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Abstract

Semantic hashing has become a crucial com-
ponent of fast similarity search in many
large-scale information retrieval systems, in
particular, for text data. Variational auto-
encoders (VAEs) with binary latent variables
as hashing codes provide state-of-the-art per-
formance in terms of precision for document
retrieval. We propose a pairwise loss function
with discrete latent VAE to reward within-class
similarity and between-class dissimilarity for
supervised hashing. Instead of solving the op-
timization relying on existing biased gradient
estimators, an unbiased low-variance gradient
estimator is adopted to optimize the hashing
function by evaluating the non-differentiable
loss function over two correlated sets of binary
hashing codes to control the variance of gra-
dient estimates. This new semantic hashing
framework achieves superior performance com-
pared to the state-of-the-arts, as demonstrated
by our comprehensive experiments.

1 INTRODUCTION

The problem of similarity search is to find the most simi-
lar items in a large collection to a query item of interest
(Andoni, 2009). Fast similarity search is at the core of
many information retrieval applications, such as collabora-
tive filtering (Sarwar et al., 2001), content-based retrieval
(Lew et al., 2006), and caching (Pandey et al., 2009). In
particular, with the explosion of information on Internet
in the form of text data, searching for relevant content in
such gigantic databases is critical.

Traditional text similarity search methods are conducted
in the space of original word counts, and thus can be com-
putationally prohibitive due to high dimensions. There-
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fore, many research efforts have been devoted to employ
approximate similarity search approaches in lower em-
bedding dimensions. Semantic hashing (Salakhutdinov
and Hinton, 2009) is an effective way of accelerating sim-
ilarity search by designing compact binary codes in a low-
dimensional space so that semantically similar documents
are mapped to similar codes. The similarity between doc-
uments is evaluated by simply computing the pairwise
Hamming distances between the hashing codes, i.e., the
number of bits that are different between two codes. Fur-
thermore, exploiting binary hashing codes is much more
memory efficient, especially for big text corpora.

Deep learning has dramatically improved the state-of-the-
arts in many applications, including speech recognition,
computer vision, and natural language processing (LeCun
et al., 2015). Learning expressive feature representations
for complex data lies at the core of deep learning. Re-
cently, deep generative models such as variational auto-
encoder (VAE) have been proposed for neural semantic
hashing (Chaidaroon and Fang, 2017). Employing VAEs
for document hashing has two major benefits. First, they
can learn flexible nonlinear distributed representations of
the original high-dimensional documents. Second, due to
amortized computational cost for inference in VAEs, the
hashing codes for new documents can be simply calcu-
lated with one pass through the encoder network.

In their basic form, VAEs assume that latent variables
are distributed according to a multivariate normal distri-
bution. The continuous latent representations are then
binarized to obtain the hashing codes corresponding to
the documents. As a result, the information contained
in the continuous representations may be lost during the
binarization step. Shen et al. (2018) have developed a
VAE framework with Bernoulli latent variables as hash-
ing codes, obviating the need for the binarization step.
To optimize the VAE model parameters, straight-through
(ST) gradient estimator (Bengio et al., 2013) with respect
to binary latent variables is adopted in Shen et al. (2018).
While easy to implement, ST gradient estimator is clearly



biased, and hence it can undermine the performance of the
VAE with binary latent representations as hashing codes
to capture the semantic similarities of documents.

In this paper, we aim to develop a faithful discrete VAE
with Bernoulli latent variables as binary hashing codes
that can be inferred without bias. When additional infor-
mation such as document labels can be leveraged for a
more targeted similarity search, we propose a pairwise su-
pervised hashing (PSH) framework to derive better hash-
ing codes, with two main objectives: (1) to learn informa-
tive binary codes, capable of reconstructing the original
word counts; (2) to minimize the distance between the
hashing codes of documents from the same class and max-
imize this distance for documents from different classes.
The first objective can be achieved through maximiz-
ing the evidence lower bound (ELBO) with weighted
Kullback-Leibler (KL) regularization (Alemi et al., 2018;
Zhao et al., 2017; Higgins et al., 2017). To achieve the sec-
ond objective, we add a pairwise loss function to reward
within-class similarity and between-class dissimilarity.
This end-to-end generative framework is distinct from
previous methods training a neural network classifier with
latent variables as inputs and document labels as outputs
for supervised hashing (Shen et al., 2018; Chaidaroon
and Fang, 2017), which fail to extract useful similarity
patterns for efficient search as they consider documents
in isolation.

We exploit stochastic gradient based optimization to
learn this Bernoulli VAE hashing model. The main dif-
ficulty arises due to the binary hashing code based la-
tent representations. The recently proposed augment-
REINFORCE-merge (ARM) (Yin and Zhou, 2019; Yin
et al., 2020) gradient estimator provides a natural solution
with unbiased low-variance gradient updates during the
training of our discrete VAE. With a single Monte Carlo
sample, the estimated gradient is the product of uniform
random noise and the difference of the objective functions
with two vectors of correlated binary latent variables as
inputs. Applying the ARM gradient leads to not only
fast convergence, but also low negative evidence lower
bounds for variational inference, thus increasing the abil-
ity to reconstruct the original word counts from the binary
hashing codes.

Comprehensive experiments conducted on benchmark
datasets for both supervised and unsupervised hashing
demonstrate the superior performance of our proposed
framework in terms of precision for document retrieval. In
particular, PSH gains significantly better performance for
short hashing codes making it more attractive for practical
applications with limited memory budget.

Our main contributions to hashing-based similarity re-
trieval include:

e We propose a flexible discrete VAE-based framework,
directly with binary hashing codes as latent representa-
tions, for both unsupervised and supervised semantic
hashing. With unbiased and low-variance ARM gra-
dient estimator, efficient variational inference as well
as one-pass hashing code generation given new doc-
uments can be achieved without commonly adopted
continuous relaxation.

e A novel pairwise loss function is defined for super-
vised hashing, obviating the need for access to ordinal
labels in the training phase. ARM gradient estimator
is specially useful for learning when the loss function
involves non-differentiable components with binary
random variables for hashing codes.

e Our method is highly scalable, applicable to large-scale
data. Our comprehensive experimental results with ab-
lation studies have verified the advantage of our direct
hashing code based VAE with ARM variational infer-
ence, as well as the benefits from our new loss function
with the expected pairwise loss. More importantly, our
new method consistently outperforms state-of-the-art
methods over several widely used benchmark datasets.

The remainder of this paper is organized as follows. In
Section 2, we present the main methodology, including
the structure of Bernoulli VAE for document hashing, op-
timization using ARM gradient estimator, and pairwise
hashing in the supervised scenario. Section 3 discusses
related work. Section 4 provides comprehensive experi-
mental results in supervised as well as unsupervised set-
tings, with comparison with existing hashing methods.
Section 5 concludes the paper.

2 METHODS

2.1 Hashing Using Bernoulli VAEs

Let  and z denote the input document and its corre-
sponding binary hashing code. Specifically, x € ZLV‘ is
a vector of word counts for the input document, where | V|
is the size of the vocabulary V. Under the variational auto-
encoder (VAE) framework (Kingma and Welling, 2013;
Rezende et al., 2014), a generative (decoding) model
pe(x | z) reconstructs the input document from the bi-
nary hashing code, while an inference (encoder) model
go(z | x) infers the code z from the input document x.
The model parameters {0, ¢} are the weights of neural
networks employed by the decoder and encoder.

2.1.1 Decoder Structure

To build the decoder, we follow the same procedure as
in Chaidaroon and Fang (2017); Shen et al. (2018), and
utilize a softmax decoding function. Assuming that ¢;,



the 7th token within document x, is the wth word of the
vocabulary, we denote its one-hot vector representation
by 0, € {0,1}!V], a vector with a one at wth element
and zeros elsewhere. The decoder network comprises a
linear transformation of the latent binary hashing code
z, followed by a softmax function which outputs the
likelihood of individual tokens as:

exp (zTEow + bw)
ZL‘Ql exp (27 Eoj + b))

pe(ti =w|z) = , forwelV,
(H
where £ € RX*IVI can be interpreted as a word em-
bedding matrix and b = [by, ..., b|v‘]T are the word bi-
ases. Thus, the decoder parameters to be learned are
0 = {E, b}. Given the individual token likelihoods in (1)
and the word counts x, the document likelihood can be
computed as
logpe(x|z) = Zlogpg(ti | z)
= Z Ty logpe(zw | 2). (2)

W:Lqy >0

To exploit the relevance of words in documents, we re-
place the log weights in (2) with Term Frequency In-
verse Document Frequency (TF-IDF) (Ramos et al., 2003).
Hence, we use the following modified reconstruction term
in the optimization procedure of the ELBO explained in
latter sections:

E%(zm)[ Z TF-IDF,, x log pg (2w | 2) |-

W:Lqy >0

2.1.2 Encoder Structure

We employ the amortized inference of hashing codes for
documents by constructing an inference network as fe ()
to approximate the true posterior distribution p(z | ) by
ge¢(z|x). More precisely, the approximate posterior
for the K-dimensional latent code z € {0,1}¥ is ex-
pressed as

K
go(z|x) = H Bernoulli(zk; J(f¢(:c)k)), 3)
k=1

where o(-) is the sigmoid function, and fg(x)s is the
kth element of the encoder neural network’s output.
In the training phase, latent codes are sampled using
the Bernoulli distributions in (3) and subsequently fed
into the decoder network, while in the testing phase,
hard thresholding the means at 0.5 is used to infer
the hashing codes. Finally, we place independent
Bernoulli ?(riors on the components of latent codes as
p(z) = [[,_, Bernoulli(z; i), where v, € [0, 1]. Our
Bernoulli distributed latent variables obviate the need for

a separate binarization step; and hence they are more
capable of capturing the semantic structure of input docu-
ments.

2.1.3 Variational Inference

To estimate the parameters of encoder and decoder net-
works, the VAE framework optimizes ELBO defined as:

LO,p) = E,p@) |:Eq¢.(z |z) [ log pe(x | 2)]

—KL(q6(x| 2)||p(2))]

< Epp(a)|logpe(x)], “

where KL is the Kullback-Leibler divergence and pp ()
is the empirical distribution of the inputs. Since both prior
and approximate posterior are Bernoulli distributions, the
KL term can be computed in the closed form:

KL(a (=)l p(2)) = 3 {o(fa(e)e) log 20
k
+ (1= o(p(a)) log LTI}, ®)

In practice, to extract useful latent representations and
to avoid latent variable collapse (Dieng et al., 2019), a
modification of ELBO with the weighted KL term is em-
ployed:

Lx(6,8) = Epp@) [qus(z |2 [log po(z | 2)]

~AKL(g4(z | @)lIp(2))],

where 0 < A < 1. The parameters are then estimated
by stochastic gradient optimization of £ (8, ¢). In what
follows, we drop the expectation with respect to the em-
pirical distribution to simplify the notations.

2.2 Pairwise Supervised Hashing (PSH)

When training data come with side information such as
document labels, the previously discussed discrete VAE
is not ready to take advantage of that. To mitigate such
a shortcoming for deriving better latent hashing codes
in this generative framework, we add a supervised layer:
Let y denote the label for the input document . Given
a neural network f,, parameterized by 1, which takes as
input the latent hashing code z and predicts the document
label, the supervised hashing objective to be minimized
can be expressed as:

_L/\ (Oa ¢) + O‘IEqd,(z | ) [El(y; f’r](z))] ) (6)

where o > 0 is a hyperparameter and £’ (y; fr(2)) is the
cross entropy loss function for label prediction.



Figure 1: The graphical representation of Pairwise Su-
pervised Hashing (PSH) model. Documents z; and x5
each go through the encoder network (¢ (z | x)) to gen-
erate latent hashing codes z; and z», respectively. Each
hashing code then goes through decoder (pg (x| z)) and
classifier (f;) networks to reconstruct the input document
and predict its label, respectively.

To further improve the performance of supervised hash-
ing, we propose a pairwise supervised hashing (PSH)
training framework. The core idea of PSH is to minimize
the distance between latent codes of similar documents
and simultaneously maximize the distance between latent
codes of documents which fall into different categories.
Denoting (M), 3™1) and (®,y?)) as two randomly
sampled documents with their corresponding latent codes
2z and z(®), PSH places an extra loss function as:

L"(ag(l)7 a:(Q)) —
Loy dE[z" |20 E[z® [22]) (D
= Ly 2y d(EzD [21] E[z® [22)),

where d(-, -) is a distance metric and 1 is the indicator
function being equal to one when S is true. The final
objective function for the PSH is thus

Lrsu(0.9) = —[£30(0.0) + L2 (0, 9)]
+ 8L (M), 2?)
+OEp_ gy (0| 20 [£' (05 f (1)
+ L'y ()],

where Lg\t) (0, ¢) is the ELBO for document ¢ and 5 > 0

®)

is a hyperparameter. In practice, effective hyperaparame-
ters for PSH can be determined by cross validation. The
graphical representation of PSH is shown in Figure 1.

2.3 Gradient Updates for Training

Optimizing the PSH loss function (8) is difficult, as the
backpropagation algorithm cannot be applied to the dis-
crete Bernoulli sampling layers. In this section, we first
present two widely used gradient estimators for discrete
latent variables. Then, we present how ARM, an unbiased
gradient estimator, can be employed for backpropagation
through discrete layers of our PSH framework.

2.3.1 Straight-Through Gradient Estimator

The straight-through (ST) gradient estimator (Bengio
et al., 2013) simply backpropagates through a discrete
sampling unit as if had been the identity function. More
precisely, given the input document x, first the binary
latent representation is sampled as

z ~ Bernoulli(o(fe(x))),

and then the input to the decoder is calculated as

z' = Stop Gradient(z — o(f¢(m))) +o(fe(x)),

where the terms inside the Stop Gradient operator are con-
sidered as constants in the backpropagation step (Bengio
et al., 2013).

Although this is clearly a biased estimator, it is simple to
implement and fast, with good performance in practice.

2.3.2 Gumbel-Softmax Gradient Estimator

The Gumbel-Softmax (GS) distribution (Jang et al., 2016;
Maddison et al., 2016), a continuous distribution on the
simplex, can be adopted to approximate the gradient es-
timates of the loss functions involving categorical sam-
ples, where parameter gradients can be computed via
the reparameterization trick (Kingma and Welling, 2013).
Consider an inference network architecture that for each
component of latent hashing code z, it outputs the ratio
of the probabilities of being one or zero as m; = :—:;
The binary representation of z; can be obtained using the
Gumbel-Max trick and the fact that the difference of two
Gumbels is a Logistic distribution:

zj, = unit-step(g + log 7y,),

where ¢ is a randomly drawn Logistic sample, which
can be generated as ¢ = logu — log(1 — u) with
u ~ Uniform(u;0,1). In the backward pass of back-
propagation, the binary random variables are replaced



with continuous, differentiable variables as:

1

h =
T T exp(—(g + log mg) /7)

€))

where 7 > 0 is the temperature. As the softmax tem-
perature 7 approaches zero, samples from the Gumbel-
Softmax distribution become one-hot and the Gumbel-
Softmax distribution becomes identical to the Bernoulli
distribution.

2.3.3 Self-Control Gradient Estimator with ARM

Both ST and GS approximations lead to biased gradi-
ent estimates. To reliably derive latent codes in our
PSH framework by backpropagating unbiased gradients
through stochastic binary units, we employ the ARM esti-
mator that is unbiased, exhibits low variance, and has low
computational complexity (Yin and Zhou, 2019; Boluki
et al., 2020; Dadaneh et al., 2020). More importantly,
unlike ST and GS gradient estimators, it can be applied to
non-differentiable objective functions, tailored to training
discrete VAEs with the PSH loss function Lpgg.

Given a vector of K binary random variables z =
(21, ..., z5) T, the gradient of the objective function

5(1/1) = EzNHkK=1 Bernoulli(zy;0 (1)) [f(z)}

with respect to 9 = (11,...,0k)7, the logits of the
Bernoulli probability parameters, can be expressed as

Vw5(1/’) = ]EuNHkK:l Uniform(u;0,1) {
(f(1u>a(71/»')) - f(1u<a(1l))))
X (u— 1/2)}, (10)

where 1u>o(7'¢v) = (1u1>0(*w1)’ . 1u>0(,¢K))T,
and the function f(-) does not need to be differentiable.
Note that 1,5 5(—q) and 1,4 () are two correlated bi-
nary vectors, which are evaluated under f(-) and then
used to control the gradient variance. Thus we can con-
sider ARM as a self-control gradient estimator that does
not need extra baselines with learnable parameters for
variance reduction.

The training steps of PSH with ARM gradient estima-
tor are presented in Algorithm 1. It starts with sampling
two mini-batches of input documents with the same size,
randomly. The documents then go through the encoder
network to obtain the Bernoulli logits, and the binary
latent hashing codes are generated using the Bernoulli dis-
tribution. For documents in each mini-batch, the gradients
of the reconstruction and KL terms with respect to the pa-
rameters of the encoder network are calculated using the

Algorithm 1: Pairwise Supervised Hashing with
ARM gradient estimator.

Input: Data {x}, neural networks fg (encoder), fo
(decoder) and fy, (classifier), step size p.

Output: Model parameters ¢, 0 and 7.

Initialize model parameters randomly.

while not converged do
Sample two mini-batches of data.

for each mini-batch do

Y = fo(x)

Sample z ~ Bernoulli(1)).

Calculate V 4KL, the gradient of KL in (5).

Calculate V., Eg’h), the gradient of
reconstruction term (EE\T)) in (4) using
ARM (10).

VoLy) = S0V £5) (Votin)

Voly = VL) + AV4KL

Calculate VQ,CS\T) and V,, L'

end

Calculate the pairwise loss gradients V¢ ¢ L
Combine the gradients to form Vg ¢ nLpsH
¢=¢+pVeLpsu

0=0+pVeLpsu

n=n+pVyLpsu

end

ARM estimator in (10) with a single Monte Carlo sample
and the closed form in (5), respectively. The gradients
from the different loss terms are combined to update the
parameters at each iteration.

3 RELATED WORK

Current hashing methods can be categorized into two
groups; data-dependent and data-independent. Locally
sensitive hashing (LSH) (Datar et al., 2004) is a data-
independent hashing method, with asymptotic theoretical
properties leading to performance guarantees. LSH, how-
ever, usually requires long hashing codes to achieve satis-
factory performance. To achieve more effective hashing
codes, recently data-dependent machine learning methods
are proposed, ranging from unsupervised and supervised
to semi-supervised settings.

Unsupervised hashing methods such as Spectral Hash-
ing (SpH) (Weiss et al., 2009), graph hashing (Liu et al.,
2011), and self taught hashing (STH) (Zhang et al., 2010)
attempt to extract the data properties, such as distributions
and latent manifold structures to design compact codes
with improved precision. Supervised hashing methods
such as semantic hashing using tags and topic modeling
(SHTTM) (Wang et al., 2013) and kernel-based super-



vised hashing (KSH) (Liu et al., 2012) attempt to leverage
label/tag information for hashing function learning. A
semi-supervised learning approach was also employed to
design hashing functions by exploiting both labeled and
unlabeled data (Wang et al., 2010).

Recently, deep learning based methods have gained attrac-
tion for the hashing problem. Variational deep semantic
hashing (VDSH) (Chaidaroon and Fang, 2017) uses a
VAE to learn the latent representations of documents and
then uses a separate step to cast the continuous represen-
tations into binary codes. While fairly successful, this
generative hashing model requires a two-stage training.
Neural architecture for semantic hashing (NASH) (Shen
et al., 2018) proposed to substitute the Gaussian prior in
VDSH with a Bernoulli prior to tackle this problem, by
using a straight-through estimator (Bengio et al., 2013)
to estimate the gradient of neural network involving the
binary variables.

In this work, we exploit ARM (Yin and Zhou, 2019) gra-
dient estimator to obtain unbiased low-variance gradient
updates during the training of our discrete VAE. We fur-
ther propose a pairwise loss function with the discrete
latent VAE to reward within-class similarity and between-
class dissimilarity for supervised hashing.

4 EXPERIMENTAL RESULTS

4.1 Datasets and Baselines

We use three public benchmarks to evaluate the perfor-
mance of our PSH and compare with other state-of-the-
arts: Reuters21578 and 20Newsgroups, which are collec-
tions of news documents, as well as TMC from SIAM
text mining competition, containing air traffic reports pro-
vided by NASA. Properties of these datasets are included
in Table 1. To make a direct comparison with existing
methods, we have employed the TFIDF features on these
datasets.

We evaluate the performance of our discrete latent VAEs
on both unsupervised and supervised semantic hashing
tasks. We consider the following unsupervised baselines
for comparison: locality sensitive hashing (LSH) (Datar
et al., 2004), stack restricted Boltzmann machines (S-
RBM) (Salakhutdinov and Hinton, 2009), spectral hash-
ing (SpH) (Weiss et al., 2009), self-taught hashing (STH)
(Zhang et al., 2010), variational deep semantic hashing
(VDSH) (Chaidaroon and Fang, 2017), and neural archi-
tecture for semantic hashing (NASH) (Shen et al., 2018).

For supervised semantic hashing, we compare the perfor-
mance of PSH against a number of baselines: Supervised
Hashing with Kernels (KSH) (Liu et al., 2012), Seman-
tic Hashing using Tags and Topic Modeling (SHTTM)

Table 1: Properties of three datasets in the experiments.

Dataset ‘ ‘ #documents ‘ vocabulary size ‘ #categories
Reuters21578 10,788 10,000 20
20Newsgroups 18,828 7,164 20

T™MC 21,519 20,000 22

(Wang et al., 2013), Supervised Variational Deep Seman-
tic Hashing (VDSH-S) (Chaidaroon and Fang, 2017),
VDSH-S with document-specific latent variable (VDSH-
SP) (Chaidaroon and Fang, 2017), and Supervised Neural
Architecture for Semantic Hashing (NASH-DN-S) (Shen
et al., 2018).

4.2 Implementation Details

For the encoder networks, we employ a fully connected
neural network with two hidden layers, both with 500
units and the ReLU nonlinear activation function. We
train PSH using the Adam optimizer (Kingma and Ba,
2014) with a learning rate of 5 x 10~%. Dropout (Srivas-
tava et al., 2014) is employed on the output of encoder
networks, with the dropping rate of 0.2. To facilitate
comparisons with previous methods, we set the hashing
code length to 8, 16, 32, 64, or 128, respectively. For
all datasets, we use a KL weight of A = 0.01 for PSH,
set the hyperparameters as 3 = 5 x 1072, and start with
o = 0.01 and gradually increase its value to 0.1. The
temperature of Gumbel-Softmax gradient estimator is ini-
tialized with 1, and it is gradually decreased with a decay
rate of 0.96, until it reaches the minimum value of 0.1.

4.3 Evaluation Metric

To evaluate the quality of hashing codes for similarity
search, we follow previous works (Shen et al., 2018;
Chaidaroon and Fang, 2017) and consider each docu-
ment in the test set as a query document. Specifically, the
performance of different methods are measured with the
precision at 100 metric as explained in the following. In
the testing phase, we first retrieve the 100 nearest docu-
ments to the query document according to the Hamming
distances of their corresponding hashing codes. We then
calculate the percentage of documents among the 100
retrieved ones that belong to the same label (topic) with
the query document. The ratio of the number of relevant
documents to the number of retrieved documents is cal-
culated as the precision score. The precision scores are
further averaged over all test (query) documents.

4.4 Results and Discussions
4.4.1 Unsupervised Hashing

To examine how our discrete latent VAE with the ARM
gradient estimator affects the quality of hashing codes,



Table 2: The performances of different unsupervised hash-
ing models on the Reuters dataset with different lengths
of hashing codes.

Table 4: The performances of different unsupervised hash-
ing models on TMC dataset with different lengths of hash-
ing codes.

Method || 8bits | 16 bits | 32 bits | 64 bits | 128 bits Method || 8bits | 16 bits | 32 bits | 64 bits | 128 bits
LSH 0.2802 [ 0.3215 | 03862 | 0.4667 | 0.5194 LSH 0.4388 [ 0.4393 | 0.4514 | 0.4553 | 0.4773
S-RBM | 05113 | 0.5740 | 0.6154 | 0.6177 | 0.6452 S-RBM || 0.4846 | 0.5108 | 0.5166 | 0.5190 | 0.5137
SpH 0.6080 | 0.6340 | 0.6513 | 0.6290 | 0.6045 SpH 0.5807 | 0.6055 | 0.6281 | 0.6143 | 0.5891
STH 0.6616 | 0.7351 | 0.7554 | 0.7350 | 0.6986 STH 0.3723 | 0.3947 | 0.4105 | 0.4181 | 0.4123
VDSH || 0.6859 | 0.7165 | 0.7753 | 0.7456 | 0.7318 VDSH || 0.4330 | 0.6853 | 0.7108 | 0.4410 | 0.5847
NASH | 0.7113 | 0.7624 | 0.7993 | 0.7812 | 0.7559 NASH || 0.5849 | 0.6573 | 0.6921 | 0.6548 | 0.5998
ARM-DVAE || 0.6549 | 0.7455 | 0.8086 | 0.8237 | 0.8230 ARM-DVAE || 0.6239 | 0.6825 | 0.7362 | 0.7541 | 0.7599

we evaluate its performance in an unsupervised sce-
nario. More specifically, we build a binary VAE with
the weighted KL regularization term on the training docu-
ments, and then use the trained encoder network to gener-
ate the binary hashing codes. To improve the performance
of unsupervised hashing with VAE, we follow the pro-
cedure in Shen et al. (2018), and add a data-dependent
noise to the binary hashing code before feeding it into the
decoder network.

Tables 2, 3, and 4 show the performance of the proposed
ARM-facilitated discrete latent VAE (hereby referred to
as ARM-DVAE) and baseline models on Reuters, 20
Newsgroup and TMC datasets respectively, under the
unsupervised setting, with the number of hashing bits
ranging from 8 to 128. It can be observed that exploiting
the unbiased and low-variance ARM gradient estimator
improves the performance of unsupervised hashing in
terms of the retrieval precision in the majority of cases
for these datasets. In particular, for the 128-bit hashing
codes, ARM-DVAE improves the performance of NASH
22% across all datasets, on average. These observations
strongly support the remarkable benefit of using ARM
gradient estimator to learn useful semantic hashing codes
in the discrete latent VAE framework.

Table 3: The performances of different unsupervised hash-
ing models on the 20 Newsgroup dataset with different
lengths of hashing codes.

Method || 8bits | 16 bits | 32 bits | 64 bits | 128 bits
LSH 0.0578 ] 0.0597 | 0.0666 | 0.0770 | 0.0949
S-RBM | 0.0594 | 0.0604 | 0.0533 | 0.0623 | 0.0642
SpH 0.2545 | 0.3200 | 0.3709 | 0.3196 | 0.2716
STH 0.3664 | 0.5237 | 0.5860 | 0.5806 | 0.5443
VDSH | 03643 | 03904 | 0.4327 | 0.1731 | 0.0522
NASH | 0.3786 | 0.5108 | 0.5671 | 0.5071 | 0.4664
ARM-DVAE || 0.3907 | 0.5074 | 0.5787 | 0.6224 | 0.6214

To further examine the performance of our ARM-
facilitated discrete VAE in achieving effective document
hashing, we illustrate the learned latent representations
of ARM-DVAE, NASH and VDSH on the 20 Newsgroup

dataset in Figure 2. UMAP (Mclnnes et al., 2018) is used
to project the 32-dimensional latent representations into
a 2-dimensional space. In this figure, each data denotes
a document, with each color representing one category.
It can be observed that our ARM-DVAE is able to distin-
guish different categories of documents better than NASH
with ST gradient estimator, and VDSH that binarizes nor-
mally distributed latent variables to obtain hashing codes.
In particular, hashing codes from VDSH fail to form
discernible clusters, confirming the advantage of using
Bernoulli random variables for semantic hashing.

4.4.2 Supervised Hashing

Tables 5, 6, and 7 show the performance of the proposed
and baseline models on the three datasets under the su-
pervised setting, with the number of hashing bits ranging
from 8 to 128. From these experimental results, it can be
seen that for almost all datasets and hashing code lengths,
the proposed PSH model outperforms all other methods
in terms of retrieval precision. In particular, in 20 News-
group and TMC datasets, PSH with the ARM gradient
estimator consistently outperforms other hashing methods
by large margins. This observation signifies the role of
the ARM gradient estimator to obtain effective hashing
functions.

An interesting property of PSH, compared with its base
discrete latent VAE models, is that it preserves the supe-
rior performance for both short and long hashing codes.
For short hashing codes, this suggests the effectiveness
of PSH, especially with the ARM gradient estimator, in
learning useful and compact semantic latent representa-
tions of documents. For longer hashing codes, the per-
formance of baseline methods tend to drop slightly. This
phenomenon is attributed to the fact that for longer codes,
the number of data points that are assigned to a certain
binary code decreases exponentially. As a result, many
queries may fail to return any neighbor documents (Shen
et al., 2018). The results here, however, indicate that PSH
does not suffer from this phenomenon, suggesting the
mitigating role of the pairwise loss term.
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Figure 2: Visualization of the 32-dimensional latent se-
mantic embeddings learned by ARM-DVAE (top), NASH
(middle) and VDSH (bottom) for the 20 Newsgroups
dataset. Each data point denotes a document, with each
color representing one category. ARM-DVAE shows bet-
ter separation of categories in the latent space.

4.4.3 Ablation Study

In this section, we perform ablation studies on the impacts
of the pairwise loss and KL regularization terms on the
performance of PSH with 32-bit hashing code. Table 8
shows the precision of PSH for document retrieval on the
20 Newsgroup dataset for various pairwise loss weight 3
values. We observe that discarding the pairwise loss term
(8 = 0) decreases the performance of the PSH in learning
effective hashing codes for document retrieval. Simi-
larly, increasing (3 to values higher than 0.05 degrades the
performance significantly, indicating the importance of
cross-validating the weight of the pairwise loss term.

Table 9 illustrates the performance of PSH for document
retrieval on the 20 Newsgroup dataset for various KL reg-

Table 5: The performances of different supervised hash-
ing models on Reuters dataset under different lengths of
hashing codes.

Method || 8bits | 16bits | 32 bits | 64 bits | 128 bits
KSH 0.7840 | 0.8376 | 0.8480 | 0.8537 | 0.8620
SHTTM || 0.7992 | 0.8520 | 0.8323 | 0.8271 | 0.8150
VDSH-S || 0.9005 | 0.9121 | 0.9337 | 0.9407 | 0.9299
VDSH-SP || 0.8890 | 0.9326 | 0.9283 | 0.9286 | 0.9395
NASH-DN-S || 0.9214 | 0.9327 | 0.9380 | 0.9427 | 0.9336
PSH-GS || 0.8785 | 0.9604 | 0.9544 | 0.9594 | 0.9528
PSH-ARM || 0.9268 | 0.9458 | 0.9451 | 0.9543 | 0.9569

Table 6: The performances of different supervised hashing
models on 20 Newsgroup dataset under different lengths
of hashing codes.

Method ]| 8bits [ 16 bits | 32 bits [ 64 bits [ 128 bits
KSH 0.4257 | 0.5559 | 0.6103 | 0.6488 | 0.6638
SHTTM 0.2690 | 0.3235 | 0.2357 | 0.1411 0.1299
VDSH-S 0.6586 | 0.6791 | 0.7564 | 0.6850 | 0.6916
VDSH-SP 0.6609 | 0.6551 | 0.7125 | 0.7045 | 0.7117
NASH-DN-S || 0.6247 | 0.6973 | 0.8069 | 0.8213 | 0.7840
PSH-GS 0.7387 | 0.8075 | 0.8274 | 0.8295 | 0.8271
PSH-ARM 0.7507 | 0.8212 | 0.8376 | 0.8404 | 0.8432

ularization weight A values, indicating the sensitivity of
PSH to the weight of the KL regularization term. Specif-
ically, PSH achieves the best performance for small A
values. This observation is consistent with the literature
(Zhao et al., 2017; Alemi et al., 2018), where KL weights
less than one are associated with maximizing the mutual
information between the observations and latent variables,
hence increasing the effectiveness of hashing codes.

4.4.4 Qualitative Analysis of Semantic Information

Similar to Shen et al. (2018), we examine the nearest
neighbors of some words in the word vector space learned
on 20 Newsgroup dataset. We calculate the distances
based on the (word embedding) matrix E € R¥* VI and
select top 4 of the nearest neighbors. The results for ARM-
DVAE and NASH are provided in Table 10. We can see
that our method places semantically-similar words closer
together in the embedding space.

4.5 Computational Complexity

Our proposed framework for both supervised (PSH-ARM)
and unsupervised (ARM-DVAE) semantic hashing can
effectively be applied to large-scale datasets. To demon-
strate this property, we apply both models on a collection
of documents from the RCV1 benchmark (Lewis et al.,
2004) with 100,000 training documents and 20,000 test
documents. Table 11 includes the precision at 100 of
PSH-ARM and ARM-DVAE on the RCV1 dataset for



Table 7: The performances of different supervised hashing
models on TMC dataset under different lengths of hashing
codes.

Table 10: The four nearest neighbors in the word embed-
ding space.

Method/Word H weapons ‘ medical ‘ companies ‘ book

Method H 8 bits ‘ 16 bits ‘ 32 bits ‘ 64 bits ‘ 128 bits guns treatment market books
KSH 0.6608 | 0.6842 | 0.7047 | 0.7175 | 0.7243 weapon | therapy | company | letters
SHTTM 0.6299 | 0.6571 | 0.6485 | 0.6893 | 0.6474 ARM-DVAE violent | medicine | customers | references
VDSH-S | 0.7387 | 0.7887 | 0.7883 | 0.7967 | 0.8018 rifles | hospital | industry | subject
VDSH-SP || 0.7498 | 0.7798 | 0.7891 | 0.7888 | 0.7970 gun | treatment | company |  books
NASH-DN-S || 0.7438 | 0.7946 | 0.7987 | 0.8014 | 0.8139 guns | disease | market | english
PSH-GS || 0.7931 | 0.8189 | 0.8314 | 0.8379 | 0.8426 NASH weapon | drugs afford | references
PSH-ARM | 0.8010 | 0.8329 | 0.8524 | 0.8565 | 0.8617 armed | health | products | learning

Table 8: Impact of the pairwise loss term on the perfor-
mance of PSH for document hashing in terms of precision.

Loss weight (3) H 0 ‘ 0.05 ‘ 0.075 ‘ 0.085 ‘ 0.09
[ 0.8280 [ 0.8373 [ 0.7925 | 0.7340 | 0.7154

Precision

Table 9: Impact of the KL term on the performance of
PSH for document hashing in terms of precision.

KLweight ()] 0 [ 001 [ 01 [ 05 [ 1 [ 2
[ 0.7712 ] 0.8376 | 0.4954 | 0.4474 | 0.4870 | 0.4167

Precision

various hashing code lengths. Both methods achieve high
precision values for different hashing lengths, with PSH-
ARM achieving close to 0.98, indicating the effectiveness
of our framework. The run-time of each epoch in the
training phase for PSH-ARM and ARM-DVAE is around
0.6 and 2 minutes, respectively.

5 CONCLUSION

In this paper, we exploit Augment-REINFORCE-Merge
(ARM), an unbiased, low-variance gradient estimator to
build effective semantic hashing with a discrete latent
VAE. Employing the ARM gradient leads to not only fast
convergence, but also low negative evidence lower bounds
for variational inference, thus increasing the ability to re-
construct the original word counts from the latent hashing
codes. More critically, we propose PSH by adding a pair-
wise loss function to the base discrete VAE to reward
within-class similarity and between-class dissimilarity in
the supervised hashing setting. We conduct comprehen-
sive experiments on several benchmark datasets, includ-
ing the large-scale RCV1 benchmark, for both supervised
and unsupervised hashing and show the superior perfor-
mance of our proposed model in terms of precision for
document retrieval.
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