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Abstract

In preference-based reinforcement learning
(RL), an agent interacts with the environ-
ment while receiving preferences instead of
absolute feedback. While there is increas-
ing research activity in preference-based RL,
the design of formal frameworks that ad-
mit tractable theoretical analysis remains an
open challenge. Building upon ideas from
preference-based bandit learning and poste-
rior sampling in RL, we present DUELING
POSTERIOR SAMPLING (DPS), which em-
ploys preference-based posterior sampling to
learn both the system dynamics and the un-
derlying utility function that governs the pref-
erence feedback. As preference feedback is
provided on trajectories rather than individ-
ual state-action pairs, we develop a Bayesian
approach for the credit assignment problem,
translating preferences to a posterior distri-
bution over state-action reward models. We
prove an asymptotic Bayesian no-regret rate
for DPS with a Bayesian linear regression
credit assignment model. This is the first re-
gret guarantee for preference-based RL to our
knowledge. We also discuss possible avenues
for extending the proof methodology to other
credit assignment models. Finally, we evaluate
the approach empirically, showing competitive
performance against existing baselines.

1 INTRODUCTION

Reinforcement learning (RL) agents interact with hu-
mans in many domains, from clinical trials (Sui et al.,
2018a) to autonomous driving (Sadigh et al., 2017) to
human-robot interaction (Kupcsik et al., 2018), and take
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human preferences as feedback. While many RL algo-
rithms assume the existence of a numerical reward sig-
nal, in settings involving humans, it is often unclear how
to define a reward signal that accurately reflects optimal
system-human interaction. For instance, in autonomous
driving (Basu et al., 2017) and robotics (Argall et al.,
2009; Akrour et al., 2012), users can have difficulty with
both specifying numerical reward functions and provid-
ing demonstrations of desired behavior. Moreover, a
misspecified reward function can result in “reward hack-
ing” (Amodei et al., 2016), in which undesirable actions
achieve high rewards. In such situations, the user’s pref-
erences could more reliably measure her intentions.

This work studies the problem of preference-based rein-
forcement learning (PBRL), in which the RL agent exe-
cutes a pair of trajectories of interaction with the environ-
ment, and the user provides (noisy) pairwise preference
feedback, revealing which of the two trajectories is pre-
ferred. Though the study of PBRL has seen increased
interest in recent years (Christiano et al., 2017; Wirth
et al., 2017), it remains an open challenge to design for-
mal frameworks that admit tractable theoretical analysis.
While the preference-based bandit setting—in which the
agent observes preferences between selected actions—
has seen significant theoretical progress (e.g., Yue et al.
(2012); Zoghi et al. (2014); Ailon et al. (2014); Szörényi
et al. (2015); Dudı́k et al. (2015); Zoghi et al. (2015);
Ramamohan et al. (2016); Wu and Liu (2016); Sui et al.
(2017, 2018b)), the PBRL setting is more challenging, as
the environment’s dynamics can stochastically translate
the agent’s policies for interaction (analogous to actions
in the bandit setting) to the observed trajectories.

In this paper, we present the DUELING POSTERIOR
SAMPLING (DPS) algorithm, which uses preference-
based posterior sampling to tackle PBRL in the Bayesian
regime. Posterior sampling (Thompson, 1933), also
called Thompson sampling, is a Bayesian model-based
approach to balancing exploration and exploitation,
which enables the algorithm to efficiently learn models



of both the environment’s state transition dynamics and
reward function. Previous work on posterior sampling
in RL (Osband et al., 2013; Gopalan and Mannor, 2015;
Agrawal and Jia, 2017; Osband and Van Roy, 2017) is
focused on learning from absolute rewards, while we
extend posterior sampling to both elicit and learn from
trajectory-level preference feedback.

To elicit preference feedback, at every episode of learn-
ing, DPS draws two independent samples from the pos-
terior to generate two trajectories. This approach is in-
spired by the Self-Sparring algorithm proposed for the
bandit setting (Sui et al., 2017), but has a quite different
theoretical analysis, as we need to incorporate trajectory-
level preference learning and state transition dynamics.

Learning from trajectory-level preferences is in general
a very challenging problem, as information about the re-
wards is sparse (often just one bit), is only relative to
the pair of trajectories being compared, and does not ex-
plicitly include information about actions within trajec-
tories. DPS learns from preference feedback by inter-
nally maintaining a Bayesian state-action reward model
that explains the preferences; this reward model is a solu-
tion to the temporal credit assignment problem (Akrour
et al., 2012; Zoghi et al., 2014; Szörényi et al., 2015;
Christiano et al., 2017; Wirth et al., 2016, 2017), i.e., de-
termining which of the encountered states and actions are
responsible for the trajectory-level preference feedback.

We developed DPS concurrently with an analysis
framework for characterizing regret convergence in the
episodic setting, based upon information-theoretic tech-
niques for bounding the Bayesian regret of posterior
sampling (Russo and Van Roy, 2016). We mathemat-
ically integrate Bayesian credit assignment and prefer-
ence elicitation within the conventional posterior sam-
pling framework, evaluate several credit assignment
models, and prove a Bayesian asymptotic no-regret rate
for DPS with a Bayesian linear regression credit assign-
ment model. To our knowledge, this is the first PBRL ap-
proach with theoretical guarantees. We also demonstrate
that DPS delivers competitive performance empirically.

2 RELATED WORK

Posterior sampling. Balancing exploration and ex-
ploitation is a key problem in RL. In the episodic learn-
ing setting, the agent typically aims to balance explo-
ration and exploitation to minimize its regret, i.e., the
gap between the expected total rewards of the agent and
the optimal policy. Posterior sampling, first proposed in
Thompson (1933), is a Bayesian model-based approach
toward achieving this goal, which iterates between (1)
updating the posterior of a Bayesian environment model

and (2) sampling from this posterior to select the next
policy. In both the bandit and RL settings, posterior sam-
pling has been demonstrated to perform competitively in
experiments and enjoy favorable theoretical regret guar-
antees (Osband and Van Roy, 2017; Osband et al., 2013;
Agrawal and Jia, 2017; Chapelle and Li, 2011).

Our approach builds upon two existing posterior sam-
pling algorithms: Self-Sparring (Sui et al., 2017) for
preference-based bandit learning (also known as duel-
ing bandits (Yue et al., 2012)) and posterior sampling
RL (Osband et al., 2013). Self-Sparring maintains a pos-
terior over each action’s reward, and in each iteration,
draws multiple samples from this posterior to “duel” or
“spar” via preference elicitation. For each set of sampled
rewards, the algorithm executes the action with the high-
est reward sample, obtaining new preferences to update
the model posterior. Sui et al. (2017) prove an asymp-
totic no-regret guarantee for Self-Sparring with indepen-
dent Beta-Bernoulli reward models for each action.

Within RL, posterior sampling has been applied to the
finite-horizon setting with absolute rewards to learn
Bayesian posteriors over both the dynamics and rewards.
Each posterior sample yields models of both dynamics
and rewards, which are used to compute the optimal pol-
icy for the sampled system. This policy is executed to
get a roll-out trajectory, used to update the dynamics and
reward posteriors. In Osband et al. (2013), the authors
show an expected regret of O(hS

√
AT log(SAT )) after

T time-steps, with finite time horizon h and discrete state
and action spaces of sizes S and A, respectively.

Our theoretical analysis studies the Bayesian linear re-
gression credit assignment model, which most closely
resembles Bayesian reward modeling in the linear bandit
setting (Abbasi-Yadkori et al., 2011; Agrawal and Goyal,
2013; Abeille and Lazaric, 2017). While both the PBRL
and linear bandit settings apply Bayesian linear regres-
sion to recover model parameters, PBRL additionally re-
quires learning the dynamics, determining policies via
value iteration, and receiving feedback as preferences be-
tween trajectory pairs.

Several regret analyses in the linear bandit domain
(Abbasi-Yadkori et al., 2011; Agrawal and Goyal, 2013;
Abeille and Lazaric, 2017) rely upon martingale con-
centration properties introduced in Abbasi-Yadkori et al.
(2011), and depend upon a bound that is not applicable
in the preference-based setting (see Appendix C). Intu-
itively, these analyses assume that the agent learns about
rewards with respect to every observation’s feature vec-
tor. In contrast, the preference-based setting assumes that
only the difference in the total rewards of two trajectories
affects human preferences. Thus, while the algorithm in-
curs regret with respect to every sampled trajectory, only



differences between compared trajectory feature vectors
yield information about rewards.

Our regret analysis takes inspiration from the
information-theoretic perspective on Thompson
sampling introduced in Russo and Van Roy (2016),
a framework for quantifying Bayesian regret in terms of
the information gained at each step about the optimal
action. This analysis focuses upon upper-bounding the
information ratio, which quantifies the trade-off between
exploration (via the information gain) and exploitation
(via the instantaneous regret) at each step. Several
studies (Zanette and Sarkar, 2017; Nikolov et al., 2018)
consider extensions of this work to the RL setting, but
to our knowledge, it has not previously been applied
toward preference-based learning.

Preference-based learning. Previous work on PBRL
has shown successful performance in a number of ap-
plications, including Atari games and the Mujoco envi-
ronment (Christiano et al., 2017), learning human prefer-
ences for autonomous driving (Sadigh et al., 2017), and
selecting a robot’s controller parameters (Kupcsik et al.,
2018; Akrour et al., 2014). Yet, to our knowledge, the
PBRL literature still lacks theoretical guarantees.

Much of the existing work in PBRL handles a distinct
setting from ours. While we seek online regret minimiza-
tion, several existing algorithms minimize the number of
preference queries (Christiano et al., 2017; Wirth et al.,
2016). Such algorithms, for instance those which apply
deep learning, typically assume that many simulations
can be cheaply run between preference queries. In con-
trast, our setting assumes that experimentation is as ex-
pensive as preference elicitation; this could include such
domains as adaptive experiment design and human-robot
interaction without well-understood human dynamics.

Existing approaches for trajectory-level preference-
based RL may be broadly divided into three categories
(Wirth, 2017): a) directly optimizing policy parameters
(Wilson et al., 2012; Busa-Fekete et al., 2013; Kupc-
sik et al., 2018); b) modeling action preferences in each
state (Fürnkranz et al., 2012); and c) learning a utility
function to characterize the rewards, returns, or values of
state-action pairs (Wirth and Fürnkranz, 2013a,b; Akrour
et al., 2012; Wirth et al., 2016; Christiano et al., 2017).
In c), the utility is often modeled as linear in the trajec-
tory features. If those features are defined in terms of
visitations to each state-action pair, then utility directly
corresponds to the total (undiscounted) reward.

We adopt the third of these paradigms: PBRL with
underlying utility functions. By inferring state-action
rewards from preference feedback, one can derive
relatively-interpretable reward models and employ such

methods as value iteration. In addition, utility-based
approaches may be more sample efficient compared to
policy search and preference relation methods (Wirth,
2017), as they extract more information from each ob-
servation. Notably, Wilson et al. (2012) learn a Bayesian
model over policy parameters, and sample from its pos-
terior to inform actions. From existing PBRL meth-
ods, their algorithm perhaps most resembles ours; how-
ever, compared to utility-based approaches, policy search
methods typically require either more samples or expert
knowledge to craft the policy parameters (Wirth et al.,
2017; Kupcsik et al., 2018).

Beyond RL, preference-based learning has been the sub-
ject of much research. The bandit setting (Yue et al.,
2012; Zoghi et al., 2014; Ailon et al., 2014; Szörényi
et al., 2015; Dudı́k et al., 2015; Zoghi et al., 2015; Ra-
mamohan et al., 2016; Wu and Liu, 2016; Sui et al., 2017,
2018b) is closest, as it is essentially a single-state variant
of RL. Other settings include: active learning (Sadigh
et al., 2017; Houlsby et al., 2011; Eric et al., 2008), which
is focused exclusively on learning an accurate model
rather than maximizing utility of decision-making; learn-
ing with more structured preference feedback (Radlinski
and Joachims, 2005; Shivaswamy and Joachims, 2012;
Raman et al., 2013; Shivaswamy and Joachims, 2015),
where the learner receives more than one bit of informa-
tion per preference elicitation; and batch supervised set-
tings such as learning to rank (Herbrich et al., 1999; Chu
and Ghahramani, 2005; Joachims, 2005; Burges et al.,
2005; Yue et al., 2007; Burges et al., 2007; Liu, 2009).

3 PROBLEM STATEMENT

Preliminaries. We consider fixed-horizon Markov De-
cision Processes (MDPs), in which rewards are re-
placed by preferences over trajectories. This class
of MDPs can be represented as a tuple, M =
(S,A, φ, p, p0, h), where the state space S and action
space A are finite sets with cardinalities S and A, re-
spectively. The agent episodically interacts with the en-
vironment in length-h roll-out trajectories of the form
τ = {s1, a1, s2, a2, . . . , sh, ah, sh+1}. In the ith iter-
ation, the agent executes two trajectory roll-outs τi1 and
τi2 and observes a preference between them; we use the
notation τ � τ ′ to indicate a preference for trajectory τ
over τ ′. The initial state is sampled from p0, while p de-
fines the transition dynamics: st+1 ∼ p(·|st, at). Finally,
the function φ captures the preference feedback genera-
tion mechanism: φ(τ, τ ′) := P (τ � τ ′) ∈ [0, 1].

A policy, π : S × {1, . . . , h} −→ A, is a (possibly-
stochastic) mapping from states and time indices to ac-
tions. In each iteration i, the agent selects two policies,
πi1 and πi2, which are rolled out to obtain trajectories τi1



and τi2 and preference label yi. We represent each tra-
jectory as a feature vector, where the features record the
number of times each state-action pair is visited. In it-
eration i, rolled-out trajectories τi1 and τi2 correspond,
respectively, to feature vectors xi1,xi2 ∈ Rd, where
d := SA is the total number of state-action pairs, and
the kth element of xij , j ∈ {1, 2}, is the number of times
that τij visits state-action pair k. The preference for iter-
ation i is denoted yi := I[τi2�τi1]− 1

2 ∈
{
− 1

2 ,
1
2

}
, where

I[·] denotes the indicator function, so that P
(
yi = 1

2

)
=

1− P
(
yi = − 1

2

)
= φ(τi2, τi1)− 1

2 ; there are no ties in
any comparisons. Lastly, we define xi := xi2 − xi1.

Our analysis builds upon two main assumptions. Firstly,
we assume the existence of underlying utilities, quanti-
fying the user’s satisfaction with each trajectory:
Assumption 1. Each trajectory τ has utility r(τ), which
decomposes additively: r(τ) ≡

∑h
t=1 r(st, at) for the

state-action pairs in τ . Defining r ∈ Rd as the vector
of all state-action rewards, r(τ) can also be expressed in
terms of τ ’s state-action visit counts x: r(τ) = rTx.

Secondly, we assume that the utilities r(τ) are stochas-
tically translated to preferences via the noise model φ,
such that the probability of observing τi2 � τi1 is a
function of the difference in their utilities. Intuitively,
the greater the disparity in two trajectories’ utilities, the
more accurate the user’s preference between them:
Assumption 2. P (τi2 � τi1) = φ(τi2, τi1) =
g(r(τi2) − r(τi1)) + 1

2 = g(rTxi2 − rTxi1) + 1
2 ,

where g : R −→
[
− 1

2 ,
1
2

]
is a link function such that

a) g is non-decreasing, and b) g(x) = −g(−x) to en-
sure that P (τ � τ ′) = 1 − P (τ ′ � τ). Note that
if r(τ) = r(τ ′), we have P (τ � τ ′) = 1

2 , and that
P (τi2 � τi1) > 1

2 ⇔ g(rTxi) > 0⇔ rTxi2 > r
Txi1.

For noiseless preferences, gideal(x) := I[x>0] − 1
2 . Al-

ternatively, the logistic or Bradley-Terry link function
is defined as glog(x) := [1 + exp(−x/c)]−1 − 1

2 with
“temperature” c ∈ (0,∞). Our theoretical analysis
assumes the linear link function (Ailon et al., 2014):
glin(x) := cx, for c > 0 and x ∈ [− 1

2c ,
1
2c ]. Then,

E[yi] = P (τi2 � τi1) − 1
2 = crT (xi2 − xi1). With-

out loss of generality, we set c = 1 by subsuming c into
r. Denote the observation noise associated with glin on
iteration i as ηi, such that yi = rT (xi2 − xi1) + ηi.

Given a policy π, we can define the standard RL value
function as the expected total utility when starting in state
s at step j, and following π:

Vπ,j(s) = E

 h∑
t=j

r(st, π(st, t))
∣∣ sj = s

 . (1)

The optimal policy π∗ is then defined as one

that maximizes the expected value over all input
states: π∗ = supπ

∑
s∈S p0(s)Vπ,1(s). Note that

Es1∼p0 [Vπ,1(s1)] ≡ Eτ∼(π,M) [r(τ)]. Given fully spec-
ified dynamics and rewards, p and r, it is straight-
forward to apply standard dynamic programming ap-
proaches such as value iteration to arrive at the optimal
policy under p and r. The learning goal, then, is to infer p
and r to the extent necessary for good decision-making.

Learning problem. We quantify the learning agent’s
performance via its cumulative T -step Bayesian regret
relative to the optimal policy:

E[REG(T )] = E

{ dT/(2h)e∑
i=1

∑
s∈S

p0(s)
[
2Vπ∗,1(s)

− Vπi1,1(s)− Vπi2,1(s)
]}
. (2)

To minimize regret, the agent must balance exploration
(collecting new data) with exploitation (behaving op-
timally given current knowledge). Over-exploration
of bad trajectories will incur large regret, and under-
exploration can prevent convergence to optimality. In
contrast to the standard regret formulation in RL, at each
iteration we measure regret of both selected policies.

Assumptions. We make two further assumptions. The
first imposes a regularity condition upon the noise ηi:
Assumption 3. The label noise ηi = yi−rTxi is condi-
tionallyR-sub-Gaussian, that is, there existsR ≥ 0 such
that ∀λ ∈ R:

E
[
eληi

∣∣x1, . . . ,xi−1, η1, . . . , ηi−1

]
≤ exp

(
λ2R2

2

)
.

Note that bounded, zero-mean noise lying in an interval
of length at most 2R is R-sub-Gaussian, and that sub-
Gaussianity requires E[ηi |x1, . . . ,xi, η1, . . . , ηi−1] =
0 (Abbasi-Yadkori et al., 2011). Since yi ∈

{
− 1

2 ,
1
2

}
and E[yi |xi] = rTxi ∈

[
− 1

2 ,
1
2

]
, we must have ηi ∈

[−1, 1]. Thus, ηi is R-sub-Gaussian with R ≤ 1, pro-
vided that E[ηi |x1, . . . ,xi, η1, . . . , ηi−1] = 0. The lat-
ter holds by the assumption that E[yi |xi] = rTxi.
Assumption 4. For some known Sr <∞, ||r||2 ≤ Sr.

Additional notation. For random variables X and Xn,
n ∈ N, Xn

D−→ X denotes that Xn converges to X in
distribution. For x ∈ Rd and positive definite matrix
B ∈ Rd×d, we define the norm ||x||B :=

√
xTBx.

4 ALGORITHM

As outlined in Algorithm 1, DUELING POSTERIOR
SAMPLING (DPS) iterates among three steps: (a) sam-
pling two policies πi1, πi2 from the Bayesian posteriors



Algorithm 1 DUELING POSTERIOR SAMPLING (DPS)
H0 = ∅ {Initialize history}
Initialize prior for fp {Initialize state transition model}
Initialize prior for fr {Initialize utility model}
for i = 1, 2, . . . do
πi1 ← ADVANCE(fp, fr)
πi2 ← ADVANCE(fp, fr)
Sample trajectories τi1 and τi2 from πi1 and πi2
Observe feedback yi = I[τi2�τi1] −

1
2

Hi = Hi−1 ∪ (τi1, τi2, yi)
fp, fr = FEEDBACK(Hi, fp, fr)

end for

of the dynamics and utility models (ADVANCE – Algo-
rithm 2); (b) rolling out πi1 and πi2 to obtain trajecto-
ries τi1 and τi2, and receiving a preference yi between
them; and (c) updating the posterior (FEEDBACK – Al-
gorithm 3). In contrast to conventional posterior sam-
pling with absolute feedback, DPS samples two poli-
cies rather than one at each iteration and solves a credit
assignment problem to learn from feedback.

ADVANCE (Algorithm 2) samples from the Bayesian
posteriors of the dynamics and utility models to select
a policy to roll out. The sampled dynamics and utilities
form an MDP, for which value iteration derives the opti-
mal policy π under the sample. One can also view π as a
random function whose randomness depends on the sam-
pling of the dynamics and utility models. In the Bayesian
setting, it can be shown that π is sampled according to its
posterior probability of being the optimal policy π∗. In-
tuitively, peaked (i.e., certain) posteriors lead to less vari-
ability when sampling π, which implies less exploration,
while diffuse (i.e., uncertain) posteriors lead to greater
variability when sampling π, implying more exploration.

FEEDBACK (Algorithm 3) updates the Bayesian posteri-
ors of the dynamics and utility models based on new data.
Updating the dynamics posterior is relatively straight-
forward, as we assume that the dynamics are fully-
observed; we model the dynamics prior via a Dirich-
let distribution for each state-action pair, with conju-
gate multinomial observation likelihoods. In contrast,
performing Bayesian inference over state-action utilities
from trajectory-level feedback is much more challeng-
ing. We consider a range of approaches (see Appendix
B), and found Bayesian linear regression (Section 4.1)
to both perform well and admit tractable analysis within
our theoretical framework.

4.1 BAYESIAN LINEAR REGRESSION FOR
UTILITY INFERENCE AND CREDIT
ASSIGNMENT

Credit assignment is the problem of inferring which
state-action pairs are responsible for observed trajectory-

Algorithm 2 ADVANCE: Sample policy from dynamics
and utility models

Input: fp, fr
Sample p̃ ∼ fp(·) {Sample MDP transition dynamics pa-
rameters from posterior}
Sample r̃ ∼ fr(·) {Sample utilities from posterior}
Compute π = argmaxπV (p̃, r̃) {Value iteration yields
sampled MDP’s optimal policy}
Return π

Algorithm 3 FEEDBACK: Update dynamics and utility
models based on new user feedback

Input: historyH, fp, fr
Apply Bayesian update to fp, given H {Update dynamics
model given history}
Apply Bayesian update to fr , givenH {Update utility model
given preferences}
Return fp, fr

level preferences. We detail a Bayesian linear regression
approach to addressing this task in our setting.

Let n be the number of iterations, or trajectory pairs, ob-
served so far. Then, the maximum a posteriori (MAP)
estimate of the rewards r is calculated via ridge regres-
sion, similarly to algorithms for the linear bandit setting:

r̂n = M−1
n

n−1∑
i=1

yixi, where (3)

Mn = λI +

n−1∑
i=1

xix
T
i , and λ ≥ 1. (4)

We perform Thompson sampling as in Agrawal and
Goyal (2013) and Abeille and Lazaric (2017), such that
in iteration n, rewards are sampled from the distribution:

r̃n1, r̃n2 ∼ N (r̂n, βn(δ)2M−1
n ), where (5)

βn(δ) = R

√
2 log

(
det(Mn)1/2λ−d/2

δ

)
+
√
λSr

≤ R

√√√√d log

(
1 + L2n

dλ

δ

)
+
√
λSr,

and where δ ∈ (0, 1) is a failure probability and for all n,
||xn||2 ≤ L. Note that L ≤ 2h, since ||xn||2 = ||xn2 −
xn1||2 ≤ ||xn2 − xn1||1 ≤ ||xn2||1 + ||xn1||1 = 2h.

The factor βn(δ), introduced in Abbasi-Yadkori et al.
(2011), is critical to deriving the theoretical guarantees
for posterior sampling with linear bandits in Agrawal
and Goyal (2013) and Abeille and Lazaric (2017), due
to their dependence on Theorems 1 and 2 of Abbasi-
Yadkori et al. (2011). Our analysis invokes these results
as well. Both of the theorems require any noise in the la-
bels yn to be sub-Gaussian; in our case, sub-Gaussianity



holds by Assumption 3, as we adopted the linear prefer-
ence noise model with link function glin.

Our theoretical analysis is quite different from that for
linear bandits in Agrawal and Goyal (2013) and Abeille
and Lazaric (2017), because in our setting, observations
xn are differences of trajectory feature vectors, policies
are chosen via value iteration, and trajectories are ob-
tained by rolling out RL policies while subject to the en-
vironment’s state transition dynamics.

5 THEORETICAL RESULTS

This section sketches our analysis of the asymptotic
Bayesian regret of DPS under a Bayesian linear regres-
sion credit assignment model. Appendix A details the
full proof, while Appendix B.4 discusses possible future
extensions to additional credit assignment models.

The analysis follows three main steps: 1) we prove that
DPS is asymptotically-consistent, that is, the probability
with which DPS selects the optimal policy approaches
1 over time (Appendix A.1); 2) we asymptotically bound
the one-sided Bayesian regret for πi2 under the set-
ting where, at each iteration i, DPS only selects policy
πi2, while policy πi1 is sampled from a fixed distribu-
tion over policies (Appendix A.2); and lastly, 3) we as-
sume DPS selects policy πi2, while the πi1-distribution
is drifting but converging, and then we asymptotically
bound the one-sided regret for πi2 (Appendix A.3). Due
to the asymptotic consistency shown in 1), the policies
are indeed sampled from converging distributions, and
so the asymptotic regret rate in 3) holds.

This outline is inspired by the analysis for Self-Sparring
(Sui et al., 2017); however, because their guarantee is
for dueling bandits with independent Beta-Bernoulli re-
ward models for each action, the details of our analysis
are completely different from theirs. Below, we give in-
tuition for each of the three portions of the proof.

Asymptotic consistency of DPS. To prove that DPS is
asymptotically consistent, we first prove that samples of
the dynamics and reward parameters converge in distri-
bution to their true values:
Proposition 1. The sampled dynamics converge in dis-
tribution to their true values as the DPS iteration in-
creases.

Proof sketch. Applying standard concentration inequal-
ities to the Dirichlet dynamics posterior, one can show
that the sampled dynamics converge in distribution to
their true values if every state-action pair is visited
infinitely-often. The latter condition can be proven via
contradiction: assuming that certain state-action pairs
are visited finitely-often, DPS does not receive new in-

formation about their rewards. Examining their reward
posteriors, we show that DPS is guaranteed to eventu-
ally sample high enough rewards in the unvisited state-
actions that its policies will attempt to reach them.

We also show that with high probability, the sampled re-
wards exhibit aymptotic consistency:

Proposition 2. With probability 1 − δ, where δ is a
parameter of the Bayesian linear regression model, the
sampled rewards converge in distribution to the true re-
ward parameters, r, as the DPS iteration increases.

Proof sketch. We leverage Theorem 2 from Abbasi-
Yadkori et al. (2011) (Lemma 4 in Appendix A.4): under
stated conditions and for any δ > 0, with probability 1−δ
and for all i > 0, ||r̂i − r||Mi

≤ βi(δ). This result de-
fines a high-confidence ellipsoid, which can be linked to
the posterior sampling distribution. We demonstrate that
it suffices to show that all eigenvalues of the posterior co-
variance matrix, βi(δ)2M−1

i , converge in distribution to
zero. This statement is proven via contradiction: we an-
alyze the behavior of posterior sampling if this does not
hold. The probability of failure δ comes entirely from
Theorem 2 in Abbasi-Yadkori et al. (2011).

From the asymptotic consistency of the dynamics and re-
ward samples, it is straightforward to show that the sam-
pled policies converge to the optimal policy:

Theorem 1. With probability 1 − δ, the sampled poli-
cies πi1, πi2 converge in distribution to the optimal pol-
icy, π∗, as i −→ ∞. That is, P (πi1 = π∗) −→ 1 and
P (πi2 = π∗) −→ 1 as i −→∞.

Bounding the one-sided regret under a fixed πi1-
distribution. To analyze the Bayesian regret of DPS,
we adapt the information-theoretic posterior sampling
analysis in Russo and Van Roy (2016) to the PBRL set-
ting. In comparison to Russo and Van Roy’s work, this
requires accounting for preference feedback and incor-
porating state transition dynamics. Their analysis hinges
upon defining a quantity called the information ratio,
which captures the trade-off between exploration and ex-
ploitation. In our setting, we define the information ratio
corresponding to the one-sided regret of πi2 as:

Γi :=
Ei[y∗i − yi]2

Ii(π∗; (πi2, τi1, τi2,xi2 − xi1, yi))
,

where yi is the label in iteration i, y∗i is the label in it-
eration i given πi2 = π∗, I(·; ·) denotes mutual infor-
mation, and the subscripts i in Ei[·] and Ii(·; ·) indicate
conditioning upon the history, as formalized in Appendix
A.2. The ratio Γi is between the squared instantaneous
one-sided regret of πi2 (exploitation) and the information
gained about the optimal policy (exploration).



When πi1 is drawn from a fixed distribution, we show
that analogously to Russo and Van Roy (2016), the
Bayesian one-sided regret E[REG2(T )] for πi2 can be
bounded in terms of an upper bound on Γi:

Lemma 12. If Γi ≤ Γ almost surely for each i ∈
{1, . . . , N}, where N is the number of DPS iterations
(over which the policies πi2 take T = Nh actions), then:

E[REG2(T )] = E[REG2(Nh)] ≤
√

ΓH(π∗)N,

where H(π∗) is the entropy of the optimal policy π∗.
Because there are at most ASh deterministic policies,
H(π∗) ≤ log |ASh| = Sh logA. Substituting this,

E[REG2(T )] ≤
√

ΓShN logA =

√
ΓST logA.

We show that Γi can be asymptotically upper-bounded
such that limi−→∞ Γi ≤ SA

2 , and consequently:

Theorem 2. If the policy πi1 is drawn from a fixed dis-
tribution for all i, then for the competing policy πi2,
DPS achieves a one-sided asymptotic Bayesian regret

rate of S
√

AT logA
2 .

The bounds in Lemma 12 and Theorem 2 are asymp-
totic rather than finite-time, due to the convergence in
distribution of the dynamics. If the dynamics are known
a priori, then these would be finite-time guarantees; in
fact, to prove Lemma 12, we first show that under known
dynamics, Γi ≤ SA

2 for all i, and then extend the anal-
ysis to prove that under converging dynamics, the result
still holds asymptotically. Note that in the PBRL set-
ting, it is significantly more difficult to learn the rewards
via credit assignment than to learn the dynamics, which
are assumed to be fully-observed. Thus, in practice, we
expect that DPS would learn the dynamics much faster
than the rewards, and so it is reasonable to consider con-
vergence of the dynamics model only asymptotically.

Bounding the one-sided regret under a converging
πi1-distribution. Finally, we assume that the distribu-
tion of πi1 is no longer fixed, but rather converges to
some fixed distribution over deterministic policies. To
asymptotically bound the one-sided regret incurred by
πi2, we leverage that when two discrete random vari-
ables converge in distribution, such that Xn

D−→ X

and Yn
D−→ Y , their mutual information also converges:

limn−→∞ I(Xn, Yn) = I(X,Y ). This fact allows us to
bound the one-sided regret for πi2 as follows:

Lemma 17. Assume that the sampling distribution of πi1
converges to a fixed probability distribution. Then, the
information ratio Γi corresponding to πi2’s one-sided re-
gret E[REG2(T )] satisfies limi−→∞ Γi ≤ SA

2 .

Combining Lemma 17 with the asymptotic consistency
of sampled policies as shown in Theorem 1, P (πi1 =
π∗) −→ 1, yields our main theoretical result:
Theorem 3. With probability 1−δ, where δ is a parame-
ter of the Bayesian linear regression model, the expected
Bayesian regret E[REG(T )] of DPS achieves an asymp-
totic rate of S

√
2AT logA.

Discussion. The specific theoretical results presented
yield a high-probability asymptotic Bayesian no-regret
rate for DPS under Bayesian linear regression credit as-
signment. The proof consists of first demonstrating that
the algorithm is asymptotically consistent, and then ana-
lyzing its information ratio to characterize the Bayesian
regret. We adopted this information-theoretic perspec-
tive because we found it more amenable to preference-
based feedback than other prevalent methods from the
linear bandits literature.

In particular, while several existing regret analyses for
posterior sampling with linear bandits (Agrawal and
Goyal, 2013; Abeille and Lazaric, 2017) are based upon
martingale concentration properties derived in Abbasi-
Yadkori et al. (2011), we found that these techniques
cannot readily extend to the preference-feedback setting
(Appendix C). These linear bandit analyses assume that
each observation xi that incurs regret contributes fully
toward learning the rewards. In contrast, we assume that
while regret is incurred with respect to the observations
xi1,xi2, learning occurs only with respect to observation
differences, xi = xi2 − xi1. In preference-based learn-
ing settings, it is common to make such assumptions as
P (τi2 � τi1) = g(xi2 − xi1), for some function g. In
comparison to the martingale-based techniques, the in-
formation ratio provides a more direct method for quanti-
fying the trade-off between exploration and exploitation.

Theoretically analyzing other credit assignment models,
in addition to Bayesian linear regression, is an important
direction for future work. We conjecture that our proof
methodology could extend toward other asymptotically-
consistent credit assignment models. Indeed, recent
work (Dong and Van Roy, 2018) has analyzed the in-
formation ratio for more general link functions, includ-
ing for logistic bandits. It would be interesting to study
the information ratio’s behavior under general link func-
tions, as well as to characterize its relationship to the dy-
namics model’s convergence. It would also be interest-
ing to develop methodology for extending the analysis to
achieve finite-time convergence guarantees.

6 EXPERIMENTS

We validate the empirical performance of DPS in three
simulated domains with varying degrees of preference



(a) RiverSwim, c = 0.0001 (b) Random MDPs, c = 0.0001 (c) Mountain Car, c = 0.0001

(d) RiverSwim, c = 1 (e) Random MDPs, c = 1 (f) Mountain Car, c = 0.1

Figure 1: Empirical performance of DPS; each simulated environment is shown under the two least-noisy user pref-
erence models evaluated. The plots show DPS with three credit assignment models: Gaussian process regression
(GPR), Bayesian linear regression, and a Gaussian process preference model. PSRL is an upper bound that receives
numerical rewards, while EPMC is a baseline. Plots display the mean +/- one standard deviation over 100 runs of each
algorithm tested. The remaining user noise models are plotted in Appendix D. For RiverSwim and Random MDPs,
normalization is with respect to the total reward achieved by the optimal policy. Overall, we see that DPS performs
well and is robust to the choice of credit assignment model.

noise and using three alternative credit assignment mod-
els. We find that DPS generally performs well and com-
pares favorably against standard PBRL baselines.

Experimental setup. We evaluate on three simulated en-
vironments: RiverSwim and random MDPs (described
in Osband et al. (2013)) and the Mountain Car prob-
lem as detailed in Wirth (2017). The RiverSwim envi-
ronment has six states and two actions (actions 0 and
1); the optimal policy always chooses action 1, which
maximizes the probability of reaching a goal state-action
pair. Meanwhile, a suboptimal policy—yielding a small
reward compared to the goal—is quickly and easily dis-
covered and incentivizes the agent to always select action
0. The algorithm must demonstrate sufficient exploration
to have hope of discovering the optimal policy quickly.

In the second environment, we generate random MDPs
with 10 states and 5 actions. The transition dynamics and
rewards are respectively generated from Dirichlet (all pa-
rameters set to 0.1) and exponential (rate parameter =
5) distributions. These distribution parameters were cho-

sen to generate MDPs with sparse dynamics and rewards.
For each random MDP, the sampled reward values were
shifted and normalized so that the minimum reward is
zero and their mean is one.

Thirdly, in the Mountain Car problem, an under-powered
car in a valley must reach the top of a hill by accelerat-
ing in both directions to build its momentum. The state
space is two-dimensional (position and velocity), while
there are three actions (left, right, and neutral). Our im-
plementation begins each episode in a uniformly-random
state and has a maximum episode length of 500. We dis-
cretize the state space into 10 states in each dimension.
Each episode terminates either when the car reaches the
goal or after 500 steps, and rewards are -1 in every step.

In each environment, preferences between trajectory
pairs were generated by (noisily) comparing their to-
tal accrued rewards; this reward information was hidden
from the learning algorithm, which observed only the tra-
jectory preferences and state transitions. For trajectories
τi and τj with total rewards r(τi) and r(τj), we con-



sider two models for generating preferences: a) a logistic
model, P (τi � τj) = {1 + exp[−(r(τi)− r(τj))/c]}−1,
and b) a linear model, P (τi � τj) = (r(τi) − r(τj))/c,
where in both cases, the temperature c controls the de-
gree of noisiness. In the linear case, c is assumed to be
large enough that P (τi � τj) ∈ [0, 1]. Note that in ties
where r(τi) = r(τj), preferences are uniformly-random.

Methods compared. We evaluate DPS under three
credit assignment models (Appendix B): 1) Bayesian
linear regression, 2) Gaussian process regression, and
3) a Gaussian process preference model. User noise
generated via the logistic model has noise levels: c ∈
{10, 2, 1, 0.001} for RiverSwim and random MDPs and
c ∈ {100, 20, 10, 0.001} for the Mountain Car. We se-
lected higher values of c for the Mountain Car because
|r(τi)− r(τj)| has a wider range. Additionally, we eval-
uate the linear preference noise model with c = 2h∆r,
where ∆r is the difference between the maximum and
minimum element of r for each MDP; this choice of c
guarantees that P (τi � τj) ∈ [0, 1], but yields noisier
preferences than the logistic noise models considered.

As discussed in Section 2, many existing PBRL algo-
rithms handle a somewhat distinct setting from ours, as
they assume access to a simulator between preference
queries and/or prioritize minimizing preference queries
rather than online regret. As a baseline, we evaluate
the Every-Visit Preference Monte Carlo (EPMC) algo-
rithm with probabilistic credit assignment (Wirth and
Fürnkranz, 2013b; Wirth, 2017). While EPMC does
not require simulations between preference queries, it
has several limitations, including: 1) the exploration
approach always takes uniformly-random actions with
some probability, and thus, the authors’ plots do not de-
pict online reward accumulation, and 2) EPMC assumes
that compared trajectories start in the same state. Lastly,
we compare against the posterior sampling RL algorithm
(PSRL) from Osband et al. (2013), which receives the
true numerical rewards at each step, and thus upper-
bounds the achievable performance of a preference-
based algorithm.

Results. Figure 1 depicts performance curves for
the three environments, each with two noise models
(Appendix D contains additional results and details).
DPS performs well in all simulations, and significantly
outperforms the EPMC baseline. In RiverSwim, most
credit assignment models perform best in the second-to-
least-noisy case (logistic noise, c = 1), since it is harder
to escape the local minimum under the least-noisy prefer-
ences. We also see that DPS is competitive with PSRL,
which has access to the full cardinal rewards at each
state-action. Additionally, while our theoretical guaran-
tees for DPS assume fixed-horizon episodes, the Moun-

tain Car results demonstrate that it also succeeds with
variable episode lengths. Finally, the performance of
DPS is robust to the choice of credit assignment model,
and in fact using Gaussian processes (for which we do
not have an end-to-end regret analysis) often leads to
the best empirical performance. These results suggest
that DPS is a practically-promising approach that can
robustly incorporate many models as subroutines.

7 CONCLUSION

This work investigates the preference-based reinforce-
ment learning problem, in which an RL agent receives
comparative preferences instead of absolute real-valued
rewards as feedback. We develop the DUELING POS-
TERIOR SAMPLING (DPS) algorithm, which optimizes
policies in a highly efficient and flexible way. To our
knowledge, DPS is the first preference-based RL algo-
rithm with a regret guarantee. DPS also performs well in
our simulations, making it both a theoretically-justified
and practically-promising algorithm.

There are many directions for future work. Assumptions
governing the user’s preferences, such as requiring an un-
derlying utility model, could be relaxed. It would also
be interesting to extend our theoretical analysis to addi-
tional credit assignment approaches and to pursue finite-
time guarantees. We expect that DPS would perform
well with any asymptotically-consistent reward model
that sufficiently captures users’ preference behavior, and
hope to develop models that are tractable with larger state
and action spaces. For instance, incorporating kernelized
input spaces could further improve sample efficiency.
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