
Active Learning of Conditional Mean Embeddings
via Bayesian Optimisation (Appendix)

This document presents supplementary theoretical re-
sults and a discussion on applications of the proposed
CME-UCB method to policy search in reinforcement
learning (see Appendix D).

A AUXILIARY RESULTS FOR THE
MAIN PROOFS

The following are auxiliary results referred by the proofs
in the main paper.
Lemma A.1 (Chowdhury and Gopalan (2019)). If
c(u,u) ≤ 1 for all u ∈ U , then the following hold:

σ2
t−1(u) ≤ (1 + 1/η)σ2

t (u) ,

t∑
i=1

σ2
i (ui) ≤ log det

(
η−1Ct + I

)
.

Similarly, if k(x,x) ≤ 1 for all x ∈ X , then

t∑
i=1

s2i (xi) ≤ log det
(
λ−1Kt + I

)
.

Lemma A.2. The conditional mean embedding operator
Θ : Hc → Hk is bounded with ‖Θ‖ < ∞ if and only if,
for any f ∈ Hk, exists g ∈ Hc such that:

∀u ∈ U , g(u) = EPu [f ] . (1)

Proof. First, recall that any bounded linear operator be-
tween Hilbert spaces M : Hc → Hk has an adjoint
MT : Hk → Hc, which is such that:

〈f,M g〉k = 〈MT f, g〉c , (2)

for any f ∈ Hk and any g ∈ Hc (Kreyszig, 1978, Thm.
3.9-2). Therefore, if the conditional mean embedding
operator Θ, as previously defined, is a bounded linear
operator, we also have that:

∀u ∈ U , 〈f,Θφc(u)〉k = 〈ΘT f, φc(u)〉c
= 〈g, φc(u)〉c = g(u) ,

where we set g := ΘT f ∈ Hc. Conversely, if there is a
g ∈ Hc, such that:

∀u ∈ U , 〈f,Θφc(u)〉k = 〈g, φc(u)〉c , (3)

the mapping M : f 7→ g is linear due to the linearity of
the expectation. The latter also implies that:

∀h ∈ Hc, 〈g, h〉c = 〈f,Θh〉k , (4)

which in turn implies that ‖Θh‖k < ∞, for all h ∈ Hc,
as Θh ∈ Hk. Therefore, Θ must be bounded.

B OTHER AUXILIARY RESULTS

This section presents a few auxiliary results which as-
sist in a practical implementation of the algorithm. For
the next derivations, we use eig(A) to denote the set of
eigenvalues of a matrix A. For positive semi-definite ma-
trices A and B, we use A 4 B to indicate that B −A
is positive semi-definite. We also use ‖v‖A =

√
vTAv

to denote the Mahalanobis norm of a vector v ∈ Rm,
which is a valid norm whenever A is positive-definite.

The following provides an exact expression for the
RKHS norm of the conditional mean embedding opera-
tor Θ when the control space U is finite and c is a strictly
positive-definite kernel (Sriperumbudur et al., 2011).
Lemma B.1 (Bound on ‖Θ‖op for finite U). Let U :=
{ui}mi=1, m ∈ N. Assume c : U × U → R is a strictly
positive-definite kernel. Then we have that:

‖Θ‖op =

√
max eig

(
C−1/2K̂C−1/2

)
,

where C := [c(ui,uj)]
m
i,j=1 and K̂ :=

[〈ϑ(ui), ϑ(uj)〉k]mi,j=1.

Proof. As U is finite, we can express any function in the
corresponding RKHSHc as:

g ∈ Hc, g =

m∑
i=1

αic(·,ui) , (5)



where αi ∈ R, for i ∈ {1, . . . ,m}. The RKHS norm
can be expressed as ‖g‖c =

√
αTCα, where [α]i = αi.

In addition, from the definition of ϑ, applying Θ to any
g ∈ Hc we have:

Θ g =

m∑
i=1

αiϑ(ui) , (6)

which has RKHS norm ‖Θ g‖k =
√
αTK̂α.

Plugging equations (5) and (6) into the definition of the
operator norm, we have:

‖Θ‖op = sup
g∈Hc:‖g‖c=1

‖Θ g‖k

= sup
α∈Rm:

√
αTCα=1

√
αTK̂α .

(7)

As c is strictly positive-definite on U , C is a positive-
definite matrix, ensuring its inverse exists. Making a
change of variable α′ = C1/2α, we obtain:

‖Θ‖op = sup
α′∈Rm

√
α′TC−1/2K̂C−1/2α′√

α′Tα′

=

√
max eig

(
C−1/2K̂C−1/2

)
,

(8)

where the latter follows from the Rayleigh-Ritz the-
orem (Horn and Johnson, 1985, Theorem 4.2.2), i.e.
maxα 6=0

αTMα
αTα

= max eig(M), combined with the
monotonicity of the square root.

For our experiments, we synthesised state noise as Gaus-
sian random variables. In this case, the following re-
sult allows us to compute the operator norm of the
conditional embedding operator when combined with
Lemma B.1.
Lemma B.2. Let k(x,x′) := exp(−‖x−x′‖2

L−1) be the
squared exponential kernel, with x,x′ ∈ X = RD. Let
state distributions be Gaussian Pu = N(x̂(u),Σ(u)),
for u ∈ U . Then the inner product between conditional
mean embeddings defines the following kernel:

k̂(Pu, Pu′) := 〈ϑ(u), ϑ(u′)〉k

=
exp

(
− 1

2‖x̂(u)− x̂(u′)‖2L(u,u′)−1

)
det(I + L−1(Σ(u) + Σ(u′)))1/2

,

(9)

where L(u,u′) := L + Σ(u) + Σ(u′).

Proof. This result simply follows from the definition of
the conditional mean embeddings and a closed-form so-
lution for the expected value of the squared-exponential
kernel under independent Gaussian inputs (Girard, 2004,
Eq. 3.53).

C PROOFS FOR THE REFINED
CME-UCB

In this section we provide proofs for the main results re-
garding the improved CME-UCB algorithm. We first in-
troduce auxiliary results which we will use for the proofs.

We start by adapting a general result by Abbasi-Yadkori
(2012, Corollary 3.15) to our settings. For these results,
we use:

Wt := λI + Φk(Xt)Φk(Xt)
T , (10)

which is a positive-definite operator onHk. Note that, if
we reverse the second term on the right-hand side above,
we recover Kt = Φk(Xt)

TΦk(Xt), which is the ob-
served states kernel matrix. With the definitions above,
we obtain the following concentration inequality on the
RKHS distance between the objective function f and the
least-squares estimator µ̂t.
Lemma C.1. For any δ ∈ (0, 1], with probability at least
1− δ, uniformly over all t ≥ 0,

‖f − µ̂t‖Wt
≤ βk,t(δ) ,

where βk,t(δ) is given by Lemma 2.

Proof. The proof simply follows by verifying that our
assumptions on the observation process are equivalent to
those of Abbasi-Yadkori (2012, Corollary 3.15) and that:

b
√
λ+ σζ

√
2 log

(
det(I + λ−1Kt)1/2

δ

)
≤ βk,t(δ) ,

(11)
since 1

2 log det(I + λ−1Kt) ≤ γk,t.

Now consider the posterior state kernel:

kt(x,x
′) := k(x,x)−kt(x)T(Kt+λI)−1kt(x) , (12)

and its expected value under arbitrary state distributions
P, P ′ ∈ P:

kt(P, P
′) :=

∫
X

∫
X
kt(x,x

′) dP (x) dP ′(x′) , (13)

where we allow for a slight abuse of notation. Similarly,
let us define:

st(P ) :=
√
λ−1kt(P, P ) . (14)

Let P̂ tu be a t sample empirical approximation to the
conditional distribution Pu in the sense that EP̂ t

u
[f ] =

〈f, ϑ̂t(u)〉k for any f ∈ Hk. Then, with Lemma C.1,
we obtain the following UCB on the expected value of
the objective function under the learnt conditional mean
embedding, which is a restatement of Lemma 5.



Lemma C.2 (Restatement of Lemma 5). For any δ ∈
(0, 1], with probability at least 1 − δ, uniformly over all
t ≥ 0 and u ∈ U

|EP̂ t
u
[f ]− EP̂ t

u
[µ̂t]| ≤ βk,t(δ)st(P̂ tu) .

Proof. First, observe that:∣∣∣EP̂ t
u
[f ]− EP̂ t

u
[µ̂t]
∣∣∣ =

∣∣∣〈f − µ̂t, ϑ̂t(u)〉k
∣∣∣

=
∣∣∣〈W1/2

t (f − µ̂t),W−1/2t ϑ̂t(u)〉k
∣∣∣

≤ ‖f − µ̂t‖Wt‖ϑ̂t(u)‖W−1
t
,

(15)

which follows by the Cauchy-Schwarz inequality and the
fact that Wt is self-adjoint. Concerning the second term
on the final right-hand side, using the Woodbury inverse
matrix identity, we know that:

λW−1t = I−Φk(Xt)(Kt + λI)Φk(Xt)
T . (16)

From Equation 12, we then have that:

kt(x,x
′) = λ〈φk(x),W−1t φk(x′)〉k . (17)

Finally, applying the definition of the conditional mean
embedding to Equation 13 yields:

‖ϑ̂t(u)‖2
W−1

t
= 〈ϑ̂t(u),W−1t ϑ̂t(u)〉k

= λ−1kt(P̂
t
u, P̂

t
u)

= s2t (P̂
t
u)

(18)

The end result then follows by Lemma C.1.

The predictive variance s2t (P̂
t
u) can be computed in prac-

tice as:

s2t (P̂
t
u) = λ−1vt(u)Tkt(Xt,Xt)vt(u) , (19)

where vt(u) := (Ct + ηI)−1ct(u) and

kt(Xt,Xt) := Kt −Kt(Kt + λI)−1Kt , (20)

which is the GP posterior covariance matrix on the ob-
served states. It is worth noting that the predictive vari-
ance s2t (P̂

t
u) is always smaller than σ2

t (u), the Maha-
lanobis norm square of the control features. To see this,
we first note that:

s2t (P̂
t
u) = vt(u)TKt(Kt + λI)−1vt(u)

≤ ‖(Ct + ηI)−1ct(u)‖22 . (21)

We now define:

Vt := ηI + Φc(Ut)Φc(Ut)
T ,

which is a positive-definite operator on Hc. Note that,
if we reverse the second term on the right-hand side
above, we recover Ct = Φc(Ut)

TΦc(Ut) and ct(u) =
Φc(Ut)

Tφc(u). With the definitions above, we now ob-
tain:

(Ct + ηI)−1ct(u) = Φc(Ut)
T V−1t φc(u) .

Substituting this to Equation 21, we then upper bound
the predictive variance as:

s2t (P̂
t
u) ≤ φc(u)T V−1t Φc(Ut)Φc(Ut)

T V−1t φc(u)

= φc(u)T V−1t φc(u)− η φc(u)T V−2t φc(u)

= σ2
t (u)− η ‖V−1t φc(u)‖2c

≤ σ2
t (u) . (22)

Now, combining Lemma C.2 with Theorem 1 in the main
paper, we obtain the following tighter confidence interval
as compared to Lemma 3.
Proposition C.3 (Restatement of Proposition 6). For any
δ ∈ (0, 1], let βc,t(δ) and βk,t(δ) be as given in Theorem
1 and Lemma 2, respectively. Then, with probability at
least 1− δ, the following holds uniformly over all t ≥ 0
and u ∈ U:

|EPu [f ]−EP̂ t
u
[µ̂t]| ≤ bβc,t(δ/2)σt(u)+βk,t(δ/2)st(P̂

t
u) .

Proof. Using the triangle inequality, we have:

|EPu [f ]− EP̂ t
u
[µ̂t]| ≤|EPu [f ]− EP̂ t

u
[f ]|

+ |EP̂ t
u
[f ]− EP̂ t

u
[µ̂t]| .

(23)

Applying Theorem 1 and the Cauchy-Schwarz inequality
to the first term on the right-hand side of Equation 23, it
holds with probability at least 1− δ:

|EPu [f ]− EP̂ t
u
[f ]| = |〈f, ϑ(u)− ϑ̂t(u)〉k|

≤ ‖f‖k‖ϑ(u)− ϑ̂t(u)‖k
≤ ‖f‖kβc,t(δ)σt(u) .

(24)

The result in Proposition C.3 then follows by apply-
ing Lemma C.2 and substituting Equation 24 into Equa-
tion 23.

Refined algorithm and its regret bound Given past
observations Dt−1 = {(ui,xi, yi)}t−1i=1 , we define a re-
fined UCB acquisition function:

h̃(u|Dt−1) = 〈µ̂t−1, ϑ̂t−1(u)〉k + βt−1(u) ,

where βt(u) := bβc,t(δ/2)σt(u) +βk,t(δ/2)st(P̂
t
u), for

any t ≥ 0. As before, we choose ut that maximises this
refined acquisition function. We now derive an upper
bound on the cumulative regret of this refined version of
the CME-UCB algorithm.



Theorem C.4 (Restatement of Theorem 7). Fix any
δ ∈ (0, 1]. Then, under the same hypothesis of Proposi-
tion C.3, the refined CME-UCB, enjoys, with probability
at least 1− δ, the regret bound:

Rn ≤ 2 (bβc,n(δ/2) + βk,n(δ/2))
√

2(1 + 1/η)γc,n n .

Proof. Let us assume that:

∀t ≥ 0, ∀u ∈ U ,
∣∣∣〈f, ϑ(u)〉k − 〈µ̂t, ϑ̂t(u)〉k

∣∣∣
:=
∣∣∣EPu [f ]− EP̂ t

u
[µ̂t]
∣∣∣ ≤ βt(u) . (25)

Then the instantaneous regret at time t ≥ 1 is:

rt := E[f(x)|u?]− E[f(x)|ut]
= 〈f, ϑ(u?)〉k − 〈f, ϑ(ut)〉k
≤ 〈µ̂t−1, ϑ̂t−1(u?)〉k + βt−1(u?)− 〈f, ϑ(ut)〉k
≤ 〈µ̂t−1, ϑ̂t−1(ut)〉k + βt−1(ut)− 〈f, ϑ(ut)〉k
≤ 2βt−1(ut)

≤ 2 (bβc,t−1(δ/2) + βk,t−1(δ/2))σt−1(ut) ,

where the second inequality is due the choice of ut in the
refined algorithm, the first and the third inequalities are
due to Equation 25 and the last inequality is due to Equa-
tion 22. Now, by Proposition C.3, Equation 25 holds with
probability at least 1− δ. Then, with probability at least
1− δ, we have the cumulative regret:

Rn ≤
n∑
t=1

2 (bβc,t−1(δ/2) + βk,t−1(δ/2))σt−1(ut)

≤ 2 (bβc,n(δ/2) + βk,n(δ/2))

n∑
t=1

σt−1(ut)

≤ 2 (bβc,n(δ/2) + βk,n(δ/2))

√√√√n

n∑
t=1

σ2
t−1(ut) ,

where the last step is due to the the Cauchy-Schwartz in-
equality and the second last step is due to the monotonic-
ity of βc,t and βk,t. Now the result follows from the def-
inition of γc,t along with the identities σ2

t−1(u) ≤ (1 +
1/η)σ2

t (u) and
∑n
t=1 σ

2
t (ut) = log det

(
λ−1Cn + I

)
(Lemma A.1).

D APPLICATION TO
REINFORCEMENT LEARNING

Following a similar strategy to the likelihood-free infer-
ence application, we can let u ∈ U represent the pa-
rameters of a policy πu in reinforcement learning. When
executed, policies generate trajectories ξ, which are asso-
ciated with a task-specific total reward J [ξ]. A common

objective is to maximise the expected return, defined as
J [π] = Eξ[J [ξ]], with a slight abuse of notation.

To apply our framework to the policy search problem, we
use ϑ(u) to model p(ξ|u). Trajectories are usually high-
dimensional, but filled with information that can be com-
pressed into summary statistics xξ (Ramos et al., 2019).
We then model f : X → R, such that f(xξ) = J [ξ], as
an element of Hk. Our results then allow for an upper
bound on the regret of a policy-search algorithm follow-
ing the proposed UCB strategy.

One can also apply CME-UCB to learn a likelihood
model p(ξo|u) for a imitation learning objective, trying
to match an observed trajectory ξo (Hussein et al., 2017).
In this case, the problem reverts to maximum likelihood
estimation in a likelihood-free inference framework.
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