A VALUE OF COMPUTATION IN
MCTS

If the state transition function is deterministic, then static
and dynamic value computations simplify greatly:
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where Z(s',a'|wi¢) = r1 + yre + Y3 + -0 +
Y (QF (s, a’)|wr.t), is the posterior leaf values scaled by
~™ and shifted by the discounted immediate rewards (7;)
along the path from s to s'.

In this ‘flat’ case, VOC(¢,, )-greedy policy is equivalent
to a knowledge gradient policy, details of which can be
found in Frazier et al. [5], Ryzhov et al. [19] for either
isotropic or anisotropic Normal ()§. On the other hand,
VOC(t,,)-greedy policy has not been studied to the best
of our knowledge. Computing the expected maximum of
random variables is generally hard, which is required for
1y,. Below, we offer a novel approximation to remedy
this problem.

A.1 COMPUTING VOC(¢,)

We utilize a bound [12] that enables us to get a handle on
1. This asserts,
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for any ¢ € R, where Fy/,; is the CDF of Z(s', a/|wy.¢).
This bound does not assume independence and holds for
any correlation structure by assuming the worst case.
Furthermore, the inequality is true for all c. However,
the tightest bound is obtained by differentiating the RHS
with respect to ¢, and setting its derivative to zero, which
in turn yields 3° o ,ner, (s) [1 = Foat(c)] = 1 Thus,
the optimizing c can be obtained via line search meth-
ods.

If Z(-, |wi.) is distributed according to a multivariate
(isotropic or anisotropic) Normal distribution, then we
can eliminate the integral [15]:
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If we further assume an isotropic Normal prior with
mean fi¢ 40 and scale o440, and observation noise €; ~
N(0,02)i.i.d. fori =1,2,...,t, then we get the poste-
rior mean and scale as
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where 04/,/+ 1s the mean trajectory rewards obtained from
(s',a’) and ngrqs¢ is the number of times a sample is
drawn from (s, a’). Then keeping c fixed, we can es-
timate the “sensitivity” of Ay, with respect to an addi-
tional sample from (s’, a’) with
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We can then compute and utilize OAgq:/Onsqrt as a
proxy for the expected change in Ag,;. Because Agq¢
is an upper bound, we find that this scheme works the
best when the priors are optimistic, that is 440 is large.
In fact, as long as the prior mean is larger than the em-
pirical mean, pisq0 > Ogrqrt, We have ONgqr /Ongary <
0. Then we can safely choose the best leaf to sam-
ple from via argminy q/)er, (s) [MaXaea, Asat]. We
use this scheme when implementing VOC(v,,)-greedy
in peg solitaire and confirmed that the results are nearly
indistinguishable from calculating VOC (¢, )-greedy by
drawing Monte Carlo samples in terms of the resulting
regret curves.

B VOC-GREEDY ALGORITHMS

We provide the pseudocode for VOC-greedy MCTS pol-
icy in Algorithm 1. Throughout our analysis of this pol-
icy, we assume an infinite computation budget B.

B.1 TIME COMPLEXITIES

Computational complexity of VOC-greedy methods de-
pend on a variety of factors, including the prior distri-
bution of the leaf values, stochasticity, use of static vs
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Algorithm 1: VOC(¢,, /v, )-greedy for MCTS

Input: Current state s,

Input: Maximum computation budget B

Output: Selected action to perform

Create a partial search graph/tree by expanding state s
for n steps ;

Initialize the leaf set 'y, (s,) ;

Initialize a partial function U, that maps states to UCT
trees ;

t<+—0;
Wit < €5 /* empty sequence */
repeat

(s*,a") = argmaxg VOCy, /4, (5, @|w1:t) 5

st ~pal s

if U(s") is not defined then
Initialize a UCT-tree rooted at st ;
Define U (s"), which maps to the UCT-tree from
the previous step ;
end
Obtain sample 0,-4+; by expanding U (s') and
perform a roll-out ;
Wil < (8%,a",055071)
W41 < WtWit1 s
t—t+1;
until maxg VOCy,, /4, (5p, @|wi:¢) < 0ort > B;
return arg maxaea,, On/Vn(Sp, alwise) ;

dynamic values. Here, we discuss the time complexity
of computing the VOC(¢)-greedy policy with a conju-
gate Normal prior (with known variance) in MDPs with
deterministic transitions.

The posterior values can be updated incrementally in
constant time if the prior is isotropic Normal and in
O(m?) if it is anisotropic, where m is the number of leaf
nodes [3]. Given the posterior distributions, the value of
a computation can be computed in O(m) in the isotropic
case and in O(m? log m) in the anisotropic case. We re-
fer the reader to [5] for further details, as the analysis
done for bandits with correlated Normal arms do apply
directly.

C PROOFS

C.1 PROOF OF PROPOSITION 1
Let us consider the “base case” of n = 1 and define a

higher-order function g, capturing the 1-step Bellman op-
timality equation for a state-action (s, a):

g() == " Pl [Rey +ymaxh(s',a')]

Then (;51 (87 CL|Wl:t) = Q(E[Qm(ﬂlt]) and 77[]1 (87 a|w1:t) =
E[g(Qf|wi:t)]- Because g is a convex function, we have
¥1(8, alwi.t) > é1(s, alwi.t) by Jensen’s inequality. We
use this to prove the upper bound in Proposition 1:

Y1(s, alwr) = Eq,,, [¥1(s, alwi:1Q1.1)]
> EQ1;k[¢1(57 a|wl:tQI:k)] )

where the first inequality is due to Equation 1. For the
lower bound, we have
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> g(EQI:k [E[Qs‘wl:thzk)H
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= ¢1(s, alwr) -

These inequalities also hold for n > 1 for the same rea-
sons. We omit the proof.

C.2  PROOF OF PROPOSITION 2

Let w* denote the optimal candidate computation (of
length 1), which minimizes Bayesian simple regret in ex-
pectation in one-step. That is,

@* == argminEg [Rf (597 w1:92)]

where Q = (@, Og;+1) is the closure corresponding to
@. Then, we subtracting R (s,, w1.1), we get

ot = argngn [Eq[Rs(sp,w1:42)] — Ry(sp,wist)] -

The first terms of the regrets cancel out
as EQélwl:t [ma‘XaEAﬁp TH(SP’ alwl:t):| =
EQEQSWl:tQ [maXaGAsp Tn(spa a|wl:tQ)} . Thus,

we end up with,

©* = arg min [_EQ {max f(sps a|w1;tﬂ)] +max f(s), alwi:t) |,

or equivalently w* = arg maxg VOCf(s,, Q|w.t).

C.3 PROOF OF PROPOSITION 4

Consider the following 2-step (i.e., n = 2) search tree
shown in Figure 6. The deterministic transitions are
shown with the arrows, each corresponding to an action
in A = {L,R}. The leaves are denoted with filled circles
whose posterior values are given by Qf(-,)|w1.+. The
root state is shown as s, with its immediate successors
as sg and s;. Assume v = 1 and all shown actions yield
0 immediate rewards. Finally, assume the posterior dis-
tribution of the leaf values are as in Figure 6, and they
are pairwise independent.
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Figure 6: A search graph, where VOC'(¢, )-greedy
stops early.

In this case, we can see that no single sample from the
leafs can result in a policy change at s, since we would
need to sample both of the leaves of the left subtree at
least once for the policy at the root to change from L to R.
Therefore, VOC',, is zero for all possible computations
here, and thus stops early, not achieving neither one-step
nor asymptotic optimality. In contrast, VOC, is greater
than zero for computations concerning the left subtree.

C.4 PROOF OF PROPOSITION 5

We need to show the equality of the second term in Equa-
tion 2 to the second term of VOC as we defined in Defi-
nition 3. First observe that Eq, , [t (s,, a|lw1.:Q1.1)] =
n(Sp, wr:e). Then, we can take the a out as
Un(Sp, wie) = MaXeeA,, Un(sp, alwi¢), which is
identical to the second term of our VOC definition in
Equation 2.

D BANDIT TREE DETAILS

We utilizes trees of depth 7, where the agent transitions
to the desired sub-tree with probability .75. In the cor-
related bandit arms case, the expected rewards of the
arms are sampled from N'(1/2,%) ii.d. at each trial,
where X is the covariance matrix given by an RBF ker-
nel with scale parameter of 1 and the observation noise
is sampled from N'(0,0.1) i.i.d. at each time step. In
the uncorrelated case, the expected rewards are sampled
from 24(0.45,0.55) and the observation noise is from
N(0,0.01). The former setting is designed to be nois-
ier to compensate for the extra information provided by
the correlations.



