considered for appli-
cations, for example in computational biology, see Cai
et al. (2013), where identifiability is not provided by con-
trolled experiments on the variance, but rather by a mean
shift of some variables.

Our work extends the results in Hyttinen et al. (2012)
by providing explicit upper bounds for their suggested
method, as well as presenting an alternative estimator
that leads to upper bounds independent of the condition-
ing of the experiments as explained in Section 3.3. In
spirit, our results are similar to consistency guarantees
obtained in van de Geer and Bühlmann (2013) and Wang
et al. (2018), but we focus on the case where enough
interventions are performed to identify the ground truth
structure matrix B∗, alleviating the need for additional
assumptions on B∗.



1.2 STRUCTURE OF THE PAPER

The rest of the paper is structured as follows: In Section
2, we give an overview of the linear structural equation
model we consider and the main assumptions we make.
In Section 3, we present lower bounds, upper bounds for
LLC, and upper bounds for a two-step maximum like-
lihood estimator. In Section 4, we give an abbreviated
version of numerical experiments on synthetic data. The
full version is presented in Section A of the supplement,
where we derive a non-convex variant of ADMM to solve
part of the numerical optimization problem for the pe-
nalized maximum likelihood estimator and explore its
performance on synthetic and semi-synthetic data. The
proofs of the main results are deferred to Sections C –
E in the supplement, and we collect extended notational
conventions in Section B and general lemmas used in all
the proofs in Section F. Section G contains a short argu-
ment for why experimental data is necessary given our
assumption, and Section H provides a way of speeding
up our numerical calculations.

1.3 NOTATION

We write a . b for two quantities a and b if there ex-
ists an absolute constant C > 0 such that a ≤ Cb, and
similarly for a & b. For two real numbers a, b ∈ IR,
we write a ∧ b for their minimum and a ∨ b their max-
imum, respectively. For a natural number p, we denote
by [p] = {1, . . . , p}. Given a set S, we write |S| for its
cardinality.

For two matrices A,B ∈ IRp1×p2 , we abbreviate the ith
row by Bi,: and the ith column by B:,i. Similarly, Bi,−j
denotes the ith row of B where the jth element is omit-
ted. Further, ‖B‖F denotes the Frobenius norm, ‖B‖op
the operator norm, and

‖B‖1 =
∑
i,j

|Bi,j |.

If A is a square invertible matrix, we denote by A−1

its inverse and by A−> the transpose of A−1. By I ∈
IRp×p, we denote the identity matrix.

2 MODEL AND ASSUMPTIONS

Before summarizing our explicit assumptions, we give
a definition of observations under a linear cyclic struc-
tural equation model with and without interventions. We
assume that a linear SEM on a random vector X =
(X1, . . . , Xp) is given by a matrix B∗ ∈ IRp×p without
self-cycles, i.e., B∗ ∈ B0 with

B0 := {B ∈ IRp×p : Bi,i = 0, for all i = 1, . . . , p}.

That is, if Bi,j 6= 0 for i 6= j, then there is a linear causal
dependence of Xi on Xj , or equivalently, an edge (j, i)
in the directed graph associated with X . Without any in-
tervention, each observation is an independent copy of
X = (I − B∗)−1Z, where Z can in principle be any
noise variable. Since non-Gaussian noise can lead to
identifiability from observational data through exploiting
this particular property (Hoyer et al., 2009; Lacerda et al.,
2008), we focus on Gaussian noise, and make the simpli-
fying assumption that Z ∼ N (0, I). In order to guaran-
tee that (I−B∗)−1 exists, we assume ‖B∗‖op < 1 which
in particular allows us to write

X =

∞∑
k=0

(B∗)kZ,

and X can be interpreted as the steady state distribution
of an auto-regressive process {xt}t≥0 governed by the
dynamics

xt+1 = B∗xt + Z, x0 = Z. (2.1)

Hence, X is distributed according to X ∼ N (0,Σ∗)
with

Σ∗ = (I −B∗)−1(I −B∗)−>.

In order to obtain results in the high-dimensional regime
p � n, we additionally assume that the in-degree of B∗

is bounded, resulting in a sparse matrixB∗. That is, if we
denote the maximum in-degree of a matrix B ∈ IRp×p

by
d(B) = max

i∈[p]
|{j : Bi,j 6= 0}|,

then we assume d(B∗)� p.

Moreover, we assume that we have access to interven-
tional, a.k.a. experimental, data, which is modeled as
follows, keeping in line with the definition from Hytti-
nen et al. (2012). An experiment e is given by a partition

[p] = Ue ∪̇ Je, (2.2)

with associated projection matrices

(Ue)i,j =

{
1, i = j and i ∈ Ue
0, otherwise,

(Je)i,j =

{
1, i = j and i ∈ Je
0, otherwise.

(2.3)

In effect, all nodes in Je are intervened on, i.e., they
are not influenced by their parents anymore. We as-
sume that they follow a standard Gaussian distribution
N (0, 1), leading to a random variable Xe ∼ N (0,Σ∗,e)
corresponding to experiment e with covariance matrix

Σ∗,e = (I − UeB∗)−1(I − UeB∗)−>,



and inverse covariance matrix (concentration matrix)

Θ∗,e = (Σ∗,e)−1 = (I − UeB∗)>(I − UeB∗).

Hyttinen et al. (2012) provide the following criterion to
identify B∗ from interventional data associated with E .

Definition 1 (Completely separating system). The set of
experiments E is a completely separating system if for
every i 6= j ∈ [p], there exists e ∈ E such that i ∈ Je
and j ∈ Ue.

Note that Hyttinen et al. (2012) call the separation con-
dition for a pair (i, j) ∈ [p]2 the pair condition. They
show that Definition 1 guarantees identifiability of B∗

from observational data. Conversely, they show that if E
is not separating, there exists a ground truth system that
is not satisfied, albeit allowing a more general covariance
structure on the noise terms (Zek in Assumption A3 be-
low) for the latter construction than we do.

We are now in a position to state our assumptions.

A1 (Structure matrix). For any two positive integers d ≤
p and η ∈ (0, 1/2], let B(p, d, η) denote the set of sparse
matrices defined by

B(p, d, η) := {B ∈ IRp×p : Bi,i = 0 for i ∈ [p],

‖B‖op ≤ 1− η, d(B) ≤ d},

and assume B∗ ∈ B(p, d, η).

A2 (Interventions). Let E be a set of experiments with
associated partitions {(Ue,Je)}e∈E and projection ma-
trices {(Ue, Je)}e∈E as in (2.2) and (2.3), respectively.
Assume that E is separating in the sense of Definition 1.

A3 (Noise). Assume n ∈ N is divisible by E := |E|, set
ne = n/E for e ∈ E , and for k ∈ [ne], e ∈ E , denote by
Zek ∼ N (0, I) i.i.d. Gaussian random vectors. Then, we
assume that we have access to observations of the form
Xe
k = (I − UeB∗)−1Zek .

A few remarks are in order.

A1. The bound ‖B∗‖op ≤ 1− η guarantees invertibility
of I−UB∗ for any projection matrix U and convergence
of the process (2.1).

A2. As mentioned, this is the same assumption under
which Hyttinen et al. (2012) show identifiability of B∗

under more general assumptions than the ones presented
here, in particular allowing more general noise variances
and hidden variables. Note that their proof of neces-
sity of this assumption does not exactly match our as-
sumption because our noise variances are restricted, so in
principle, identifiability from observational data could be
possible under a weaker condition. However, we give ev-
idence in Section G that at least observational data alone
is not sufficient to recover a general B∗.

Intuitively, the fact that E is separating guarantees that
B∗ can be recovered from submatrices of {Σ∗,e}e∈E via
solving a system of linear equations, a fact that is made
more precise in Section 3.2. Since we are interested in
recovering B∗ under otherwise minimal assumptions on
B∗, this is the case we consider for the theoretical contri-
butions of this paper. We do however investigate the be-
havior of the two estimators considered in Section 3 with
respect to a violation of this assumption numerically in
Section 4.

A3. The assumption of Gaussian noise is not critical
for our analysis, and in fact all our proofs extend read-
ily to sub-Gaussian noise. Similarly, the assumption
ne = n/E can be replaced by ne � n/E, that is, the
number of observations in all experiments is compara-
ble. Next, the assumption IE[Zek] = 0 can be relaxed to
an unknown mean by estimating the means of the indi-
vidual experiments and subtracting them off, incurring
only higher-order error terms with respect to n. On the
other hand, the assumption that, IE[(Zek)2] = 1 might
be restrictive in practice. We conjecture that it might
be relaxed while maintaining many of the guarantees we
give in Section 3, but due to the notational burden as-
sociated with incorporating these additional factors into
the estimation, we chose to leave this topic as the sub-
ject of future research. Note that while the assumption
of equal variances implies identifiability from observa-
tional data in the case where B∗ is assumed to be acyclic
(Loh and Bühlmann, 2014; Peters and Bühlmann, 2014),
it does not in the cyclic case, see Section G. Hence, the
assumptions as presented still lead to a class rich enough
to require controlled experiments to estimate B∗. More-
over, contrary to the approach in (Loh and Bühlmann,
2014; Peters and Bühlmann, 2014), we do not explic-
itly exploit the fact that the variance is known by sorting
the variables, likely rendering the estimators considered
here robust in the case where the variances have to be
estimated as well.

Remark 2. It was shown in Hyttinen et al. (2013) that
the minimum number of experiments necessary to obtain
a completely separating system is of the order log(p),
which can be seen by a simple binary coding argument.
Hence, if we are able to pick the experiments in the most
parsimonious way possible, E = O(log(p)) only con-
tributes a logarithmic factor to any of the rates presented
in Section 3.

3 MAIN RESULTS

3.1 LOWER BOUNDS

First, we give lower bounds for the estimation of matrices
B∗ ∈ B(p, d, η). This information-theoretic result sets a



benchmark for any method employed in this model. To
that end, let κ denote the redundancy of the experiments
E . It is defined as the maximum number of experiments
that separate two variables,

κ = κ(E) = max
i 6=j∈[p]

|{e ∈ E : i ∈ Ue, j ∈ Je}|.

Theorem 3. There exists a constant c > 0 such that if
d ≤ p/4 and

n ≥ pdE2 log
(

1 +
p

4d

)
,

then, for any estimator B̂, there exists B∗ ∈ B(p, d, η)
such that

‖B̂ −B∗‖2F ≥ c
pdE

κn
log
(
1 +

p

4d

)
(3.1)

with constant probability.

The proof of Theorem 3 is deferred to Section C of the
supplement. We remark that there is a mismatch in the
lower bound and the range of n for which it is effective
that is of order E. In the case of a minimal system of
completely separating interventions, by Remark 2, this
mismatch is of order log(p).

3.2 UPPER BOUNDS FOR THE LLC
ESTIMATOR

Next, we give bounds on the performance of the LLC
estimator introduced in Hyttinen et al. (2012). We briefly
summarize the algorithm below, which can be seen as a
moment estimator for B∗.

3.2.1 The LLC estimator

Denote by b∗i ∈ IRp−1 the ith row of B∗, where we omit
the ith entry, which is assumed to be zero since B∗ ∈ B.
Formally, b∗i = (PiB

>
i,:) = B>i,−i, where Pi : IRp →

IRp−1 denotes the projection operator that omits the ith
coordinate.

LLC is motivated by the observation that on the popu-
lation level, each b∗i satisfies a linear system T ∗i b

∗
i = t∗i ,

where T ∗i ∈ IRmi×(p−1) and t∗i ∈ IRmi for somemi ≥ 1
are defined as follows. For i = 1, . . . , p, define the ma-
trix T ∗i and the column vector t∗i row by row. For each
experiment e such that i ∈ Ue and each j ∈ Je, add a
row to T ∗i and to t∗i , say with index ` = `(e, j), that is of
the form

(T ∗i )`,: = e>j Σ∗,eP>i , (t∗i )` = Σ∗,ej,i

where ej is the jth canonical vector of IRp. To better
visualize (T ∗i )`,:, one may rearrange the indices so that

Je = {1, . . . , |Je|}, in which case we have

(T ∗i )`,: =
[
0 . . . 1 . . . 0 Σ∗,ej,Ue\{i}

]
,

where “1” appears in the jth coordinate. Let mi de-
note the total number of such rows obtained by scanning
through all experiments e such that i ∈ Ue and j such
that j ∈ Je.

When E is a completely separating system, T ∗i bi = t∗i
has the unique solution b∗i = (B∗i,−i)

>, (Hyttinen et al.,
2012). The LLC estimator is obtained by substituting
Σ∗,e in the above definitions with its empirical counter-
part Σ̂e defined by

Σ̂e =
1

ne

ne∑
k=1

Xe
k(Xe

k)>,

except for where the variances are known exactly due to
the fact that an intervention is performed. This leads to a
linear system of the form T̂ibi = t̂i. Rather than solving
the linear system exactly, the LLC estimator is obtained
by minimizing a penalized least squares problem to pro-
mote sparsity in the resulting estimate:

b̂i = argmin
b∈IRp−1

‖T̂ib− t̂i‖22 + λ‖b‖1, i = 1, . . . , p,

where λ > 0 is a tuning parameter. The solutions to the
above problems are assembled into the LLC estimator
B̂llc by setting

(B̂llc)i,−i = b̂>i , (B̂llc)i,i = 0, i ∈ [p]. (3.2)

3.2.2 Statistical performance

The upper bounds we give for the performance of LLC
depend on additional constants that are not directly con-
trolled for an arbitrary B∗ ∈ B(p, d, η). Loosely speak-
ing, they pertain to the conditioning of the `1-regularized
least squares problems that are solved to obtain B̂llc.
These constants are defined as follows. Denote by

C(d) := {v ∈ IRp : for all S ⊆ [p] with |S| ≤ d,
‖vSc‖1 ≤ 3‖vS‖1}.

Then, define

ρ(d) = min
i∈[p]

inf
v∈C(d),v 6=0

‖T ∗i v‖2
‖v‖2

,

R(d) = max
i∈[p]

sup
v∈IRp,v 6=0,
| supp(v)|≤d

‖T ∗i v‖2
‖v‖2

,

R̃ = max
i∈[p]

max
j∈[p]

∑
k∈[p]

|(T ∗i )k,j |.

We are now in a position to state the first rate of conver-
gence for the LLC estimator.



Theorem 4 (Rates for LLC estimator). Let assumptions
A1 – A3 hold and fix δ ∈ (0, 1). Assume further that

n &

(
1 ∨ p2

R̃2η4
∨ pd

(R(d) + 1)2η4ρ(d)4

)
E log(eκp/δ).

Then LLC estimator B̂llc defined in (3.2) with λ chosen
such that

λ � R̃
√
E log(eκp/δ)

n
,

satisfies

‖B̂llc −B∗‖2F .
R̃2

ρ(d)4η4
pdE log(eκp/δ)

n
, (3.3)

with probability at least 1− δ.

The proof is deferred to Section D of the supplement.
It uses standard arguments for the LASSO, together
with perturbation results for regression with noisy design
from Loh and Wainwright (2011) in Lemma 8 to handle
the presence of noise in the matrices T̂i.

Remark 5. Unfortunately, it is not clear whether the
factors ρ(d), R(d), R̃ stay bounded with increasing p, d,
and E, uniformly over all possible ground truth matrices
B∗ ∈ B(p, d, η). Hence, even though the explicit depen-
dence on p, d, and E in the upper bounds (3.3) matches
the lower bounds (3.1), we can not claim this rate to be
(near) minimax optimal.

Remark 6. Comparing the definitions of ρ(d) andR(d),
one might prefer an alternative definition of the former of
the form

ρ̃(d) := min
i∈[p]

inf
v∈IRp, v 6=0,
| supp v|≤d

‖T ∗i v‖2
‖v‖2

.

In fact, these two quantities are related, albeit for dif-
ferent values of d, see Section 8 in Bellec et al. (2018).
We choose ρ(d) instead of ρ̃(d) for the sake of a simpler
presentation.

In order to address the issues raised in the previous re-
mark, we next give a penalized maximum likelihood es-
timator.

3.3 UPPER BOUNDS FOR TWO-STEP
PENALIZED LIKELIHOOD

3.3.1 Two-step maximum likelihood estimator

One shortcoming in the rate for LLC for large n in Theo-
rem 4 are the constants ρ(d) and R̃ which might actually

grow with p, see Remark 5. Moreover, as a moment es-
timator, it does not naturally behave well with respect
to model misspecification. This motivates a different es-
timator based on a penalized maximum likelihood ap-
proach.

Recall that the negative log-likelihood of a multivariate
Gaussian with empirical covariance matrix Σ̂ and preci-
sion matrix Θ is given by.

`(Θ, Σ̂) = Tr(Σ̂Θ)− log det(Θ)

Thus, the negative log-likelihood for the whole model is
proportional to

L(B) = L(B, Σ̂1, . . . , Σ̂E) =
∑
e∈E

`(Θe(B), Σ̂e),

where Θe(B) = (I − UeB)>(I − UeB), and

Σ̂e =
1

ne

ne∑
k=1

Xe
k(Xe

k)> =
E

n

ne∑
k=1

Xe
k(Xe

k)>.

In order to exploit sparsity in the underlying matrix B∗,
we need to penalize L(B) before minimizing it. How-
ever, due to the non-linear dependence of Σe on B, a
vanilla `1-penalization term might not yield desirable
statistical rates. To overcome this limitation, we propose
a two-step estimation procedure. First, an initial guess
B̂init is produced using a penalization acting on the scale
of the concentration matrices. This initial guess is sub-
sequently refined to B̂ as the solution to the `1-penalized
log-likelihood restricted to a small ball around B̂init.

In the first step, we employ penalization with a term re-
sembling a graphical lasso penalty for each experiment,

peninit(B) = peninit,λinit
(B) = λinit

∑
e∈E
‖Θe(B)‖1,

leading to the penalized log-likelihood

Tinit(B) = Tinit,λinit
(B, Σ̂1, . . . , Σ̂E)

= L(B, Σ̂1, . . . , Σ̂E) + peninit,λinit
(B) .(3.4)

The initialization estimator is then given by

B̂init ∈ argmin
B∈B0

Tinit(B). (3.5)

Note that this is not a convex optimization problem due
to the fact that B enters the log-likelihood term quadrati-
cally and the penalty term linearly, which means it might
be hard to solve in general. However, we do give a local
optimization algorithm in Section 4 that attempts to find
a local minimum for (3.4).



In the second step, this estimator is refined by employing
a different regularization term,

penloc(B) = penloc,λloc
(B) = λloc‖B‖1,

Tloc(B) = Tloc,λloc
(B, Σ̂1, . . . , Σ̂E)

= L(B, Σ̂1, . . . , Σ̂E) + penloc,λloc
(B), (3.6)

and the estimator is given by

B̂loc ∈ argmin
B∈B0

‖B−B̂init‖F≤Rloc

Tloc(B), (3.7)

with a suitably chosen localization parameter Rloc > 0.

The loss function (3.6) is again non-convex and hence
hard to optimize, but local optimization algorithms seem
to produce good results, see Section 4.

3.3.2 Statistical performance

Assuming we have access to the global minima B̂init and
B̂loc, we show the following rates for B̂loc:

Theorem 7. Under assumptions A1 – A3, if

n &

(
E2 ∨ 1

η4
∨ p2

)
p2(d+ 1)2E3

η4
log(epE/δ)

and the parameters for the estimators B̂init and B̂loc are
chosen such that

Rloc �
1√
E
∧ η ∧ 1

√
p
,

λinit �
√
E log(epE/δ)

n
, and

λloc �
√
E2 log(epE/δ)

n

then

‖B̂loc −B∗‖2F .
p(d+ 1)E2

η8 n
log(pE/δ), (3.8)

with probability at least 1− δ.

The proof is deferred to Section E of the supplement. It
is based on the one hand on restricted convexity prop-
erties of the Gaussian log-likelihood function that were
developed in the context of convex optimization prob-
lems for estimation of sparse concentration matrices in
Rothman et al. (2008) and Loh and Wainwright (2013),
see also Negahban et al. (2012), and on the other to new
structural results on the difference Θe(B)−Θ∗,e between
concentration matrices expressed in terms ofB−B∗; see
Lemma 10.

Note that the upper bound (3.8) is worse by a factor of E
and a log factor than the lower bound (3.1) in Theorem
3. However, the completely separating system E can be
chosen to be as small as E � log(p), see Hyttinen et al.
(2013) and Remark 2, in which case this eventual rate is
almost minimax optimal up to logarithmic terms.

We also note that the requirement on n in Theorem 7
of n & (p2 ∨ E2)p2d2E3 log(Ep) is much larger than
the regime at which (3.8) becomes less than 1, n &
pdE2 log(pE). It is unclear whether these are due to in-
efficiencies in our proof technique or shortcomings of the
particular estimator in question.

4 NUMERICAL EXPERIMENTS

Recall that we want to find solutions to the two regu-
larized maximum likelihood problems (3.5) and (3.7).
Both problems are non-convex and there is no obvious
strategy for how to find global minima. However, since
they are continuous, we can empirically study the perfor-
mance of optimization algorithms designed for convex
problems, hoping to obtain at least local minima. In Sec-
tions A.1 and A.2 of the supplement, we describe how
candidate solutions for both (3.5) and (3.7) can be found
efficiently by using a nonlinear version of the Alternat-
ing Direction Method of Multipliers (ADMM) (Gabay
and Mercier, 1976; Glowinski and Marroco, 1975; Boyd
et al., 2011) and an augmented Lagrangian method (No-
cedal and Wright, 2006), respectively.

Here, we report results from experiments with synthetic
data generated using (directed) random regular graphs
to gauge the performance of the maximum likelihood
procedure, comparing it to the LLC algorithm (Hyttinen
et al., 2012). Further details on the experiments and more
experiments on synthetic and semi-synthetic data involv-
ing graphs comprised of disconnected cliques and a small
gene regulatory network from Cai et al. (2013) can be
found in the full version of the Numerical Experiments,
Section A of the supplement.

4.1 EXPERIMENTAL SETUP

Data generation The ground truth graphs are gener-
ated by first obtaining the (directed) adjacency matrix
Badj ∈ {0, 1}p×p, a matrix Bval ∈ IRp×p containing
edge values, and finally setting B∗ to be the Hadamard
product of the two, normalized to have operator norm
1− η = 0.5,

B̃ = Badj �Bval, B∗ =
(1− η)

‖B̃‖op
B̃.

Here, Bval consists of independent standard Gaussian
entries, and Badj is the adjacency matrix of a regular
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(b) Varying E

Figure 1: Experiments for random regular graphs, varying one parameter while keeping the other ones fixed. “llc”
refers to B̂llc, “init” to B̂init, “loc” to B̂loc.

random graph, where supp((Badj)i,:) is constructed by
sampling d times uniformly at random without replace-
ment from {1, . . . , p}\{i} and all elements in the support
are assigned the value 1.

Choice of λ: To keep the comparison simple, we use
an oracle choice of λinit, λloc and Rloc. For the first two,
this means choosing them such that ‖B̂init − B∗‖F and
‖B̂loc − B∗‖F is minimal. For Rloc, we choose Rloc =
2‖B̂init − B∗‖F . In practice, both parameters could be
chosen by cross-validation.

Initialization of optimization algorithm: We initial-
ize the calculation of B̂init for the largest value of λinit
with the all zeros matrix and then warm-start the calcula-
tion with the output of the calculation for the next larger
value of λinit. The calculation of B̂loc is initialized with
the output of B̂init. We further investigate the depen-
dence on the initialization value in the full version of the
numerical experiments, Section A of the supplement.

Systems of interventions: We consider two choices
for the experiments E . The first one, which we call bi-
nary, consists of separating the nodes with a bisection
approach similar to the construction given in Dickson
(1969) that leads to E = O(log p). The second one,
which we call bounded, is given by Cai (1984) and pro-
duces experiments whose sizes |Je| are bounded by k.
In this case, E = O(n/k).

Repetitions: All errors are averaged over 32 random
repetitions of sampling B∗ and the observations Xe

k .

4.2 RESULTS

In Figure 1, we collect comparisons for the estimation
rates of B̂llc, B̂init, and B̂loc, varying p and E, respec-
tively, where in the varying p case, we consider binary
experiments. The varying E case is given by bounded
experiments with a varying bound on the size k of the
experiments which, of course, governs the total number
E of experiments needed for separation. In all cases, we
performed linear regression on the log-transformed val-
ues to arrive at an estimate of the polynomial dependence
of the error rate on the parameters, indicated by a dashed
line.

In Figure 1(a), we observe a scaling with respect to p
that is slightly worse than guaranteed by our theorems
and could be due to the presence of log factors. In Figure
1(b), we observe that the scaling with respect to E when
increasing the number of experiments appears to be bet-
ter than predicted by our theory: about E1/2 for B̂llc and
B̂init, about E1/3 for B̂loc.

Further experiments with varying n and d are reported in
Figure 2 of Section A of the supplement.
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Supplement to: Estimation Rates for
Sparse Linear Cyclic Causal Models

APPENDIX A: NUMERICAL EXPERIMENTS, FULL VERSION

Recall that `(Θ, Σ̂) = Tr(Σ̂Θ) − log det(Θ) and that we want to find solutions to the two regularized
maximum likelihood problems,

B̂init ∈ argmin
B∈B0

{∑
e∈E

`(Θe(B), Σ̂e) + λinit

∑
e∈E
‖Θe(B)‖1

}
, (A.1)

B̂loc ∈ argmin
B∈B0

‖B−B̂init‖F≤Rloc

{∑
e∈E

`(Θe(B), Σ̂e) + λloc‖B‖1

}
. (A.2)

Both problems are non-convex and there is no obvious strategy for how to find global minima. However,
since they are continuous, we can empirically study the performance of optimization algorithms designed
for convex problems, hoping to obtain at least local minima. In the following, we describe how candidate
solutions for both (A.1) and (A.2) can be found efficiently and demonstrate their performance based on
experiments with synthetic data. Additionally, we give a low-rank update approach in Appendix H that can
be used to speed up calculations when the number of experiments E is large, but for each experiment, the
number of controlled variables |Je| is small.

A.1 Solving the initialization problem by non-convex ADMM

The difficulty in solving problem (A.1) is to handle the non-smooth penalty terms of non-linear trans-
formations of B, ‖Θe(B)‖1. We use a non-linear version of the Alternating Direction Method of Multi-
pliers (ADMM) algorithm, which allows us to introduce additional variables Θe, constrain them to fulfill
Θe = Θe(B), and keep the resulting dimensionality blowup manageable.

The ADMM algorithm [GM76, GM75, BPC+11] is a splitting algorithm intended to solve convex opti-
mization problems of the form

min f(x) + g(y)

s. t. Fx+Gy = b,

where x ∈ IRm, y ∈ IR`, f and g are convex functions on IRm and IR`, respectively, and F ∈ IRm×k,
G ∈ IR`×k, b ∈ IRk. Introducing the dual variable u, a step size ρ > 0, and starting with an initialization
x0, y0, u0, its iterations are given by

xk+1 = argmin
x

f(x) +
ρ

2
‖Fx+Gyk − b+ uk‖22

yk+1 = argmin
y

g(y) +
ρ

2
‖Fxk+1 +Gy − b+ uk‖22

uk+1 = uk + Fxk+1 +Gyk+1 − b,

which is the so-called scaled form of ADMM.
1

http://www.imstat.org/sts/
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Note that while in the case of convex objective functions and linear constraints, there are well-established
convergence results for ADMM, [Gab83, EB92], results about convergence to a stationary point for non-
convex variants are scarce, requiring either linear constraints [WYZ19] or further modifications and addi-
tional assumptions [BKSV15].

In order to apply a non-convex ADMM variant, we rewrite problem (A.1) as

min
B∈B0

∑
e∈E

(
`(Θe, Σ̂e) + λinit‖Θe‖1

)
s. t. Θe = (I − UeB)>(I − UeB) for e ∈ E .

Then, introducing dual variables Λe ∈ IRp×p, e = 1, . . . , E, the outer iteration of our algorithm is given
by

Θe,k+1 = argmin
Θe

Tr(Σ̂eΘe)− log det Θe + λinit‖Θe‖1

+
ρ

2
‖Θe − (I − UeBk)>(I − UeBk) + Λe,k‖2F , (e = 1, . . . , E) (A.3)

Bk+1 = argmin
B

∑
e

‖Θe,k+1 − (I − UeB)>(I − UeB) + Λe,k‖2F (A.4)

Λe,k+1 = Λe,k + Θe,k+1 − (I − UeBk+1)>(I − UeBk+1), (e = 1, . . . , E).

Note that (A.3) is a convex problem, resembling the graphical LASSO [FHT08] or SPICE [RBLZ08] but
with an additional quadratic penalty term. We can solve these subproblems with an extension of the QUIC
algorithm [HDRS11] that employs coordinate descent to iteratively find Newton directions.

Problem (A.4) on the other hand is a non-convex problem, albeit without constraints. Hence, we can
use any local optimization algorithm. For our experiments, we choose L-BFGS [LN89] to perform this
approximate minimization, yielding a stationary point of the objective function.

In order to find a suitable step size parameter ρ, we allow varying ρk and employ the dual-balancing
strategy from [HYW00, WL01].

A.2 Solving local problem by Augmented Lagrangian Method

In order to find a local minimum of (A.2), we employ the Augmented Lagrangian Method [NW06]
that transforms the inequality constraint into a box constraint and iteratively solves for the associated dual
variable. It leads to the following iteration, where u is a slack variable for the `2 constraint and λ is the
associated dual variable.

Bk+1 = argmin
B, u≤R2

loc

∑
e∈E

`(Θe(B), Σ̂e) + λloc‖B‖1 +
ρ

2

(
uk − ‖B − B̂1‖22 +

λk

ρ

)2

(A.5)

uk+1 = uk + ρ(u− ‖Bk+1 − B̂1‖22)

To solve (A.5), we use L-BFGS-B [ZBLN97], transforming the `1-regularization into a linear term with
additional non-negativity constraints,

B = B+ −B−, B+ ≥ 0, B− ≥ 0, ‖B‖1 =
∑
i,j

((B+)ij + (B−)ij).
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Semi-synthetic Random regular Disconnected cliques
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Figure 1: Heatmaps visualizing example matrices B∗ for the three studied models. In all examples, p = 39
and d = 3. From left to right: Semi-synthetic data from [CBG13], Random regular graphs, and
disconnected cliques.

A.3 Experimental setup

We perform experiments with synthetic and semi-synthetic data to gauge the performance of the maxi-
mum likelihood procedure, comparing it to the LLC algorithm [HEH12].

For the synthetic benchmarks, we study two types of graph structures: (directed) random regular graphs
and graphs composed of disconnected cliques. For the semi-synthetic benchmarks, we use a gene-regulatory
network from [CBG13] consisting of 39 genes. Note that in [CBG13], the authors employ a model very
similar to ours, but instead of allowing controlled experiments on certain nodes, they consider so-called
expression quantitative trait loci (eQTL) as proxies for interventions, which changes their model compared
to the one considered here. Nonetheless, part of the output of their estimator is a linear causal network,
which is what we consider as ground truth to simulate data following the Gaussian model introduced in
Section 2. Example ground truth matrices for the two random models and the semi-synthetic matrix from
[CBG13] are given in Figure 1. There, we set p = 39 and d = 3 for the random models to coincide with p
and d in the semi-synthetic case.

In the following two sections, we give more details about data generation and parameter tuning.

A.3.1 Models
Synthetic graphs: The ground truth graphs are generated by first obtaining the (directed) adjacency matrix

Badj ∈ {0, 1}p×p, a matrix Bval ∈ IRp×p containing edge values, and finally setting B∗ to be the Hadamard
product of the two, normalized to have operator norm 1− η = 0.5,

B̃ = Badj �Bval, B∗ =
(1− η)

‖B̃‖op

B̃.

Here, Bval consists of independent standard Gaussian entries, and Badj is the adjacency matrix of either a
regular random graph or one composed of disconnected cliques.

Random regular graphs: supp((Badj)i,:) is constructed by sampling d times uniformly at random without
replacement from {1, . . . , p} \ {i} and all elements in the support are assigned 1.
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(d) Varying E

Figure 2: Experiments for random regular graphs, varying one parameter while keeping the other ones fixed.
“llc” refers to B̂llc, “init” to B̂init, “loc” to B̂loc.

Disconnected cliques: Badj is the adjacency matrix of a graph consisting of bp/dc disconnected d-cliques
and an additional disconnected p − dbp/dc clique if d does not divide p. This model is meant to illustrated
clustered variables that operate in modules, akin to the ones arising in gene regulatory networks.

A.3.2 Tuning parameters
Choice of λ: To keep the comparison simple, we use an oracle choice of λinit, λloc and Rloc. For the first

two, this means choosing them such that ‖B̂init−B∗‖F and ‖B̂loc−B∗‖F is minimal. For Rloc, we choose
Rloc = 2‖B̂init −B∗‖F . In practice, both parameters could be chosen by cross-validation.

Initialization of optimization algorithm: We initialize the calculation of B̂init for the largest value of
λinit with the all zeros matrix and then warm-start the calculation with the output of the calculation for the
next larger value of λinit. The calculation of B̂loc is initialized with the output of B̂init. To investigate the
dependence on the initialization, we also try initializing the calculation of B̂init with a strict triangular matrix
whole upper elements consist of independent N (0, 10) random variables, as well as running the likelihood
optimization without constraints as described previously with the same initialization.
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Systems of interventions: We consider three choices for the experiments E . The first one, which we call
binary, consists of separating the nodes with a bisection approach similar to the construction given in [Dic69]
that leads to E = O(log p). The second one, which we call bounded, is given by [Cai84] and produces
experiments whose sizes |Je| are bounded by k. In this case, E = O(n/k). The third kind corresponds to
k = 1, taking Ji = {i} for i ∈ [p], which we call single-node experiments.

Repetitions: All errors are averaged over 32 random repetitions of sampling B∗ and the observations Xe
k .

A.4 Results

In all cases, we performed linear regression on (a subset of) the log-transformed values to arrive at an
estimate of the polynomial dependence of the error rate on the parameters, indicated by a dashed line.

A.4.1 Performance
Random regular graphs with oracle choice: In Figure 2, we collect comparisons for the estimation rates

of B̂llc, B̂init, and B̂loc, varying n, p, d, and E, respectively, where the varying E case is given by bounded
experiments with a varying bound on the size k of the experiments which, of course, governs the total
number E of experiments needed for separation. In all other cases, we consider binary experiments.

Figure 2(a) indicates that all three estimators exhibit a risk that scales as 1/n and displays a clear ordering
in the performance of the three candidates where B̂llc performs worse than B̂init, which in turn is worse than
B̂loc. This corroborates the potentially sub-optimal dependence of LLC on the conditioning of the problem,
see Remark 5, and agrees with what we expect given the upper bounds in (3.8) and (E.8) for B̂loc and B̂init,
respectively.

In Figure 2(b), we observe a scaling with respect to p that is slightly worse than guaranteed by our
theorems and could be due to the presence of log factors. In Figure 2(c), we in turn see that the scaling with
respect to d is slightly better than expected, hinting at good adaptation to the sparsity parameter d. Most
interestingly, in Figure 2(d), we observe that the scaling with respect to E when increasing the number of
experiments appears to be better than predicted by our theory: about E1/2 for B̂llc and B̂init, about E1/3 for
B̂loc. This different behavior is even more striking in Figure 3(b) where the performance of B̂loc appears to
decay at most logarithmically in E.

Disconnected clique graphs: In Figure 3(a), we plot the same experiment as in Figure 2(a), only this time
with disconnected clusters instead of random regular graphs. We notice a similar behavior, with the key
difference of the performance of B̂init surpassing that of B̂loc. This could be explained by the fact that the
penalization in the objective B̂init is particularly suited for the estimation of this kind of graphs since the
sparsity of (I −B∗)>(I −B∗) in this case almost coincides with the one of B∗, which can be seen from the
argument that led to (E.6) in the proof of Theorem 7.

Semi-synthetic graph: The performance of the three estimators on the semi-synthetic data built from the
graph taken in [CBG13] appears in Figure 3(b). The LLC estimator B̂llc performs similarly to B̂init and both
suffer in comparison to B̂loc either in terms of absolute performance and in terms of scaling with E.
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d
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−
B

∗
||2 F

Disconnected cliques, varying d
n= 20000, p= 32, η= 0.5, binary experiments

llc, slope = 0.64
init, slope = 0.72
loc, slope = 0.57

(a) Varying d for disconnected cliques graph.
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E
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10−1
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2

5

2

5

||B̂
−
B

∗
||2 F

Semi-synthetic graphs, varying E
n= 10000, p= 39, d= 3, bounded experiments

llc, slope = 0.99
init, slope = 0.65
loc, slope = 0.12

(b) Varying E for semi-synthetic graph based
on [CBG13].

Figure 3: Experiments for other types of graphs
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−
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∗
||2 F

Random regular graphs, bad initialization, varying n
p= 32, d= 4, η= 0.5, binary experiments

llc, slope = -0.97
init, slope = -0.95
loc, slope = -0.97
unconstr, slope = 0.06

(a) Same case as Figure 2(a), but with bad initializa-
tion. “unconstr” refers to the case where Rloc =
∞ and illustrates the need for localization.
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experiments missing for separability

0.00

0.25

0.50

0.75

1.00
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1.50

1.75

||B̂
−
B

∗
||2 F

Random regular graphs with missing experiments
n= 100000, p= 32, d= 4, single node experiments

llc
init
loc

(b) Random regular graphs case where Definiton 1 is
violated.

Figure 4: Additional computational experiments, running the algorithm with bad initializations and with
experiments not satisfying complete separability.

A.4.2 Stability
Role of initialization: In Figure 4(a), we show the same setup as in Figure 2(a), only this time, the calcu-

lation for B̂init is initialized with a random matrix as outlined in Section A.3. Additionally, we plot the result
of optimizing an unconstrained version of B̂loc with the same bad initialization, denoted by B̂unconstr. We
observe that the performance of the latter is very bad due to the non-convex nature of the objective together
with the fact that a bad initialization point is chosen. However, even though B̂init is found through solving
a non-convex objective as well, it seems to be robust enough to yield comparable performance and hence
serve as a good initialization for calculating B̂loc even with a poor initial choice of B.
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Missing experiments: In Figure 4(b) we investigate the robustness to systems of interventions that do not
fulfill the separability condition in Definition 1. For this, we consider single-node experiments and plot the
number of experiments that are missing from a completely separating set of such experiments (in which case
we would have E = p). The likelihood-based approaches are much more robust in this case, and to a larger
degree than the degree-of-freedom calculations as in Appendix G would suggest.

APPENDIX B: EXTENDED NOTATION

Here, we recapitulate and extend the notation used in the main paper.
We write a . b for two quantities a and b if there exists an absolute constant C > 0 such that a ≤ Cb,

and similarly for a & b. For two real numbers a, b ∈ IR, we write a ∧ b for their minimum and a ∨ b their
maximum, respectively. For a natural number p, we denote by [p] = {1, . . . , p}. Given a set S, we write |S|
for its cardinality.

Let x, y ∈ IRp. We write suppx for the indices of non-zero elements of x,

dH(x, y) = |{i ∈ [p] : xi 6= yi}|

for the Hamming distance between x and y, and ‖x‖p for the `p norm of x.
For two matrices A,B ∈ IRp1×p2 , we abbreviate the ith row by Bi,: and the ith column by B:,i. Similarly,

Bi,−j denotes the ith row ofB where the jth element is omitted. Further, ‖B‖F denotes the Frobenius norm,
‖B‖op the operator norm,

‖B‖∞ = max
i,j
|Bi,j |, ‖B‖1 =

∑
i,j

|Bi,j |,

and ‖B‖∞,∞ the operator norm of B with respect to the `∞ norm, which is

‖B‖∞,∞ = max
i∈[p1]

‖Bi,:‖1.

If A is a square invertible matrix, we denote by A−1 its inverse and by A−> the transpose of A−1. We
denote the smallest and largest singular value of A by σmin(A) and σmax(A), respectively. If A and B are
symmetric, we write A ≺ B if B − A is positive definite, and similarly for A � B. By I ∈ IRp×p, we
denote the identity matrix.

For a function f : IRp1 → IRp2 , we denote its derivative at a point x ∈ IRp1 applied to a vector h ∈ IRp1

by Df(x)[h]. We write subG and subE to denote sub-Gaussian and sub-Exponential distributions as defined
in Definition 16.

APPENDIX C: PROOF OF LOWER BOUNDS

C.1 Proof of Theorem 3

To begin, recall the definition of the redundancy factor

κ = κ(E) = max
(i,j)
|{e ∈ E : (i, j) separated in e}|.

The proof of Theorem 3 is based on standard techniques for minimax lower bounds [Tsy09].

THEOREM 1 ([Tsy09, Theorem 2.5]). Denote by G ⊆ IRp×p a set of possible hypotheses with associated
probablity measures PB for B ∈ G.

Fix M ≥ 2, s > 0, α ∈ (0, 1/8), and assume that there exists B0, . . . , BM ∈ G, such that
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(i) ‖Bj −Bk‖F ≥ 2s > 0 for all 0 ≤ j < k ≤M ;
(ii) KL(Pj |P0) ≤ α logM for all j = 1, . . . ,M , where Pj = PBj .

Then,

inf
B̂

sup
B∗∈G

PB(‖B̂ −B∗‖F ≥ s) ≥
√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)
, (C.1)

where the infimum in (C.1) is taken over all measurable functions B̂ on the observations.

Before proceeding with the proof, we first present two lemmas. Lemma 2 gives a way to upper bound the
Kullback-Leibler divergence between two Gaussian distributions in terms of their concentration matrices,
while Lemma 3 contains a version of the Varshamov-Gilbert lemma adopted to produce candidate matrices
with the same row sparsity. Their proofs can be found in Section C.2 and Section C.3, respectively.

In the following, we denote by dH(A,B) the Hamming distance between two matrices A,B ∈ IRp×p. It
is defined by dH(A,B) = |{(i, j) ∈ [p]2 : Ai,j 6= Bi,j}|.

LEMMA 2. Let Θ1,Θ2 ∈ IRp×p be two positive definite concentration matrices and P1 = N (0,Θ−1
1 )

and P2 = N (0,Θ−1
2 ) the associated Gaussian distributions. If

‖Θ1 −Θ2‖op ≤
λmin(Θ2)

2
,

then,

KL(P1|P2) ≤ 1

λmin(Θ2)2
‖Θ1 −Θ2‖2F . (C.2)

LEMMA 3. Given m ≥ 1 and 1 ≤ d ≤ m/2, there is a family H1, . . . ,HM of matrices in {0, 1}m×m
such that

(i) Every row of Hi is d-sparse for i = 1, . . . ,M ;

(ii) dH(Hi, Hj) ≥
md

2
, i 6= j;

(iii) logM ≥ md

16
log
(

1 +
m

2d

)
.

Taking the above lemmas as given, we proceed to prove Theorem 3.
We apply Theorem 1 by constructing an appropriate set of hypotheses B0, . . . , BM . Without loss of

generality, assume that p is even. Set B0 = 0 to be the all zeros matrix, and apply Lemma 3 with m = p/2
to obtain M matrices H1, . . . ,HM ∈ {0, 1}p/2×p/2 with pairwise Hamming distance at least pd/4 and with

logM ≥ pd

32
log
(

1 +
p

4d

)
.

We define Bi, i = 1, . . . ,M as block matrices by setting

γ =

√
α

64κ
, β = γ

√
E

n
log
(

1 +
p

4d

)
, and Bi =

[
0 βHi

−βH>i 0

]
.

By construction, for every i ∈ [M ], every row of Bi is d-sparse, and Bi has zero-diagonal. Moreover, by
κ ≥ 1, α < 1/8, and by assumption

n ≥ pdE2 log
(

1 +
p

4d

)
≥ d2E log

(
1 +

p

4d

)
,
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so we get from the Gershgorin circle theorem that

‖Bi‖op ≤ γd
√
E

n
log
(

1 +
p

4d

)
≤ γ ≤ 1

5
≤ 1− η

in light of η ≤ 1/2. Hence, Bi ∈ B(p, d, η) for all i ∈ [M ].
Next, we can lower bound the pairwise distances by

‖Bi −Bj‖2F ≥ 2β2dH(Hi, Hj) ≥ γ2 pdE

4n
log
(

1 +
p

4d

)
,

‖Bi −B0‖2F ≥ γ2 pd

2n
log
(

1 +
p

4d

)
≥ γ2 pdE

4n
log
(

1 +
p

4d

)
,

which yields the needed separation in Theorem 1(i).
We proceed to estimate the KL divergence between two distributions corresponding to matrices B0 and

any Bi, i ≥ 1. Decompose the difference between the concentration matrices as

Θe(Bi)−Θe(B0) = (I − UeBi)>(I − UeBi)− I (C.3)

= (UeBi)
> + UeBi +BiUeBi. (C.4)

Because ‖Bi‖op ≤ 1/5, (C.3) together with ‖Ue‖op ≤ 1 and the sub-multiplicativity of the operator norm
implies

‖Θe(B2)−Θe(B1)‖op ≤
1

5
+

1

5
+

1

25
≤ 1

2
=
λmin(I)

2
=
λmin(Θe(B0))

2
,

so the hypothesis of Lemma 2 is satisfied for all pairs (Θe(Bi),Θ
e(B0)). By Lemma 2, (C.4), and the

tensorization property of the KL divergence, we obtain

KL(PBi |PB0) ≤
∑
e

ne‖Θe(Bi)−Θe(B0)‖2F ≤
2n

E

∑
e

‖UeBi + (UeBi)
>‖2F + 2n‖Bi‖4F

≤ 2n

E

∑
e

[
2
∑
k∈Ue
`∈Je

(Bi)
2
k,` +

∑
k,`∈Ue

((Bi)k,` + (Bi)k,`)
2
]

+ 2n‖Bi‖4F . (C.5)

Since Bi is defined to be anti-symmetric, we have∑
k,`∈Ue

((Bi)k,` + (Bi)k,`)
2 = 0, i = 1, . . . ,M, e = 1, . . . , E . (C.6)

Moreover, ∑
e

∑
k∈Ue
l∈Je

(Bi)
2
k,` ≤ κ(E)‖Bi‖2F . (C.7)

Combining (C.5), (C.6) and (C.7), we arrive at

KL(PBi |PB0) ≤ 4nκ

E
‖Bi‖2F + 2n‖Bi‖4F .

It remains to compute the Frobenius norm of each Bi,

‖Bi‖2F = γ2 pdE

4n
log
(

1 +
p

4d

)
.
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Hence, because
n ≥ pdE2 log

(
1 +

p

2d

)
, γ < 1, and γ2 =

α

32κ
,

we obtain

KL(Pj |P0) ≤ 4nκ

E
γ2 pdE

4n
log
(

1 +
p

4d

)
+ 2nγ4 p

2d2E2

16n2

(
log
(

1 +
p

4d

))2

= κpdγ2 log
(

1 +
p

4d

)
+ γ4 p

2d2E2

8n

(
log
(

1 +
p

4d

))2

≤ 2κpdγ2 log
(

1 +
p

4d

)
≤ αpd

32
log
(

1 +
p

4d

)
= α logM.

Finally, we can pick α = 1
16 in Theorem 1 to conclude that

inf
B̂

sup
B∗∈G

PB

(
‖B̂ −B∗‖F ≥

1

214κ

pdE

n
log
(

1 +
p

4d

))
≥ c,

for some constant c > 0.

C.2 Proof of Lemma 2

The Kullback-Leibler divergence between two Gaussians P1 = N (0,Θ−1
1 ) and P2 = N (0,Θ−1

2 ) is given
by

KL(P1|P2) =
1

2

(
Tr(Θ−1

1 (Θ2 −Θ1)− log det Θ2 + log det Θ1

)
.

Using the fact that the first derivative of Θ 7→ − log det Θ is −Θ−1 and the second derivative is Θ−1 ⊗
Θ−1, we employ a Taylor expansion about Θ1 (compare (E.10) in proof of Lemma 9) to obtain

KL(P1|P2) =
1

4
Tr(Θ̃−1(Θ2 −Θ1)Θ̃−1(Θ2 −Θ1)),

for some Θ̃ = tΘ1 + (1− t)Θ2, t ∈ [0, 1]. By considering the square root of Θ̃−1, this can be expressed in
terms of the Frobenius norm of the difference Θ2 −Θ1,

1

4
Tr(Θ̃−1(Θ2 −Θ1)Θ̃−1(Θ2 −Θ1)) =

1

4
‖Θ̃−1/2(Θ2 −Θ1)Θ̃−1/2‖2F ≤

1

4λmin(Θ̃)2
‖Θ2 −Θ1‖2F . (C.8)

By Weyl’s inequality, [Fra12, Section 6.7, Theorem 2],

|λmin(Θ2)− λmin(Θ̃)| ≤ ‖Θ2 − Θ̃‖op ≤ ‖Θ1 −Θ2‖op.

Hence, if ‖Θ2 −Θ1‖op ≤ λmin(Θ2)/2, then

1

λmin(Θ̃)2
≤ 4

λmin(Θ2)2
,

which together with (C.8) implies (C.2).
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C.3 Proof of Lemma 3

We use the probabilistic method to show the existence of the family H1, . . . ,HM , modifying a standard
argument that can be found in [Tsy09, Lemma 2.9].

Let H1, . . . ,HM be M independent random matrices Hk, where each row of Hk is a zero-one-vector
corresponding to a subset of [p] with cardinality d drawn uniformly at random. More precisely, for the ith
row of the matrix Hk, draw U i1 uniformly from {1, . . . ,m}, and U ij conditioned on U i1, . . . , U

i
j−1 uniformly

from the set {1, . . . ,m} \ {U i1, . . . , U ii−1}, j = 2, . . . , d. Then, set

(Hk)i,j =

{
1, j ∈ {U i1, . . . , U id}
0, otherwise.

By a union bound, the probability that there exists a pair k, ` for which dH(Hk, H`) ≤ md/2 can be
bounded by the probability of this occurring for one draw of H1, comparing to a fixed H0 with d-sparse
rows, say (H0)kl = 1I{k≤d},

P

(
∃` 6= k : dH(H`, Hk) <

md

2

)
≤
(
M

2

)
P

(
dH(H1, H0) <

md

2

)
, (C.9)

because for each row, every d sparse pattern is equally likely.
We can lower bound the Hamming distance by the number of elements in supp(H0) on which H1 is one,

i.e.,

dH(H1, H0) ≥ md−
m∑
i=1

d∑
j=1

Zi,j

with Zi,j = 1I(U ij ≤ d). Then, Zi,j ∼ Bern(qi,j) with qi,1 = d
m and, noting that d ≤ m/2,

qi,j =
d−

∑j−1
`=1 Zi,j

m− (j − 1)
≤ d

m− d
≤ 2d

m
, j ≥ 2.

From there, apply a Chernoff bound, that is, pick λ > 0 and estimate

P

(
dH(H1, H0) <

md

2

)
≤ P

 m∑
i=1

d∑
j=1

Zi,j ≥
md

2


≤ IE

exp

λ m∑
i=1

d∑
j=1

Zi,j

 exp

(
−λmd

2

)
(C.10)

For a Bernoulli distribution Z ∼ Bern(q), the moment generating function is given by

IE [exp(λZ)] = q(exp(λ)− 1) + 1.

Together with the observation that Zi,j is stochastically dominated by a Bern(2d/m) distribution, we can
estimate

IE

exp

λ m∑
i=1

d∑
j=1

Zi,j

 ≤ (2d

m
(exp(λ)− 1) + 1

)md
.
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Setting λ = log
(
1 + m

2d

)
, we get that

IE

exp

λ m∑
i=1

d∑
j=1

Zi,j

 ≤ 2md. (C.11)

Combining (C.11), (C.10), (C.9), and the estimate
(
M
2

)
≤M2, we obtain

P

(
∃` 6= k : dH(H`, Hk) ≤

md

2

)
≤ exp

(
2 logM +md log 2− md

2
log
(

1 +
m

2d

))
≤ exp

(
2 logM − md

4
log
(

1 +
m

2d

))
< 1,

since d ≤ m/2, provided we choose M such that

logM ≤ md

8
log
(

1 +
m

2d

)
.

Setting,

logM =
md

16
log
(

1 +
m

2d

)
.

we have thus shown that there exists a family fulfilling the conditions of Lemma 3.

APPENDIX D: PROOF OF LLC UPPER BOUNDS

D.1 Notation and lemmas

We start by recalling the notation from Section 3.2. We denote the ith row of B∗ by b∗i ∈ IRp−1, omitting
the diagonal element which is assumed to be zero. From empirical covariances of the performed experiments,
for i ∈ [p], we obtain estimators T̂i for T ∗i and t̂i for t∗i , where T ∗i b

∗
i = t∗i . Then, we solve the associated

`1-regularized least squares problem,

b̂i = argmin
b
‖T̂ib− t̂i‖22 + λ‖b‖1, i ∈ [p],

and assemble its solutions into B̂llc as

(B̂llc)i,: = (P>i b̂i)
>, i ∈ [p],

where Pi ∈ IR(p−1)×p denotes the projection matrix that omits the ith coordinate.
In particular, the T ∗i are defined row-wise, adding a row e>j Σ∗,eP>i . for each experiment e such that

i ∈ Ue and each entry j ∈ Je. Similarly, the vector t∗i is defined by appending the corresponding entries
Σ∗,ej,i . Estimators for T asti and t∗i in turn are given by row-wise assembling empirical counterparts of the
above quantities, so that a generic `th row of T ∗i and `th entry of t∗i are given by

T̂`,: = e>j (Je + Σ̂eUe)P
>
i and (t̂i)` = Σ̂e

j,i,

respectively.
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Next, recall the following quantities that enter the rate:

ρ(d) = min
i∈[p]

inf
v∈C(d),v 6=0

‖T ∗i v‖2
‖v‖2

, (D.1)

R(d) = max
i∈[p]

sup
v∈IRp,v 6=0,
| supp(v)|≤d

‖T ∗i v‖2
‖v‖2

, (D.2)

R̃ = max
i∈[p]
‖(T ∗i )>‖∞,∞ = max

i∈[p]
max
j∈[p]

∑
k∈[p]

|(T ∗i )k,j |,

where
C(d) = {v ∈ IRp : for all S ⊆ [p] with |S| ≤ d, ‖vSc‖1 ≤ 3‖vS‖1}. (D.3)

We restate Theorem 4 for convenience.

THEOREM 4. Let assumptions A1 – A3 hold and fix δ ∈ (0, 1). Assume further that

n &

(
1 ∨ p2

R̃2η4
∨ pd

(R(d) + 1)2η4ρ(d)4

)
E log(eκp/δ), (D.4)

Then, the LLC estimator B̂llc defined in (3.2) with λ chosen such that

λ � R̃
√
E log(eκp/δ)

n
,

satisfies

‖B̂llc −B∗‖2F .
R̃2

ρ(d)4η4

pdE log(eκp/δ)

n
,

with probability at least 1− δ.

The proof relies on the following key lemmas. Lemma 4 yields control on the stochastic error, while
Lemma 5 ensures that the linear system we solve via `1-regularization is well-conditioned for that purpose.

LEMMA 4. Under the assumptions of Theorem 4, writing

φn = Cη−2

√
E log(eκp/δ)

n
,

for a fixed C > 0, there is an event A such that IP(A) ≥ 1− δ, and on A,

‖T̂>i (T̂ib
∗
i − t̂i)‖∞ ≤ 4R̃φn, for all i ∈ [p].

LEMMA 5. Assume that the same hypotheses as in Theorem 4 hold. On the same event A as in Lemma
4, we have

‖T̂ih‖22 ≥
1

2
ρ(d)2‖h‖22, for all h ∈ C(d), i ∈ [p],

where C(d) is the set of vectors fulfilling the cone condition in (D.3).
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D.2 Proof of Theorem 4

Since the experiments are completely separating, it follows from [HEH12] that

ρ(d) ≥ min
i∈[p]

σmin(T ∗i ) > 0.

Fix i ∈ [p] and abbreviate T ∗ = T ∗i , T̂ = T̂i, t∗ = t∗i , t̂ = t̂i, b∗ = b∗i , and b̂ = b̂i.
On the event A from Lemma 4 the following holds. By definition of b̂, we have

‖T̂ b̂− t̂‖22 + λ‖b̂‖1 ≤ ‖T̂ b∗ − t̂‖22 + λ‖b∗‖1.

Set h = b̂− b∗ and rearrange to obtain

‖T̂ h‖22 ≤ −2h>T̂>(T̂ b∗ − t̂) + λ(‖b∗‖1 − ‖b̂‖1). (D.5)

By Hölder’s inequality

|h>T̂>(T̂ b∗ − t̂)| ≤ ‖h‖1‖T̂>(T̂ b∗ − t̂)‖∞.

By the assumptions on n and Lemma 4, ‖T̂>(T̂ b∗ − t̂)‖∞ ≤ 4R̃φn. Denote by S the support of b∗. By
triangle inequality and splitting between S and Sc, we can bound the regularization term by

‖b∗‖1 − ‖b̂‖1 ≤ ‖hS‖1 + ‖b̂S‖1 − ‖b̂S‖1 − ‖b̂Sc‖1 ≤ ‖hS‖1 − ‖hSc‖1.

Add λ‖h‖1/2 on both sides of (D.5) to obtain

‖T̂ h‖22 +
λ

2
‖h‖1 ≤

(
4R̃φn +

λ

2

)
‖h‖1 + λ‖hS‖1 − λ‖hSc‖1 ≤ 2λ‖hS‖1. (D.6)

Now, assume λ ≥ 8R̃φn, which by Lemma 4 matches the assumed scaling of

λ � R̃
√
E log(eκp/δ)

n
. (D.7)

Together with (D.6), we get that h fulfills the cone condition ‖hSc‖1 ≤ 3‖hS‖1. In turn, by Lemma 5, taking
into account that the assumptions on n and φn are fulfilled by assumption, we obtain

‖T̂ h‖22 ≥
1

2
ρ(d)2‖h‖22.

Moreover, by the Cauchy-Schwarz inequality ‖hS‖1 ≤
√
d‖h‖2, so combined with (D.6) and (D.7), we

have

‖h‖22 ≤
16d

ρ(d)4
λ2 .

R̃2

ρ(d)4η4

dE log(eκp/δ)

n
.

Re-introducing the index i and summing the above over all i ∈ [p], we get

‖B̂llc −B∗‖2F ≤
R̃2

ρ(d)4η4

pdE log(eκp/δ)

n
.
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D.3 Proof of Lemma 4

The proof of Lemma 4 consists of two parts that correspond to Lemma 6 and Lemma 7 below.
Let φn > 0 and define the events A1,A2,A3 as follows:

A1 =

{
max
i
‖(T̂i − T ∗i )b∗i ‖∞ ≤ φn

}
A2 =

{
max
i
‖T̂i − T ∗i ‖∞ ≤ φn

}
A3 =

{
max
i
‖t̂i − t∗i ‖∞ ≤ φn

}
Lemma 6 gives an upper bound on ‖T̂>(T̂ b∗− t̂)‖∞ in terms of φn, while Lemma 7 gives a high-probability
bound on φn. We give the proofs of both of these lemmas after finishing the proof of Lemma 4.

LEMMA 6 (Trace term estimate). If
φn ≤ R̃/p, (D.8)

then on the event A1 ∩ A2 ∩ A3,

‖T̂>i (T̂ib
∗
i − t̂i)‖∞ ≤ 4R̃φn, for all i ∈ [p].

LEMMA 7 (Control on stochastic error). Let δ ∈ (0, 1). If n & E log(eκp/δ),

n & E log(eκp/δ), (D.9)

and we set

φn = Cη−2

√
E log(eκp/δ)

n
,

for a fixed constant C > 0, we have that

IP(A1 ∩ A2 ∩ A3) ≥ 1− δ.

Adjusting the constants in the requirement on n (D.4) in Theorem 4, we can ensure the requirements
(D.8) and (D.9) and thus Lemma 4 follows by setting A = A1 ∩ A2 ∩ A3 and combining Lemma 6 and
Lemma 7.

PROOF OF LEMMA 6. We fix i ∈ [p] and, as before, omit it for notational convenience It holds

‖T̂>(T̂ b∗ − t̂)‖∞ = ‖(T̂ − T ∗ + T ∗)>((T̂ − T ∗ + T ∗)b∗ − (t̂− t∗ + t∗))‖∞
≤ ‖(T ∗)>(T̂ − T ∗)b∗‖∞ + ‖(T ∗)>(t̂− t∗)‖∞

+ ‖(T̂ − T ∗)>(T̂ − T ∗)b∗‖∞ + ‖(T̂ − T ∗)>(t̂− t∗)‖∞

≤
(
‖(T ∗)>‖∞,∞ + ‖(T̂ − T ∗)>‖∞,∞

)(
‖(T̂ − T ∗)b∗‖∞ + ‖t∗ − t̂‖∞

)
,

where we used the fact that T ∗b∗ = t∗ and that for an arbitrary matrix A ∈ IRp×p and vector x ∈ IRp,
‖Ax‖∞ ≤ ‖A‖∞,∞‖x‖∞. Since by the definition of A2,

‖(T̂ − T ∗)>‖∞,∞ = max
j∈[p]

∑
i∈[p]

|(T̂ − T ∗)i,j | ≤ pmax
i,j
|(T̂ − T ∗)i,j | ≤ pφn,
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we have that combined with the definitons of A1, A3, and R̃,

‖T̂>(T̂ b∗ − t̂)‖∞ ≤
(
‖(T ∗)>‖∞,∞ + pφn

)
2φn ≤ 4R̃φn,

if φn ≤ R̃/p.

PROOF OF LEMMA 7. For all three events, we write each element of the associated matrices or vectors
as a sum over independent sub-exponential random variables and apply Bernstein’s inequality, Lemma 19.

We start by controlling maxi ‖(T̂i − T ∗i )b∗i ‖∞. Let i ∈ {1, . . . , p} and ` ∈ {1, . . . ,mi}. The `th row of
T̂i − T ∗i corresponds to an experiment e = e(i, `) such that i ∈ Ue, and an index j = j(`) ∈ Je, which
means we can write

e>` T̂ib
∗
i = e>j

(
Je + Σ̂eUe

)
P>i b

∗
i e
>
j

(
Je + Σ̂eUe

)
(B∗i,:)

>

where we used that B∗i,i = 0, so that P>i b
∗
i = (B∗i,:)

>. Moreover, with independent normal random vectors
Zek for e = 1, . . . , E and k = 1, . . . , n/E, Σ̂e is of the form

Σ̂e =
E

n
(I − UeB)−1

n/E∑
k=1

Zek(Zek)>(I − UeB)−>,

so that

e>` T̂ib
∗
i = e>j

Je +
E

n
(I − UeB)−1

n/E∑
k=1

Zek(Zek)>(I − UeB)−>Ue

 (B∗i,:)
>.

We proceed to control the `2 norm of the vectors that are being multiplied with Zek. Lemma 15 yields that

‖(I − UeB∗)−1UeB
∗
:,i‖2 ≤ ‖(I − UeB∗)−1‖op ‖Ue‖op ‖B∗:,i‖2 ≤ η−1,

and
‖(I − UeB∗)−>ej‖2 ≤ ‖(I − UeB∗)−>‖op ‖ej‖2 ≤ η−1.

Hence, by Lemma 18,

B∗i,:Ue(I − UeB∗)−1Zek ∼ subG(η−2), and

e>j (I − UeB)−1Zek ∼ subG(η−2),

and by Lemma 17, e>` T̂ib
∗
i ∼ subE(η−2). Now, Bernstein’s inequality in Lemma 19 and IE[T̂i] = T ∗i allows

us conclude that for t1 > 0,

IP
(
|e>` (T̂i − T ∗i )(B∗i,:)

>| > t1

)
≤ 2 exp

[
−cB

((
η4nt21
E

)
∧
(
η2nt1
E

))]
.

A union bound over all indices i ∈ [p] and all `, taking into account that there are at most κp rows in every
T ∗i , then yields

IP

(
max
i∈[p],`

|e>` (T̂i − T ∗i )(B∗i,:)
>| > t1

)
≤ 2κp2 exp

[
−cB

((
η4nt21
E

)
∧
(
η2nt1
E

))]
(D.10)

≤ exp

[
−cB

((
η4nt21
E

)
∧
(
η2nt1
E

))
+ 4 log(eκp)

]
.
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Similarly, for j ∈ {1, . . . , p− 1} and any row index `,

e>` T̂iej = e>`

Je +
E

n
(I − UeB)−1

n/E∑
k=1

Zek(Zek)>(I − UeB)−>Ue

P>i ej , (D.11)

and, as before,

‖(I − UeB∗)−>UeP>i ej‖2 ≤ ‖(I − UeB∗)−>‖op ‖Ue‖op‖P>i ‖op‖ej‖2 ≤ η−1,

so that e>` T̂iej ∼ subE(η̃−2). Hence, by Bernstein’s inequality, for t2 > 0,

IP
(
|e>` (T̂i − T ∗i )ej | > t2

)
≤ 2 exp

[
−cB

((
η4nt22
E

)
∧
(
η2nt2
E

))]
.

A union bound over all i ∈ [p], j ∈ [p− 1], and row indices ` yields

IP

(
max
i,j,`
|e>` (T̂i − T ∗i )ej | > t2

)
≤ 2κp3 exp

[
−cB

((
η4nt2

E

)
∧
(
η2nt2
E

))]
(D.12)

≤ exp

[
−cB

((
η4nt22
E

)
∧
(
η2nt2
E

))
+ 6 log(eκp)

]
.

In particular, the union of the two events in (D.10) and (D.12) occurs with probability at most δ if

t1 ∧ t2 & η−2

[√
E log(eκp/δ)

n
∨ E log(eκp/δ)

n

]
.

Taking into account that all T̂i and t̂i are of the form we investigated in (D.11), we get the claim of the
lemma if we choose

φn = Cη−2

√
E log(eκp/δ)

n
,

for a suitable constant C and assume n & E log(eκp/δ).

D.4 Proof of Lemma 5

To obtain the result, we employ the following lemma.

LEMMA 8 ([LW11, Lemma 12]). If for a matrix Γ ∈ IRk×k, k ∈ N and an integer s ≥ 1, it holds that

|v>Γv| ≤ δ for all v ∈ IRk, ‖v‖0 ≤ 2s, ‖v‖2 = 1,

then
|v>Γv| ≤ 27δ(‖v‖22 +

1

s
‖v‖21) for all v ∈ IRk.

To this end, let v ∈ IRp−1 be a d sparse vector with ‖v‖2 = 1, as well as i ∈ [p], and denote by T̂ = T̂i,
T ∗ = T ∗i . Then,

|‖T̂ v‖22 − ‖T ∗v‖22| = |‖(T̂ − T ∗ + T ∗)v‖22 − ‖T ∗v‖22|
= |‖(T̂ − T ∗)v‖22 + 2(T ∗v)>(T̂ − T ∗)v + ‖T ∗v‖22 − ‖T ∗v‖22|
≤ ‖(T̂ − T ∗)v‖22 + 2‖T ∗v‖2‖(T̂ − T ∗)v‖2,



18

On the one hand, by the definition of R(d), (D.2),

‖T ∗v‖2 ≤ R(d)‖v‖2 = R(d). (D.13)

On the other hand, if the event A2 occurred, then by definition

‖T̂ − T ∗‖∞ ≤ φn.

Thus, denoting by S the support of v, we can further estimate

‖(T̂ − T ∗)v‖22 =

p∑
i=1

∑
j∈S

(T̂ij − T ∗ij)vj

2

≤
p∑
i=1

‖(T̂ − T ∗)i,S‖22‖v‖22

≤
p∑
i=1

d‖(T̂ − T ∗)i,S‖2∞ ≤ pd‖(T̂ − T ∗)‖2∞ ≤ pdφ2
n, (D.14)

Combined, (D.13) and (D.14) yield

|‖T̂ v‖22 − ‖Tv‖22| ≤ (R(d) + 2
√
pdφn)

√
pdφn.

Now, let h ∈ IRp−1 be a vector that fulfills the cone condition of order d. That is, there is a set of indices
S ⊆ [p− 1] with |S| ≤ d such that ‖hSc‖1 ≤ 3‖hS‖1. This in turn implies that

‖h‖1 = ‖hS‖1 + ‖hSc‖1 ≤ 4‖hS‖1 ≤ 4
√
d‖h‖2

by the Cauchy-Schwarz inequality. By Lemma 8, (D.14), and the definition of R(d) in (D.1), we have

‖T̂ h‖22 ≥ ‖T ∗h‖22 − |h>(T̂ − T ∗)>(T̂ − T ∗)h|

≥ ‖T ∗h‖22 − 27
(

(R(d) + 2
√
pdφn)

√
pdφn

)
(‖h‖22 +

2

d
‖h‖21)

≥
(
ρ(d)2 − 432

(
(R(d) + 2

√
pdφn)

√
pdφn

))
‖h‖22.

Combined, if

φn .
ρ(d)2

√
pd

(R(d) + 1),

which is guaranteed from the assumptions of Theorem 4, we get the claim,

‖T̂ h‖22 ≥
1

2
ρ(d)2‖h‖22.

APPENDIX E: PROOF OF UPPER BOUNDS FOR PENALIZED MAXIMUM LIKELIHOOD
ESTIMATOR

E.1 Notation and lemmas

In the following section, we present the proof of Theorem 7, whereas the proofs of several key lemmas
are deferred to later sections.

We begin by recalling the estimators and restating Theorem 7. The loss functions are given by

`(Θ, Σ̂) = Tr(Σ̂Θ)− log det(Θ), L(B) = L(B, Σ̂1, . . . , Σ̂E) =
∑
e∈E

`(Θe(B), Σ̂e),
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where
Θe(B) = (I − UeB)>(I − UeB).

We consider the penalty terms

peninit(B) = peninit,λinit(B) = λinit

∑
e∈E
‖Θe(B)‖1, penloc(B) = penloc,λloc

(B) = λloc‖B‖1,

leading to the objective functions

Tinit(B) = L(B, Σ̂1, . . . , Σ̂E) + peninit,λinit(B),

and
Tloc(B) = L(B, Σ̂1, . . . , Σ̂E) + penloc,λloc

(B).

Finally, the estimators are defined as

B̂init ∈ argmin
B∈B0

Tinit(B), B̂loc ∈ argmin
B∈B0

‖B−B̂init‖F≤Rloc

Tloc(B),

where λinit, λloc and Rloc are tuning parameters that are to be determined.

THEOREM 7. Under assumptions A1 – A3, if

n &

(
E2 ∨ 1

η4
∨ p2

)
p2(d+ 1)2E3

η4
log(epE/δ)

and the parameters for the estimators Binit and Bloc are chosen such that

Rloc �
1√
E
∧ η ∧ 1

√
p
, λinit �

√
E log(epE/δ)

n
, and λloc �

√
E2 log(epE/δ)

n

then

‖B̂loc −B∗‖2F .
p(d+ 1)E2

η8 n
log(pE/δ),

with probability at least 1− δ.

First, we present three key lemmas used in the proof of Theorem 7. Lemma 9 yields curvature estimates
of the likelihood function in terms of the difference of the concentration matrices associated with a candidate
matrix B while Lemma 10 allows us to relate the difference of the concentration matrices to the difference
in the underlying matrices, B −B∗. Finally, Lemma 11 gives bounds on a stochastic error term.

To facilitate the presentation, we present the lemmas with the following set of notations and assumptions.
Let B ∈ IRp×p be an arbitrary matrix and E a set of completely separating experiments as in assumption A2
with associated matrices {Je, Ue}e∈E . Moreover, assume that B∗ ∈ B(p, d, η). Then, we denote by

Θe = Θe(B) = (I − UeB)>(I − UeB), Θ∗,e = Θe(B∗),
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the concentration matrices associated with B and B∗, respectively, as well as the associated differences
between the structure matrices and the concentration matrices by

H = B −B∗, ∆e = Θe −Θ∗,e,

respectively. We also abbreviate
‖∆‖2F =

∑
e∈E
‖∆e‖2F .

The first lemma follows from convexity arguments that also appear in [RBLZ08, LW13].

LEMMA 9 (Lower bounds on Gaussian log-likelihood function, [RBLZ08, LW13]). With L defined as
in (3.3.1), it holds for any B ∈ IRp×p that

L(B)− L(B∗) ≥
∑
e∈E

Tr((Σ̂e − Σ∗,e)(Θe(B)−Θ∗,e)) + (c1‖∆‖F ∧ c1‖∆‖2F ), (E.1)

where c1 = 18−1.

LEMMA 10 (Upper and lower bounds on ‖∆‖F in terms of ‖H‖F ). If B ∈ B, that is, B has zero
diagonal, we have

‖∆‖2F &
η4

pE
‖H‖4F , (E.2)

‖∆‖2F & η4‖H‖2F (1− 2η−4‖H‖4F ), (E.3)

‖∆‖2F . E(‖H‖2F + ‖H‖4F ). (E.4)

LEMMA 11 (Trace term estimates). Let δ ∈ (0, 1). Denote by φn and ψn the rates

ψn = C

√
E log(epE/δ)

n
, φn = C

√
E2 log(ep/δ)

n
,

for an appropriately chosen constant C > 0. If n & E log(epE/δ), then with probability at least 1 − δ, it
holds for any B ∈ IRp×p that∑

e

Tr
(

(Σ∗,e − Σ̂e)(Θe −Θ∗,e)
)
≤ ψn

∑
e

‖∆e‖1

and ∑
e

Tr
(

(Σ∗,e − Σ̂e)(Θe −Θ∗,e)
)
≤ (2 + ‖H‖∞,∞)φn‖H‖1.

For the proof of Theorem 7, we additionally introduce the following abbreviations. For � ∈ {init, loc},
let

Θe
� = Θe(B̂�), H� = B̂� −B∗,

∆e
� = Θe

� −Θ∗,e, ‖∆�‖2F =
∑
e∈E
‖∆e
�‖2F .

With this, we are ready to give the proof of 7.
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E.2 Proof of Theorem 7

Proof sketch: The proof of Theorem 7 is split into two parts. First, we show that the initialization esti-
mator B̂init performs well enough to allow us to choose Rloc sufficiently small, so that the log-likelihood in
an Rloc-neighborhood of Binit has large enough curvature. Second, we show that locally, B̂loc achieves the
desired rate.

Both proofs are based on re-arranging the optimality condition for the penalized log-likelihood, bounding
the occurring trace term with high-probability, and exploiting the curvature of the log-likelihood function.

Step 1, basic inequality: By definition of the estimator B̂init,

B̂init ∈ argmin
B

Tinit(B).

Comparing to the ground truth B∗ yields the basic inequality

Tinit(B̂init) ≤ Tinit(B
∗),

which implies

L(B̂init)− L(B∗) ≤ peninit(B
∗)− peninit(B̂).

Applying the lower bound on the negative log-likelihood (E.1) in Lemma 9 then yields

c1‖∆init‖F ∧ c1‖∆init‖2F ≤
∑
e∈E

Tr((Σ∗,e − Σ̂e)(Θe
init −Θ∗,e)) + peninit(B

∗)− peninit(B̂init). (E.5)

Step 1, estimate error term: Next, we bound the trace term∑
e∈E

Tr((Σ∗,e − Σ̂e)(Θe
init −Θ∗,e)),

with high probability using Lemma 11. For the remainder of the proof, we place ourselves on the event of
probability at least 1 − δ on which the statement of Lemma 11 holds. Thus, we can estimate the trace term
in (E.5) by

c1‖∆init‖F ∧ c1‖∆init‖2F ≤ ψn
∑
e

‖∆e
init‖1 + peninit(B

∗)− peninit(B̂init).

Denoting the support of Θ∗,e = (I − UeB∗)>(I − UeB∗) by Seinit, we have∑
e

‖∆e
init‖1 =

∑
e,i,j

|(∆e
init)i,j | =

∑
e

(‖(∆e
init)Se

init
‖1 + ‖(∆e

init)(Se
2)c‖1).

Moreover, by triangle inequality,

‖Θ∗,e‖1 − ‖Θe
init‖1 ≤ ‖(∆e

init)Se
init
‖1 − ‖(∆e

init)(Se
2)c‖1.

Combined with the definition of the penalization term,

peninit(B) = λinit

∑
e∈E
‖Θe(B)‖1.
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Now, assume λinit ≥ ψn, which matches the assumed scaling of λinit to obtain

c1‖∆init‖F ∧ c1‖∆init‖2F ≤ 2λinit

∑
e

‖(∆e
init)Se

init
‖1.

Note that we can control the size of the support |Seinit| by the in-degree of B∗. Namely, if we decompose

Θ∗,e = (I − UeB∗)>(I − UeB∗) =

p∑
k=1

(I − UeB∗)>k,:(I − UeB∗)k,:,

which is a sum over the outer product of d + 1 sparse vectors by the assumption that the in-degree of the
underlying graph is bounded by d, and hence

|Seinit| ≤ p(d+ 1)2.

In turn, Hölder’s inequality yields

2λinit

∑
e

‖∆e
Se
init
‖1 ≤ 2λinit

√
p(d+ 1)2E‖∆‖F . (E.6)

Bounds on ‖∆init‖2F : If ‖∆init‖F ≥ 1, by (E.5) and (E.6), we have

‖∆‖F ≤ 2
λinit

c1

√
p(d+ 1)2E‖∆‖F ,

which yields a contradiction if
λinit ≤

c1

4
√
p(d+ 1)2E

.

By the assumption that λinit � ψn and the value of ψn in 11, this holds if

n & p(d+ 1)2E2 log(epE/δ).

If ‖∆init‖F ≤ 1, again by combining (E.5) and (E.6), we have

‖∆init‖2F ≤ 2
λinit

c1

√
p(d+ 1)2E‖∆init‖F .

Dividing by ‖∆init‖F and squaring then implies

‖∆init‖2F ≤ 4
λ2

init

c2
1

√
p(d+ 1)2E.

By Lemma 11 and the choice of λinit � ψn, this leads to

‖∆init‖2F .
p(d+ 1)2E2 log(epE/δ)

n
. (E.7)

Bounds on ‖Hinit‖F : In order to relate ‖∆init‖F to ‖Hinit‖F we appeal to Lemma 10. If n is large
enough for (E.7) to hold, then by the lower bound (E.2) in Lemma 10,

η4

pE
‖Hinit‖4F . ‖∆init‖2F .

p(d+ 1)2E2 log(epE/δ)

n
,
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and hence

‖Hinit‖4F .
p2(d+ 1)2E3 log(epE/δ)

η4n
, (E.8)

which concludes the analysis for the initialization estimator.
Step 2, basic inequality: We have

B̂loc ∈ argmin
‖B−B̂init‖F≤Rloc

Tloc(B).

Suppose Rloc ≥ ‖Hinit‖F , which we achieve by (E.8) and choosing n large enough later, once Rloc has
been chosen. Then, comparing to the ground truth B∗ yields the basic inequality

Tloc(B̂loc) ≤ Tloc(B
∗),

which implies

L(B̂loc)− L(B∗) ≤ penloc(B
∗)− penloc(B̂loc).

Applying the lower bound on the negative log-likelihood (E.1) in Lemma 9 yields

c1‖∆loc‖F ∧ c1‖∆loc‖2F ≤
∑
e∈E

Tr((Σ∗,e − Σ̂e)(Θe
loc −Θ∗,e)) + penloc(B

∗)− penloc(B̂loc).

Step 2, estimate error term: We resort to Lemma 11, this time in the form of (E.19), which yields

c1‖∆loc‖F ∧ c1‖∆loc‖2F ≤ (2 + ‖Hloc‖∞,∞)φn‖Hloc‖1 + penloc(B
∗)− penloc(B̂loc). (E.9)

First, we want to ensure ‖∆loc‖F ≤ 1. The upper bound on ∆ in Lemma 10, (E.4), achieves this if

‖Hloc‖F ≤
c2√
E
,

for a small enough constant c2 ≤ 1. By the triangle inequality and (E.8), this is true if

Rloc ≤
1

2

c2√
E
, and n &

p2(d+ 1)2E5

η4
log(epE/δ).

Second, since we want the bound (E.3) to be effective within the ball ‖B − B̂init‖F ≤ Rloc over which
the optimization in step 2 is constrained, we choose n large enough to guarantee

‖Hloc‖4F ≤
η4

4
.

This again follows from triangle inequality and (E.8) if

Rloc ≤
η

2
√

2
, and n &

p2(d+ 1)2E3

η8
log(epE/δ).

Third, to control the ‖Hloc‖∞,∞ term in (E.9), observe that

‖Hloc‖∞,∞ ≤
√
p‖Hloc‖F
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by Hölder inequality. To guarantee ‖Hloc‖∞,∞ ≤ 2, it is enough to ask for ‖Hinit‖4F ≤ 1/p2 and Rloc ≤
1/
√
p by triangle inequality. By (E.8), the former is be satisfied if

n &
p4(d+ 1)2E3

η4
log(epE/δ).

Combined, in addition to the assumptions made in step 1, if

Rloc ≤ c3

[
1√
E
∧ η ∧ 1

√
p

]
and n &

[
E2 ∨ 1

η4
∨ p2

]
p2(d+ 1)2E3

η4
log(epE/δ),

then

‖∆loc‖F ≤ 1, ‖Hloc‖∞,∞ ≤ 2 and ‖Hloc‖4F ≤
η4

4
.

In turn, from (E.3), we obtain
‖Hloc‖2F ≤ 2η4‖∆loc‖2F .

Writing S := supp(I −B∗), we then see that

‖Hloc‖1 = ‖(Hloc)S‖1 + ‖(Hloc)Sc‖1,

and by triangle inequality,

‖B∗‖1 − ‖B̂loc‖1 ≤ ‖(Hloc)S‖1 − ‖(Hloc)Sc‖1.

Together with (E.9) and observing that we can assume λloc ≥ 4φn, it follows that

‖Hloc‖2F .
λloc

η4
‖(Hloc)S‖1.

Applying the Cauchy-Schwarz inequality gives

‖Hloc‖2F .
λloc

η4

√
|S|‖Hloc‖F .

Finally, we divide by ‖Hloc‖F , take squares, observe that |S| ≤ p(d + 1) use λloc � φn, and plug in the
value of φn in Lemma 11 to obtain

‖Hloc‖2F .
p(d+ 1)E2

η8 n
log(pE/δ),

which concludes the proof.

E.3 Proof of Lemma 9

Let R1 > 0 and recall the notation

`(Θ,Σ) = Tr(ΣΘ)− log det(Θ)

for the negative log-likelihood of a centered multivariate Gaussian distribution. Let Θ∗, Σ̂ be a positive
definite matrix and a positive semi-definite matrix, respectively, and set Σ∗ = (Θ∗)−1. Noting that the first
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derivative of Θ 7→ − log det Θ is −Θ−1 and the second derivative is Θ−1 ⊗ Θ−1, by computing a Taylor
expansion of ` with differential remainder term about Θ∗, we have that

`(Θ, Σ̂)− `(Θ∗, Σ̂) = Tr(Σ̂(Θ−Θ∗))− Tr(Σ∗(Θ−Θ∗)) +
1

2
Tr(Θ̃−1(Θ−Θ∗)Θ̃−1(Θ−Θ∗))(E.10)

for some t ∈ [0, 1] and Θ̃ = Θ∗ + t(Θ−Θ∗).
Denote the matrix square root of Θ̃−1 by Θ̃−1/2. Then, we can further lower bound the quadratic term by

Tr(Θ̃−1(Θ−Θ∗)Θ̃−1(Θ−Θ∗)) = Tr(Θ̃−1/2(Θ−Θ∗)Θ̃−1/2Θ̃−1/2(Θ−Θ∗)Θ̃−1/2)

= ‖Θ̃−1/2(Θ−Θ∗)Θ̃−1/2‖2F
≥ λmin(Θ̃−1/2)4‖Θ−Θ∗‖2F . (E.11)

By the spectral theorem, we can express the smallest eigenvalue of Θ̃−1/2 in terms of the largest eigenvalue
of Θ̃,

λmin(Θ̃−1/2) = (λmax(Θ̃))−1/2.

Now, recall

L(B) =
∑
e∈E

`(Θe(B), Σ̂e),

where
Θe = Θe(B) = (I − UeB)>(I − UeB),

and introduce
∆̃e := Θ̃e −Θ∗,e

and denote by

‖∆̃‖F =

√∑
e∈E
‖∆̃e‖2F

the Frobenius norm of the collection of ∆̃e when viewed as a tensor. We now apply the expansion (E.10)
and the estimate (E.11) to each of the summands, distinguishing two cases.

First, if ‖∆‖F ≤ R1, then also ‖Θe −Θ∗,e‖F ≤ R1 for all e ∈ E and we get

λmax(Θ̃e) = ‖Θ̃e‖op = ‖Θ∗,e + ∆̃e‖op ≤ ‖Θ∗,e‖op + ‖∆̃e‖op

≤ ‖Θ∗,e‖op + ‖∆̃e‖F ≤ ‖Θ∗,e‖op + ‖∆e‖F ≤ ‖Θ∗,e‖op +R1.

Therefore, from (E.11) we get a lower bound of the form

L(B)− L(B∗) ≥
∑
e∈E

Tr((Σ̂e − Σ∗,e)(Θe −Θ∗,e)) + c1‖∆‖2F , (E.12)

with c1 = (maxe∈E ‖Θ∗,e‖op +R1)−2/2.
Second, if ‖∆‖F > R1, we can leverage the convexity of Θ 7→ − log det Θ to again obtain lower bounds.

Define g(s) for s ∈ [0, 1] by

g(s) =
∑
e∈E

[
`(Θ∗,e + s∆e, Σ̂e)− `(Θ∗,e, Σ̂e)

]
.
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Since ` is convex in Θ, g is convex in s, and we obtain

g(1)− g(0)

1
≥ g(s)− g(0)

s
, for all s ∈ (0, 1].

Plugging in t = R1/‖∆‖F , we are in the first case that was discussed and can appeal to (E.12), which yields∑
e∈E

[
`(Θe(B), Σ̂e)− `(Θ∗,e, Σ̂e)

]
≥ ‖∆‖F

R1

∑
e∈E

(
`(Θ∗,e +

R1

‖∆‖F
∆e, Σ̂e)− `(Θ∗,e, Σ̂e)

)
≥ ‖∆‖F

R1

∑
e∈E

(
Tr((Σ̂e − Σ∗,e)

R1

‖∆‖F
∆e) +R2

1c1

)
=
∑
e∈E

Tr((Σ̂e − Σ∗,e)∆e) +R1c1‖∆‖F .

Combined, we get

L(B)− L(B∗) ≥
∑
e∈E

Tr((Σ̂e − Σ∗,e)(Θe −Θ∗,e)) + (R1c1‖∆‖F ∧ c1‖∆‖2F )

Finally, setting R1 = 1 and observing that maxe ‖Θ∗,e‖op ≤ 2 by Lemma 15 yields the claim.

E.4 Proof of Lemma 10

In this section, we abbreviate

H = B −B∗, A = (I −B∗)−1, Ae = (I − UeB∗)−1. (E.13)

We also need the following linear transformation of H , which we denote by G,

G = HA = H(I −B∗)−1. (E.14)

First, we give a lemma that allows us to estimate the Frobenius norm of G by its off-diagonal elements.

LEMMA 12. Let B ∈ IRp×p and denote by H and G the matrices in (E.13) and (E.14), respectively.
Moreover, write GD and GDc for the restriction of the matrix G to its diagonal indices and off-diagonal
elements, respectively. If ‖B∗‖op < 1 and HD = 0, then

‖G‖2F ≤ 2‖GDc‖2F .

PROOF. By the definition ofG, we know thatH = GA−1 = G(I−B∗). The restrictionHD = 0 implies

p∑
k=1

Gik(I −B∗)ki = 0, for all i ∈ [p].

Since B∗ has zero diagonal, for each i ∈ [p], we can solve for Gii and obtain

Gii =
∑
k 6=i

GikB
∗
ki.

By the Cauchy-Schwarz inequality,

G2
ii ≤

∑
k 6=i

G2
ik

∑
k 6=i

(B∗ki)
2

 .
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Finally, summing over all i gives

‖GD‖2F =
∑
i

G2
ii ≤

[
max
i

∑
k

(B∗ki)
2

]∑
i

∑
k 6=i

G2
ik.

Since ‖B∗‖op < 1 and by Lemma 15,
max
i

∑
k

(B∗ki)
2 ≤ 1,

we have the claim,
‖G‖2F = ‖GDc‖2F + ‖GD‖2F ≤ 2‖GDc‖2F .

With this, we proceed to prove Lemma 10.
To start, let e ∈ E . We have

∆e = Θe −Θ∗,e

= (I − UeB̂)>(I − UeB̂)− (I − UeB∗)>(I − UeB∗)
= (I − Ue(B∗ +H))>(I − Ue(B∗ +H))− (I − UeB∗)>(I − UeB∗)
= − (UeH)>A−1

e −A−>e (UeH) + (UeH)>(UeH). (E.15)

Since U>e Ue = U2
e = Ue, we can simplify the terms in the above expression as

(I − UeB∗)>(UeH) = UeH − (B∗)>U>e UeH = (I −B∗)>(UeH),

which leads to

∆e = − (UeH)>A−1 −A−>(UeH) +A−>A>(UeH)>(UeH)AA−1

= A−>
(
−A>(UeH)> − (UeH)A+A>(UeH)>(UeH)A

)
A−1

= A−>
(
−(UeHA)> − (UeHA) + (UeHA)>(UeHA)

)
A−1.

Hence, by Lemma 15,

‖∆e‖F ≥ σ2
min(A−1)‖ − (UeHA)> − (UeHA) + (UeHA)>(UeHA)‖F

≥ η2‖ − (UeHA)> − (UeHA) + (UeHA)>(UeHA)‖F . (E.16)

Write G = HA.
First, to further lower bound the above expression, consider the diagonal of the Je × Je block of the

matrix. There, we have (UeG)Je,Je = 0 and (UeG)>Je,Je = 0, and thus

‖ − (UeG)> − (UeG) + (UeG)>(UeG)‖2F ≥
∑
i∈Je

(∑
u∈Ue

G2
u,i

)2

≥ 1

p

(∑
i∈Je

∑
u∈Ue

G2
u,i

)2

,

where we used ‖h‖1 ≤
√
p‖h‖2 for a vector h ∈ IRp, which follows from Hölder’s inquality. Summing

over the experiments E , together with the assumption of E being completely separating, Hölder’s inequality,
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Lemma 12, and Lemma 15, we get

‖∆‖2F ≥ η4
∑
e∈E
‖(UeG)> + (UeG) + (UeG)>(UeG)‖2F

≥ η4

pE
‖GDc‖4F &

η4

4pE
‖G‖4F &

η4

pE
‖H‖4F .

Second, focusing on the Ue × Je block of the matrix

−(UeG)> − (UeG) + (UeG)>(UeG),

we note that by the Cauchy-Schwarz inequality and the elementary inequality (a + b)2 ≥ 1
2a

2 − b2 for
a, b ∈ IR,

‖ − (UeG)> − (UeG) + (UeG)>(UeG)‖2F

≥
∑
i∈Ue

∑
j∈Je

−Gi,j +
∑
k∈Ue

Gk,iGk,j

2

≥
∑
i∈Ue

∑
j∈Je

1

2
G2
i,j −

∑
k∈Ue

Gk,iGk,j

2
≥
∑
i∈Ue

∑
j∈Je

1

2
G2
i,j −

∑
k∈Ue

G2
k,i

∑
k∈Ue

G2
k,j


≥

∑
j∈Je

∑
i∈Ue

G2
i,j

(1

2
− ‖G‖4F

)
.

Summing over the experiments, taking into account that by symmetry the same estimate holds for theJe×Ue
block, and bounding maximum and minimum singular values by Lemma 15, we obtain a lower bound of

‖∆‖2F ≥ η4‖GDc‖2F (1− 2‖G‖4F ) & η4‖G‖2F (1− 2‖G‖4F )

& η4‖H‖2F (1− 2‖G‖4F )

≥ η4‖H‖2F (1− 2η−4‖H‖4F ).

Finally, we can upper bound ‖∆‖F in terms of ‖H‖F , starting from (E.15), by

‖∆‖2F =
∑
e∈E
‖ − (UeH)>A−1 −A−>(UeH) + (UeH)>(UeH)‖2F

.
∑
e∈E

(‖H‖2F + ‖H‖4F ) ≤ E(‖H‖2F + ‖H‖4F ).
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E.5 Proof of Lemma 11

In this section, we abbreviate

T1 := max
e∈E

∥∥∥(Σ∗,e − Σ̂e)
∥∥∥
∞
,

T2 :=

∥∥∥∥∥∑
e∈E

UeA
−1(Σ∗,e − Σ̂e)

∥∥∥∥∥
∞

,

T3 := max
k

∥∥∥∥∥∑
e∈E

1Ik∈Ue(Σ
∗,e − Σ̂e)

∥∥∥∥∥
∞

and introduce the events

A1 = {T1 ≤ ψn}, A2 = {T2 ≤ φn}, A3 = {T3 ≤ φn}, A = A1 ∩ A2 ∩ A3, (E.17)

where the terms T1, T2, T3 are upper bounded by rates φn and ψn to be made precise in Lemma 14, while
Lemma 13 shows how φn and ψn can be used to estimate the trace term.

LEMMA 13 (Trace term estimates). On the event A1 ∩ A2 ∩ A3, it holds for any B ∈ IRp×p that∑
e

Tr
(

(Σ∗,e − Σ̂e)(Θe −Θ∗,e)
)
≤ ψn

∑
e

‖∆e‖1 (E.18)

and ∑
e

Tr
(

(Σ∗,e − Σ̂e)(Θe −Θ∗,e)
)
≤ (2 + ‖H‖∞,∞)φn‖H‖1. (E.19)

LEMMA 14 (Control on stochastic error). Let δ ∈ (0, 1). There exists an absolute constant C such that
if

ψn = C

√
E log(epE/δ)

n
, φn = C

√
E2 log(ep/δ)

n
,

and
n ≥ CE log(epE/δ),

then with probability at least 1− δ, it holds that

IP(A1 ∩ A2 ∩ A3) ≥ 1− δ,

where A1,A2,A3 are defined as in (E.17).

Combined, Lemmas 13 and 14 yield Lemma 11.

PROOF OF LEMMA 13. First, by Hölder’s inequality,∑
e∈E

Tr
(

(Σ∗,e − Σ̂e)(Θe −Θ∗,e)
)
≤ max

e,i,j
|(Σ∗,e − Σe)i,j |

∑
e,i,j

|∆e
i,j |.

Identifying the first term as T1 and using the estimate T1 ≤ ψn yields (E.18).
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Second, by the same calculation that led to (E.16), we decompose the trace term as∑
e∈E

Tr
(

(Σ∗,e − Σ̂e)(Θe −Θ∗,e)
)

=
∑
e∈E

Tr
(

(Σ∗,e − Σ̂e)
[
−(UeH)>A−1 −A−>(UeH) + (UeH)>(UeH)

])
= − 2

∑
e∈E

Tr
(
H>UeA

−1(Σ∗,e − Σ̂e)
)

+
∑
e∈E

Tr
(

(Σ∗,e − Σ̂e)H>UeH
)
. (E.20)

The first term in (E.20) can be bounded by∣∣∣∣∣−2
∑
e∈E

Tr
(
H>UeA

−1(Σ∗,e − Σ̂e)
)∣∣∣∣∣ ≤ 2‖H‖1‖

∑
e∈E

UeA
−1(Σ∗,e − Σ̂e)‖∞ ≤ 2φn‖H‖1,

while the second term can be controlled by∑
e∈E

Tr
(

(Σ∗,e − Σ̂e)H>UeH
)
≤ ‖H‖1

∥∥∥∥∥∑
e∈E

UeH(Σ∗,e − Σ̂e)

∥∥∥∥∥
∞

. (E.21)

For each entry of the matrix on the right of (E.21), indexed by i, j ∈ [p], we have∣∣∣∣∣∣
[∑
e∈E

UeH(Σ∗,e − Σ̂e)

]
i,j

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
e∈E

∑
k∈[p]

1Ii∈Ue(H)ik(Σ̂
e
kj − Σ∗,ekj )

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
k∈[p]

(H)ik
∑
e∈E

1Ii∈Ue(Σ̂
e
kj − Σ∗,ekj )

∣∣∣∣∣∣
≤

∑
k∈[p]

|(H)ik|

(max
k∈[p]

∣∣∣∣∣∑
e∈E

1Ii∈Ue(Σ̂
e
kj − Σ∗,ekj )

∣∣∣∣∣
)
,

so that ∥∥∥∥∥∑
e∈E

UeH(Σ∗,e − Σ̂e)

∥∥∥∥∥
∞

≤

max
i∈[p]

∑
k∈[p]

|(H)ik|

( max
i,j,k∈[p]

∣∣∣∣∣∑
e

1Ii∈Ue(Σ̂
e
kj − Σ∗,ekj )

∣∣∣∣∣
)

≤ φn max
i∈[p]

∑
k∈[p]

|(H)ik| = φn‖H‖∞,∞.

Combined with the estimate (E.20), this yields the second claim, (E.19).

PROOF OF LEMMA 14. To begin, recall the definition of Σ̂e, as a sum of n/E i.i.d. samples, that is, for
i, j ∈ [p],

(Σ̂e)i,j =
E

n

n∑
`=1

(Xe
` )i(X

e
` )j . (E.22)

By the definition of the sample distribution, we can write

(Xe
` )i(X

e
` )j = e>i (I − UeB∗)−1Ze`︸ ︷︷ ︸

=:Y1

(Ze` )>(I − UeB∗)−>ej︸ ︷︷ ︸
=:Y2

,
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where the Ze` follow a N (0, 1) distribution and are i.i.d., and Lemma 18 ensures that both Y1 and Y2 are
subG(σmax(I − UeB∗)) random variables. By Lemma 17, we obtain that (Xe

` )i(X
e
` )j ∼ subE(σmax(I −

UeB
∗)2).

Similarly,

(A−1
e Xe

` )iX
e
`,j = e>i (I − UeB∗)(I − UeB∗)−1Ze` (Ze` )>(I − UeB∗)−>ej

= e>i Z
e
`︸ ︷︷ ︸

=:Ỹ1

(Ze` )>(I − UeB∗)>ej︸ ︷︷ ︸
=:Ỹ2

.

Here, we have Ỹ1 ∼ subG(1) and Ỹ2 = e>j (I − UeB∗)Ze` ∼ subG(σmax(I − UeB∗)). By again applying
Lemma 17, this means that (A−1

e Xe
` )iX

e
`,j ∼ subE(σmax(I − UeB∗)).

Having established this, to obtain an estimate for T1, we employ Bernstein’s inequality, Lemma 19 to the
sum in (E.22) for each e ∈ E , i, j ∈ [p] to see

IP
(∣∣∣(Σ∗,e − Σ̂e)i,j

∣∣∣ ≥ t1) ≤ 2 exp

[
−cB

((
nt21
EK2

1

)
∧
(
nt1
EK1

))]
,

for t1 > 0, with an absolute constant cB and K1 = maxe σmax(I − UeB)2. Here, we made use of the
fact that subtracting Σ∗,e centers the variables in the sum and that there are n/E independent summands in
(E.16). By a union bound,

IP

(
max
e,i,j

∣∣∣(Σ∗,e − Σ̂e)i,j

∣∣∣ ≥ t1)
≤ 2p2E exp

[
−cB

(
nt21
EK2

1

)
∧
(
nt1
EK1

)]
≤ exp

[
−cB

(
nt21
EK2

1

)
∧
(
nt1
EK1

)
+ 2 log(2pE)

]
. (E.23)

To bound T2, for i, j ∈ [p], we write[∑
e∈E

UeA
−1(Σ∗,e − Σ̂e)

]
i,j

=
∑
e

1Ii∈Ue(A
−1(Σ∗,e − Σ̂e))i,j

=
∑
e

n/E∑
`=1

ae,`((A
−1
e Xe

` )i(X
e
` )j − IE[(A−1

e Xe
` )i(X

e
` )j ])

with
ae,` = 1Ii∈Ue

E

n
.

By Bernstein’s inequality, Lemma 19, for t2 > 0,

IP

∣∣∣∣∣∣
[∑
e∈E

UeA
−1(Σ∗,e − Σ̂e)

]
i,j

∣∣∣∣∣∣ ≥ t2
 ≤ 2 exp

[
−cB

(
t22

K2
2‖a‖22

)
∧
(

t2
K2‖a‖∞

)]
,

where cB is an absolute constant and

K2 = max
e
σmax(I − UeB), ‖a‖22 =

∑
e

E

n
=
E2

n
, ‖a‖∞ = max

e

{
E

n

}
=
E

n
.
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A union bound then yields

IP

max
i,j

∣∣∣∣∣∣
[∑
e∈E

UeA
−1(Σ∗,e − Σ̂e)

]
i,j

∣∣∣∣∣∣ ≥ t2
 ≤ 2p2 exp

[
−cB

(
nt22
K2

2E
2

)
∧
(
nt2
EK2

)]
(E.24)

≤ exp

[
−cB

(
nt22
K2

2E
2

)
∧
(
nt2
EK2

)
+ 2 log(2p)

]
.

To bound T3, we proceed similarly. Using the fact that (Xe
` )i(X

e
` )j ∼ subE(σmax(I −UeB)2) instead of

(A−1
e Xe

` )iX
e
`,j ∼ subE(σmax(I − UeB)), for t3 > 0, we have

IP

(
max
i,j,k

∣∣∣∣∣∑
e

1Ik∈Ue(Σ̂
e
ij − Σ∗,eij )

∣∣∣∣∣ ≥ t3
)
≤ 2p3 exp

[
−cB

(
nt23
K2

3E
2

)
∧
(
nt3
EK3

)]
(E.25)

≤ exp

[
−cB

(
nt2

K2
3E

2

)
∧
(
nt3
EK3

)
+ 3 log(2p)

]
,

where K3 = maxe σmax(I − UeB∗)2.
Combined, recalling that by Lemma 15, σmax(I − UeB∗) ≤ 2 and applying a union bound, we see that

the union of the events in (E.23), (E.24), and (E.25) occurs at most with probability δ if

t1 ≥ C

[√
E log(epE/δ)

n
∨ E log(epE/δ)

n

]
,

t2 ∧ t3 ≥ C

[√
E2 log(ep/δ)

n
∨ E log(ep/δ)

n

]
.

Restricting n to be large enough so that the effective part of the bound is the square root term in both cases
then yields the claim.

APPENDIX F: TECHNICAL LEMMAS

LEMMA 15. If B ∈ IRp×p is such that ‖B‖op ≤ 1− η for some η > 0, then we have

max
i∈[p]

p∑
k=1

B2
ki ∨max

i∈[p]

p∑
k=1

B2
ik ≤ 1.

Moreover, for any diagonal matrix U = diag u with u ∈ {0, 1}p,

σmax(I − UB) ≤ 2, and (σmin(I − UB))−1 ≤ 1

η
.

PROOF. Let B and U as in the assumptions above. First, note that by its diagonal structure,

‖U‖op = max
i∈[p]
|ui| ≤ 1.

Next, We can relate the maximum and minimum singular values to the operator norm and employ sub-
additivity and sub-multiplicativity as follows:

σmax(I − UB) = ‖I − UB‖op ≤ 1 + ‖U‖op‖B‖op ≤ 2,

(σmin(I − UB))−1 = ‖(I − UB)−1‖op =

∥∥∥∥∥∥
∑
k≥0

(UB)k

∥∥∥∥∥∥
op

≤
∑
k≥0

‖U‖kop‖B‖kop ≤
1

1− (1− η)
=

1

η
.
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Moreover, for i ∈ [p], denoting the standard unit vector with 1 in the ith coordinate by ei, we have

p∑
k=1

B2
k,i = ‖B:,i‖22 = ‖Bei‖22 ≤ ‖B‖2op‖ei‖22 ≤ (1− η)2 ≤ 1

and the same argument yields the bound for
∑p

k=1B
2
i,k by transposing the matrix and ‖B‖op = ‖B>‖op.

DEFINITION 16 (Sub-Gaussian and sub-Exponential random variables). We call a random variable X
sub-Gaussian with variance proxy σ2, written X ∼ subG(σ2), if

IE[exp(X2/σ2)] ≤ 2.

We call a random variable sub-exponential with parameter λ, written X ∼ subE(λ), if

IE[exp(|X|/λ)] ≤ 2.

LEMMA 17 (Product of subG random variables is subE, [Ver18, Lemma 2.7.7]).
If X ∼ subG(σ2

X) and Y ∼ subG(σ2
Y ), then

XY ∼ subE(σXσY ).

LEMMA 18 (Sum of independent sub-Gaussian variables, [Ver18, Proposition 2.6.1]).
If X1, . . . , Xn are n independent mean-zero random variables such that Xi ∼ subG(σ2

i ), then

n∑
i=1

Xi ∼ subG(σ2), with σ2 =

n∑
i=1

σ2
i .

LEMMA 19 (Bernstein’s inequality, [Ver18, Theorem 2.8.1]). Let X1, . . . , Xn be n independent mean-
zero random variables such that Xi ∼ subE(λi). Then, there is an absolute constant cB such that for t > 0,

IP

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−cB min

(
t2∑
i=1 λ

2
i

,
t

maxi∈[n] λi

))
.

APPENDIX G: NON-IDENTIFIABILITY IN THE CYCLIC CASE FOR EQUAL VARIANCES

In this section, we give a brief argument to show that for generic matrices B∗, unlike the acyclic case
considered in [LB14, PB14], having equal noise variance as required in Assumption A3 does not lead to
identifiability from observational data.

The argument is based on counting dimensions of the null space of the non-linear maps

Θe(B) = (I − UeB)>(I − UeB).

One limitation of our argument is that it does not cover the potential identifiability of B∗ from observational
data under the additional assumption of bounded in-degree d(B∗) ≤ d.
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PROPOSITION 20. Define the integer

m = |{(i, j)|∃e : i ∈ Ue, j ∈ Je, i 6= j}|+ |{(i, j)|i < j, ∃e : i, j ∈ Ue}|+ p . (G.1)

Then the matrix B∗ ∈ B is not uniquely determined by Θ∗,e = Θe(B∗), e ∈ E whenever m < p2 − p. In
particular, without interventions, this condition holds as soon as p ≥ 4.

PROOF. Consider the maps

Θ: B0
∼= IRp2−p → IRE×p2 and Θ̄ : IRp2 → IRE×p2 ,

defined by stacking all Θe into one vector and accepting respectively matrices with zero diagonal and arbi-
trary diagonal. Similarly, denote by Θ̄e the map Θe when not restricted to matrices with zero-diagonal.

We show that the derivative of Θ has constant rank bounded above by p2−p−(m−p) at a pointB∗ ∈ B0.
In turn, whenever m < p, this implies the existence of B̃ 6= B∗ such that Θ(B∗) = Θ(B̃) by the constant
rank theorem

First, let B ∈ B be arbitrary and compute the derivative of Θ̄ at a point B by computing the derivative
DΘ̄e(B) of the individual maps Θ̄e : IRp×p → IR. For any H̄ ∈ IRp×p, it holds

DΘ̄e(B)[H̄] = (I − UeB)>(−UeH̄) + (−UeH̄)>(I − UeB)

= − (I −B)>(UeH̄)− (UeH̄)>(I −B)

= −A−>
[
(UeH̄A) + (UeH̄A)>

]
A−1, (A = (I −B)−1) (G.2)

where we used the fact that U2
e = Ue.

Next, we compute the dimension of the null space ofDΘ(B). To that end, observe that for anyH ∈ IRp×p

such that DΘe(B)[H] = 0, it holds DΘ̄e(B)[H̄] = 0 and (H̄)ii = 0 for all i ∈ [p]. To characterize the
dimensionality of the subspace of such matrices H , we first consider the null space of DΘ̄e(B)[H̄] = 0 and
then intersect it with the subspace given by (H̄)ii = 0.

Abbreviate Ḡ = H̄A. By (G.2), DΘ̄e(B)[H̄] = 0 for all B ∈ B0 whenever (UeḠ) + (UeḠ)> = 0 for all
e. We permute the indices such that Je = {1, . . . , |Je|} to write this equality in block form:

UeḠ+ (UeḠ)> =

[
0 JeḠ

>Ue
UeḠJe Ue(Ḡ+ Ḡ>)Ue .

]
For each e ∈ E the three nonzero blocks above translate into the following conditions:

Ḡi,j = 0 if ∃e : i ∈ Ue, j ∈ Je, i 6= j

Ḡi,j = − Ḡj,i if ∃e : i, j ∈ Ue .

As a result H̄ = Ḡ(I−B) is the image of (I−B) through the linear operator Ḡ that lives in the intersections
of the orthogonal subspaces defined by the above constraints. Thus, each constraint contributes 1 to the
codimension of the null space of DΘ̄(B). Equivalently, each constraint contributes 1 to the rank DΘ̄(B).

Next, we discuss how to deal with the fact that we need to compute rank(DΘ(B)) instead of rank(DΘ̄(B)),
where B is restricted to lie in the subspace of matrices with zero-diagonal, thus we need to restrict H̄ above
accordingly. Intuitively, we want to say that the rank can increase by at most p, the number of additional
linear constraints on the null space, but we need to further establish that there is a B∗ ∈ B such that the rank
of DΘ(B) is constant in a neighborhood of B∗. Adding to that the constraint that H̄ has null diagonal, we
get rank(DΘ(B)) ≤ m, where m is defined in (G.1).
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Next, we show that rank(DΘ(B)) is, in fact, constant and equal to some r∗ in a neighborhood of B∗ to
apply the constant rank theorem.

To that end, let B∗ be such that r∗ := rank(DΘ(B∗)) ≥ rank(DΘ(B)) for all B ∈ B. Considering
DΘ(B∗) a matrix let S∗ be a maximal principal minor and denote the restriction of DΘ(B∗) to S∗ by
[DΘ(B∗)]S∗ . By definition, we have

rank(DΘ(B∗)) = rank([DΘ(B∗)]S∗) = r∗.

Moreover, the map B 7→ f(B) := det[DΘ(B∗)]S∗ is a polynomial in the elements of B such that
f(B∗) 6= 0. By continuity, it also holds that f(B) 6= 0 in an open neighborhood of B∗ as well, and
thus rank(DΘ(B)) ≥ r∗ in that neighborhood. But since r∗ is maximal, rankDΘ(B) = r∗ for B in an
open neighborhood of B∗.

The above means that we can apply the constant rank theorem [Boo86, Theorem II.7.1] to obtain diffeo-
morphisms ϕ : IRp2−p ⊃ V1 → U1 ⊆ IRp2−p, ψ : IRE×p2 ⊃ U2 → V2 ⊆ IRE×p2 , with Uj , Vj open sets for
j ∈ {1, 2} such that

ψ ◦Θ ◦ ϕ−1(x) = (x1, . . . , xr∗ , 0, . . . , 0), and ϕ−1(0) = B∗.

If r∗ < p2 − p, we obtain a continuum of pre-images of Θ(B∗) as

B̃(x) = ϕ−1(0, . . . , 0, xp2−p−r∗+1, . . . , xp2−p).

for all (0, . . . , 0, xp2−p−r∗+1, . . . , xp2−p) ∈ V1, which includes points other than 0 because V1 is an open
set.

To conclude, recall that r∗ ≤ m so that m < p2 − p is a sufficient condition for the failure of injectivity
of Θ. This completes the first part of the proof.

To obtain the conclusion without interventions, note that in this case

m = |{(i, j) : i < j, ∃e : i, j ∈ Ue}|+ p =

(
p

2

)
+ p

so that m < p2 − p whenever p > 3.

APPENDIX H: NUMERICAL SPEED-UP

When many experiments are performed with a small number of nodes that are intervened on, say |Je| ≤ k,
calculating the log-likelihood term in the algorithms considered in Section 4 in a naive way takes O(Ep3)
operations: both calculating Tr(Θe(B)Σ̂e) and performing a Cholesky decomposition for each of the E
matrices Θe(B) = Le(Le)> with Le lower triangular takes O(p3) time. The Cholesky decomposition in
turn is used to compute

log det Θe(B) =

p∑
i=1

2 log(Lii).

The computational complexity can be improved by using a low rank decomposition of Θe(B), both for
computing the trace term and the Cholesky decomposition (I − B)>(I − B) = LL>. To see this, write
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Je = I − Ue and decompose

(I − UeB)>(I − UeB)

= (I −B + JeB)>(I −B + JeB)

= (I −B)>(I −B) + (JeB)>(I −B) + (I −B)>(JeB) + (JeB)>(JeB)

= (I −B)>(I −B) + (JeB)> − (JeB)>B + (JeB)− (JeB)>(JeB) + (JeB)>(JeB)

= (I −B)>(I −B) + (JeB)> + (JeB)− (JeB)>(JeB)

= (I −B)>(I −B)− (Je − JeB)>(Je − JeB) + J>e Je.

Hence, the Cholesky decomposition Le can be computed by a rank k update followed by a rank k downdate
of L, which takes O(kp2) [See04]. Computation of the trace terms Tr(Σ̂eΘe(B)) can be sped up analo-
gously, also taking O(kp2) time.

Hence, the total time to compute the log-likelihood is O(p3 +Ekp2). In a similar manner, computing the
objective function for step (A.4) in the non-convex ADMM procedure can be done in O(p3 + Ekp2) time,
although one iteration takes O(Ep3) time due to the complexity of performing step (A.3).
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