
Unknown mixing times in apprenticeship and reinforcement learning

Tom Zahavy1,2, Alon Cohen1,2, Haim Kaplan1,3 and Yishay Mansour1,3∗

{tomzahavy, aloncohen, haimk, mansour}@google.com
1 Google AI, Tel Aviv

2 Technion, Israel Institute of Technology
3 Tel Aviv University

Abstract

We derive and analyze learning algorithms
for apprenticeship learning, policy evalu-
ation, and policy gradient for average re-
ward criteria. Existing algorithms explic-
itly require an upper bound on the mixing
time. In contrast, we build on ideas from
Markov chain theory and derive sampling
algorithms that do not require such an up-
per bound. For these algorithms, we pro-
vide theoretical bounds on their sample-
complexity and running time.

1 INTRODUCTION

Reinforcement Learning (RL) is an area of ma-
chine learning concerned with how agents learn long-
term interactions with their environment (Sutton &
Barto, 1998). The agent and the environment are
modeled as a Markov Decision Process (MDP). The
agent’s goal is to determine a policy that maxi-
mizes her cumulative reward. Much of the research
in RL focuses on episodic or finite-horizon tasks.
When studying infinite-horizon tasks, the standard
approach is to discount future rewards. Discounting
serves two purposes: first, it makes the cumulative
reward bounded; second, in some domains, such as
economics, discounting is used to represent “inter-
est” earned on rewards. Thus an action that gen-
erates an immediate reward is preferable over one
that generates the same reward in the future. Nev-
ertheless, discounting is unsuitable in general do-
mains. Alternatively, it is common to maximize the
expected reward received in the steady-state of the

∗Supported in part by grant from the Israel Science
Foundation

Proceedings of the 36th Conference on Uncertainty in
Artificial Intelligence (UAI), PMLR volume 124, 2020.

Markov chain defined by the agent’s policy. This is
the case in many control problems: elevators, drones,
climate control, etc. (Bertsekas et al., 2005) as well
as many sequential decision-making problems such
as inventory-management (Arrow et al., 1958) and
queuing (Kelly, 1975).

Blackwell (1962) pioneered the study of MDPs with
average-reward criteria. He showed that the opti-
mal policy for the average reward is the limit of
the sequence of optimal policies for discounted re-
ward as the discount factor converges to 1. How-
ever, it has been established that it is computation-
ally hard to find the optimal policy when the dis-
count factor is close to 1. For these reasons, Dynamic
Programming (DP) algorithms were developed for
average-reward criteria (see Mahadevan, 1996; Put-
erman, 1984; for detailed surveys). Howard (1960)
introduced the policy-iteration algorithm. Value it-
eration was later proposed by White (1963). How-
ever, these algorithms require knowledge of the state
transition probabilities and are also computationally
intractable.

The main challenge in deriving RL algorithms for
average-reward MDPs is calculating the stationary
distribution of the Markov chain induced by a given
policy. This is a necessary step in evaluating the
average reward of the policy. When the transition
probabilities are known, the stationary distribution
can be obtained by solving a system of linear equa-
tions. In the reinforcement learning setup, however,
the dynamics are unknown, and practitioners tend
to “run the simulation for a sufficiently long time
to obtain a good estimate” (Gosavi, 2014). This im-
plicitly implies that the learner knows a bound on
the mixing time Tmix of the Markov chain. Indeed,
model-free algorithms for the average reward with
theoretical guarantees (e.g., Wang, 2017; Chen et al.,
2018) require an upper bound on the mixing time as

an input.

We will later see that not knowing such a bound on
the mixing time comes with an additional cost and
requires O(Tmix|S|) samples to get a single sample
from the stationary distribution. Instead, one might
consider learning the transition probability matrix
and use it for computing the stationary distribu-
tion (i.e., model-based RL). Not surprisingly, model-
based algorithms assume that the mixing time, or
an upper bound on it, are known explicitly (Kearns
et al., 2000; Brafman & Tennenholtz, 2002).1 More-
over, even if we estimate the transition probabili-
ties, it is not clear how to use it to obtain the av-
erage reward. In particular, the stationary distribu-
tion in the estimated model is not guaranteed to be
close to the stationary distribution of the true model;
an equivalent of the simulation lemma (Kearns &
Singh, 2002) for this setup does not exist. To illus-
trate the difficulty, consider a periodic Markov chain
with states ordered in a (deterministic) cycle. Also
consider a similar Markov chain, but with a prob-
ability of ε to remain in each state. Even though
the two models are “close” to each other, the latter
chain is ergodic and does have a stationary distribu-
tion while the former chain is periodic and therefore
does not have a stationary distribution at all.

Alternatively, one may consider estimating the mix-
ing time (or an upper bound on it) directly, in or-
der to use it to get samples from the stationary
distribution. There are two drawbacks to this ap-
proach. First, the sample complexity for estimating
the mixing time is quite significant. For an arbi-
trary ergodic Markov chain, it is possible to esti-
mate an upper and a lower bound on the mixing
time by approximating the pseudo-spectral gap and
the minimal stationary probability π⋆ (Levin et al.,
2017, Theorems 12.3 and 12.4), and estimating these
quantities to within a relative error of ε requires
O
(
T2

mix max{Tmix, |S|/π⋆}/ε2π⋆

)
samples (Wolfer &

Kontorovich, 2019). Second, these techniques can be
used to get an upper bound on the mixing time of a
single policy, and not on the maximum of all the de-
terministic policies in an MDP. For these reasons we
focus on algorithms that avoid estimating the mixing
time directly.

1UCRL2 (Jaksch et al., 2010) avoids using the mixing
time but instead assumes knowledge of the MDP diam-
eter (which is implicitly related to the mixing time) to
guarantee an ε–optimal policy. We emphasize that there
is no need to know a bound on the diameter in the regret
setting, but only when the goal is to learn an ε-optimal
policy. In this case, the learner has to know a bound on
the diameter in order to bound the sample complexity.

In this work, we build on Coupling From the Past
(CFTP) – a technique from Markov chain the-
ory that obtains unbiased samples from a Markov
chain’s stationary distribution (Propp & Wilson,
1996, 1998). These samples are generated without
any prior knowledge on the mixing time of the
Markov chain. Intuitively, CFTP starts |S| paral-
lel simulations of the Markov chain, one from each
state, at minus infinity. When two simulations reach
the same state, they continue together as one sim-
ulation. The simulations coalesce at time zero to
a single sample state, which is distributed exactly
as the stationary distribution. CFTP, rather than
starting at minus infinity, starts at zero and gener-
ates suffixes of increasing length of this infinite sim-
ulation until it can identify the state at which all
simulations coalesce. The simulations are shown to
coalesce, in expectation, after O

(
|S|Tmix

)
-time. In

Section 2, we provide an alternative, simple proof
of the coalescence-time of the CFTP procedure and
a matching lower bound. Additionally, we analyze
the time it takes for two simulations to coalesce and
show how to use this process to estimate differences
of Q-values.

We further describe sampling-based RL algorithms
for the average-reward criteria that utilize these
ideas. The main advantage of our algorithms is
that they do not require a bound on the associated
Markov chain’s mixing time. In Section 3, we con-
sider apprenticeship learning and propose two sam-
pling mechanisms to evaluate the game matrix and
analyze their sample complexity. These are: using
the CFTP protocol to estimate the game matrix di-
rectly at the beginning of the algorithm; querying
the expert, at each step, for two trajectories to pro-
vide an unbiased estimate of the game matrix. We
also include an unbiased estimator of the policy gra-
dient (under average reward criteria) and analyze
its sample complexity. Finally, in the supplemen-
tary material (Section A), we use CFTP to propose
a sample-efficient data structure that allows us to get
an unbiased sample from the stationary distribution
of any policy in an MDP.

1.1 PRELIMINARIES

In this section, we provide background on RL with
average reward criteria (based on Puterman, 1984),
as well as on the CFTP algorithm (Propp & Wil-
son, 1996, 1998) for getting unbiased samples from
a stationary distribution of a Markov chain without
knowing its mixing time. Background on apprentice-
ship learning is provided in the relevant section.

A Markov Decision Process (MDP) consists of a set
of states S, and a set of actions A. We assume that S
and A are finite. Associated with each action a ∈ A
is a state transition matrix Pa, where Pa(x, y) rep-
resents the probability of moving from state x to
y under action a. There is also a stochastic reward
function R : S × A 7→ R where r(x, a) = E[R(s, a)]
is the expected reward when performing action a
in state x. A stationary deterministic policy is a
mapping π : S 7→ A from states to actions. Any
policy induces a state transition matrix Pπ, where
Pπ(x, y) = Pπ(x)(x, y). Thus, any policy yields a
Markov chain (S, Pπ). The stationary distribution
µ of a Markov chain with transition matrix P is
defined to be the probability distribution satisfying
µ⊤ = µ⊤P.

We specifically study ergodic MDPs in which any
policy induces an ergodic Markov chain. That is,
a Markov chain which is irreducible and aperiodic
(Levin et al., 2017). Such a Markov chain converges
to a unique stationary distribution independent of
the starting state (for generalizations to unichain
MDPs, see Puterman, 1984). The average reward
ρ(π) ssociated with a particular policy π is defined as
ρ(π) = Ex∼µ(π) r(x, π(x)) where µ(π) is the station-
ary distribution of the Markov chain induced by π.
The optimal policy is one that maximizes the aver-
age reward. The Q-value of a state-action pair given
a policy π is defined as

Qπ(s, a) =
∞∑

t=0
E
{

rt – ρ(π) | s0 = s, a0 = a, π
}

. (1)

We define the total-variation distance for two prob-
ability measures P and Q on a sample space Ω to be
TV[P, Q] = supA⊆Ω|P(A) – Q(A)| (which is equiv-
alent to the L1 distance). Informally, this is the
largest possible difference between the probabilities
that the two distributions assign to the same event.

The mixing time of an ergodic Markov chain with a
stationary distribution µ is the smallest t such that
∀x0, TV[Prt(·|x0), µ] ≤ 1/8, where Prt(·|x0) is the
distribution over states after t steps, starting from
x0. For MDP M, let Tπ

mix be the mixing time of the
Markov chain which π induces in M, i.e., (S, Pπ).
The MDP mixing time, T̄mix = maxπ∈Π Tπ

mix is the
maximal mixing time for any deterministic policy.

The algorithms presented in this paper rely on ac-
cess to a generative model (Kearns & Singh, 2002);
an oracle that accepts a state-action pair (s, a) and
outputs a state s′ that is drawn from the next-state
distribution Pa(s, ·), and a sample from the reward

distribution R(s, a). We further assume that a sam-
ple is generated in unit time, and measure the sample
complexity of an algorithm by the number of calls it
makes to the generative model.

Coupling From the Past (CFTP) is a method
for sampling from the stationary distribution of
a Markov chain (Propp & Wilson, 1996, 1998).
Contrary to many Markov Chain Monte-Carlo al-
gorithms, Coupling from the past gives a perfect
sample from the stationary distribution. Intuitively,
CFTP starts |S| parallel simulations of the Markov
chain, one from each state, at minus infinity. When
two simulations reach the same state, they continue
together as one simulation. The simulations coa-
lesce at time zero to a single sample state, which
is distributed exactly as the stationary distribution.
CFTP rather than starting at minus infinity starts
at zero and generates suffixes of increasing length of
this infinite simulation until it can identify the state
at which all simulations coalesce (Häggström, 2002).

Algorithm 1 Coupling from the past
F0 ← Identity Map, t← (–1)
repeat

t← t + 1
f–(t+1) ← RandomMap(P)
F–(t+1) ← F–t ◦ f–(t+1)

until F–(t+1) is constant
Return the value into which F–(t+1) coalesces

Consider a finite state ergodic Markov chain M
with state space S, a transition probability ma-
trix P. CFTP generates a sequence of mappings
F0, F–1, F–2, . . . each from S to S, until the first
of these mappings, say F–t is constant, sending all
states into the same one. In other words, F–t defines
simulations from every starting state, that coalesce
into a single state after t steps. Initially F0(s) = s for
every s ∈ S. Then we generate F–(t+1) by drawing
a random map f–(t+1) : S 7→ S (denoted by Ran-
domMap(P)) where we pick f–(t+1)(s) from the next
state distribution P(s, ·) (e.g., the Markov chain dy-
namics) for every s, and compose f–(t+1)(s) with F–t.
Theorem 1. With probability 1, the CFTP protocol
returns a value, which is distributed according to the
Markov chain’s stationary distribution.

See Propp & Wilson (1996) for proof. Additionally,
Theorem 5 in Propp & Wilson (1998) states that the
expected value of t when F–t coalesces is O

(
Tmix|S|

)
.

The straightforward implementation of Algorithm 1
takes O(|S|) time per step for a total of O

(
Tmix|S|2

)
time. Propp & Wilson (1996) also give a cleverer

Figure 1: Markov chain Figure 2: MSE vs. runs Figure 3: MSE vs. steps

implementation that takes O
(
Tmix|S| log|S|

)
time. It

uses the fact that coalescence occurs gradually and
reduces the number of independent simulations as
time progresses.

1.2 EXAMPLE

We finish this section with a motivating simula-
tion, where we compare the CFTP procedure with
a common practice of “guessing” the mixing time
and running the chain for that time. While CFTP
does not suffer from bias at all, the baseline meth-
ods do suffer from bias and are shown to produce
errors in estimating the average reward. If the guess
is too large, then these methods are highly sample-
inefficient compared to CFTP.

Explicitly, consider the Markov reward process in
Fig. 1. The initial state distribution µ0 is given by
µ0 = (0, 1) (starts from the right state). The sta-
tionary distribution is (2

3 , 1
3), the average reward is

2
3 , the expected coalescence time is 2, and the mixing
time is 4. For this chain, simulating from time 0 for-
ward until all chains coalesce gives a biased sample,
as coalescence can only occur in the left state.

We implemented the CFTP procedure2 and com-
pared it with a baseline that “guesses” the mixing
time, Tguess. This baseline operates as follows. First,
it samples an initial state from µ0. Then, it simu-
lates the chain for Tguess steps. Finally, it returns
the reward at the resulting state.

We run each algorithm to obtain a sample from the
stationary distribution, and use the average of these
samples to estimate the average reward. For each
algorithm, we report the average (over 10 runs, re-
ported alongside error bars) Mean Squared Error
(MSE) with respect to the average reward as a func-
tion of the number of runs taken (Fig. 2). We can
see that underestimating the mixing time Tguess = 2

2Accompanying code can be found in the supplemen-
tary material.

(red), and using precisely the mixing time Tguess = 4
(green) leads to bias in the estimation of the aver-
age reward. The latter is due to the fact that by
the definition of the mixing time, we are not guar-
anteed to sample exactly from the stationary distri-
bution, but only from a distribution that is close it
in the total variation distance. When we overesti-
mate the mixing time, e.g., for Tguess = 30 (blue),
the bias decreases significantly. Similarly, we can see
that CFTP (orange) produces unbiased samples as
expected.

The advantage of CFTP (orange) becomes clearer
when inspecting Fig. 3. We can see the MSE as a
function of the number of simulation steps. Overes-
timating the mixing time Tguess = 30 (blue), still
gives unbiased estimates but uses too many simula-
tion steps to achieve a single sample of the reward.
As a result, CFTP (orange) yields much lower MSE
for the same amount of samples.

2 SAMPLING FROM A STATIONARY
DISTRIBUTION WITH UNKNOWN
MIXING TIME

2.1 COALESCENCE FROM TWO STATES

We begin this section by analyzing a simple scenario:
for a Markov chain with |S| states, we simultaneously
start two simulations from two different states. At
each time step, each simulation proceeds according
to the next state distribution of the Markov chain.
We are interested in bounding the time that it takes
for two simulations to reach the same state. As we
will see, this takes O(Tmix|S|) time in expectation.
We begin with the following two lemmas.
Lemma 2. Let P and Q be distributions on
{1, . . . , |S|} such that TV[P, Q] ≤ 1

4 . Draw x from P
and y from Q independently. Then Pr[x = y] ≥ 1

2|S| .

Proof. Let B = {i ∈ {1, . . . , |S|} : P(i) > Q(i)} and

note that, by definition of the total variation dis-
tance, P(B) – Q(B) = TV[P, Q] ≤ 1/4. We have that

Pr[x = y] =
|S|∑
i=1

P(i)Q(i)

≥
∑
i∈B

Q(i)2 +
∑
i∈Bc

P(i)2

≥
(
Q(B) + P(Bc)

)2

|S| .

(Cauchy-Schwartz)

The proof is completed by noticing that Q(B) +
P(Bc) = 1 –

(
P(B) – Q(B)

)
≥ 3/4 .

Lemma 3. Let i and j be two states of an ergodic
Markov chain of |S| states. Let x be the state reached
after making Tmix steps starting from i, and let y be
the state reached after making Tmix steps starting
from j. Then Pr[x = y] ≥ 1

2|S| .

Proof. Let P be the distribution on states after mak-
ing Tmix steps starting from i, and let Q be the dis-
tribution on states after making Tmix steps start-
ing from j. Let µ be the stationary distribution of
the Markov chain. Then by the definition of Tmix,
we have that TV[P, µ] ≤ 1/8 and TV[Q, µ] ≤ 1/8.
Therefore, TV[P, Q] ≤ 1/4, and by Lemma 2 we
have Pr[x = y] ≥ 1

2|S| .

By repeating the argument of the previous Lemma,
we arrive at the following conclusion.
Theorem 4. Let i and j be two states of an ergodic
Markov chain on |S| states. Suppose that two chains
are run simultaneously; one starting from i and the
other from j. Let Tc be the first time in which the
chains coalesce. Then Tc ≤ 2|S|Tmix log(1/δ) with
probability at least 1–δ. Moreover, E[Tc] ≤ 2|S|Tmix.

Proof. Let us start by sketching the proof idea. We
break time into multiples of Tmix. We show that the
probability that the chains do not coalesce after ℓ

such time-multiples is at most
(

1 – 1
2|S|

)ℓ

.

Denote by xt and yt be the states of the two chains
at time t. For any t and two states i′, j′, denote by
Et,i′,j′ be the event that xt = i′ and yt = j′. By the
Markov property and by Lemma 3,

Pr[xt+Tmix = yt+Tmix | Et,i′,j′] ≥
1

2|S| .

Using the Markov property again, for any ℓ ≥ 1:

Pr
[
Tc > ℓ · Tmix | Tc > (ℓ – 1)Tmix

]
≤ Pr[xℓ·Tmix 6= yℓ·Tmix | Tc > (ℓ – 1)Tmix]

=
∑
i′ ̸=j′

Pr
[
xℓ·Tmix 6= yℓ·Tmix | Tc > (ℓ – 1)Tmix,

E(ℓ–1)Tmix,i′,j′
]
· Pr[E(ℓ–1)Tmix,i′,j′]

=
∑
i′ ̸=j′

Pr[xℓ·Tmix 6= yℓ·Tmix | E(ℓ–1)Tmix,i′,j′]

· Pr[E(ℓ–1)Tmix,i′,j′]

≤
∑
i′ ̸=j′

(
1 – 1

2|S|

)
· Pr[E(ℓ–1)Tmix,i′,j′] ≤ 1 – 1

2|S| .

Therefore,

Pr[Tc > ℓ · Tmix]
= Pr[Tc > ℓ · Tmix | Tc > (ℓ – 1)Tmix]
· Pr[Tc > (ℓ – 1)Tmix]

≤
(

1 – 1
2|S|

)
Pr[Tc > (ℓ – 1)Tmix] ,

and inductively Pr[Tc > ℓ · Tmix] ≤
(

1 – 1
2|S|

)ℓ

.

The high probability bound immediately implies a
bound on the expected coalescence time as follows:

E[Tc] =
∞∑

t=0
Pr[Tc > t]

≤ Tmix + Tmix

∞∑
ℓ=1

Pr[Tc > ℓ · Tmix]

≤ Tmix + Tmix

∞∑
ℓ=1

(
1 – 1

2|S|

)ℓ

= 2|S|Tmix .

We finish this subsection by showing that the upper
bound in Theorem 4 is tight.
Theorem 5. There exists an ergodic Markov chain on
|S| states and two states i, j such that the coalescence
time Tc of two chains running simultaneously, one
starting from i and the other from j, satisfies E[Tc] ≥
1
6 Tmix · |S|.

Proof. Let ε ∈ (0, 1) and consider a Markov chain
with |S| states that for each state s, stays at s with
probability 1–ε, and with probability of ε choose the
next state uniformly at random. Then, Pr[s′ | s] =
(1 – ε)1s=s′ + ε

|S| . It is easy to see that the station-
ary distribution of this chain is uniform. This means

that, starting the chain at state s0, with probabil-
ity ε the distribution at any time t ≥ 1 is uniform.
Therefore, Pr[st | s0] = (1–ε)t1st=s0 +(1–(1–ε)t) 1

|S| .

Denote ū the uniform distribution. We get that

TV[Pr
t

[· | s0], ū] = 1
2
∑

s

∣∣∣∣Pr[st = s | s0] – 1
|S|

∣∣∣∣
= 1

2
∑

s
(1 – ε)t

∣∣∣∣1s=s0 – 1
|S|

∣∣∣∣
= |S| – 1

|S| · (1 – ε)t ≤ e–εt .

This implies that Tmix ≤ 3
ε .

Next, notice that for coalescence to happen, one of
the states i or j must transition to a state held by
the other chain, which happens with probability at
most 2ε

|S| via a union bound. Thus, in expectation,
the time it takes for them to coalesce is E[Tc] ≥
|S|/2ε ≥ 1

6 |S|Tmix.

2.2 COALESCENCE FROM |S| STATES

In the supplementary material, we provide an alter-
native, simple proof of the coalescence-time of the
CFTP procedure. The main ingredient of the proof
is a generalization of the argument for bounding the
coalescence-time of two chains to that of |S| chains.
The following theorem formalizes this.
Theorem 6. Let µ be the stationary distribution of
an ergodic Markov chain with |S| states. We run |S|
simulations of the chain each starting at a different
state. When two or more simulations coalesce, we
merge them into a single simulation. With probabil-
ity at least 1 – δ, all |S| chains are merged after at
most 512|S|Tmix log(1/δ) iterations.

2.3 ESTIMATING THE DIFFERENCE IN
AVERAGE REWARD OF TWO POLICIES

Denote the difference in average reward between two
policies by ∆ρ(π, π′) := ρ(π′) – ρ(π). As seen in Sec-
tion 2, we can sample a state from the stationary dis-
tribution of π and thereby get an unbiased estimate
of ρ(π) and similarly for π′. The difference between
these estimates is an unbiased estimate of ∆ρ(π, π′).
However, we can also get an unbiased estimate of
∆ρ(π, π′) by sampling the stationary distribution of
only one of π and π′, as we will now show. This prop-
erty is useful when the sampling mechanism from
one of the policies is restricted by real world con-
straints, e.g., in apprenticeship learning (see Sec-
tion 3.3 for a concrete example). Our result builds

on the following fundamental lemma regarding the
average reward criteria (see, for example, Even-Dar
et al., 2009, Lemma 5):
Lemma 7. ∀π, π′ ∈ Π : ∆ρ(π, π′) := ρ(π′) – ρ(π) =
Es∼µ(π′)

{
Qπ(s, π′(s)) – Qπ(s, π(s))

}
.

Recall that Qπ is defined as in Eq. (1). Lemma 7 sug-
gests a mechanism to estimate ∆ρ(π, π′) using Theo-
rem 4. We first sample a state, s0 from the stationary
distribution of π′. Then, we initiate two trajectories
from s0, the first trajectory follows π from s0 and
the second trajectory takes the first action (at s0)
according to π′ and follows π thereafter. We accu-
mulate the reward achieved by each trajectory un-
til they coalesce. The difference between these sums
makes an unbiased estimate of ∆ρ(π, π′).

3 APPRENTICESHIP LEARNING

Consider learning in an MDP for which the reward
function is not given explicitly, but we can observe
an expert demonstrating the task that we want to
learn. We think of the expert as trying to maximize
the average reward function that is expressible as
a linear combination of known features. This is the
Apprenticeship Learning (AL) problem (Abbeel &
Ng, 2004). We focus on extending the Multiplica-
tive Weights Apprenticeship Learning (MWAL) al-
gorithm (Syed & Schapire, 2008) that was developed
for the discounted reward to the average-reward cri-
teria. Our ideas may apply to other AL algorithms
as well.

3.1 BACKGROUND

In AL, we are given an MDP dynamics M that is
comprised of known states S, actions A, and tran-
sition matrices (Pa)a∈A, yet the reward function is
unknown. We further assume the existence of an ex-
pert policy, denoted by πE, such that we are able
to observe its execution in M. Following Syed &
Schapire (2008), our goal is to find a policy π such
that ρ(π) ≥ ρ(πE) – ε, for any reward function.
To simplify the learning process, we follow Syed &
Schapire (2008) in representing each state s by a
low-dimensional vector of features ϕ(s) ∈ [0, 1]k. We
consider reward functions that are linear in these fea-
tures; i.e., r(s) = w·ϕ(s), for some w ∈ ∆k where ∆k is
the (k–1)-dimensional probability simplex. For com-
patibility with previous work, we decided to follow
Syed & Schapire (2008) in assuming that the reward
is in the probability simplex – in other AL papers
(e.g. Abbeel & Ng, 2004; Zahavy et al., 2020), the
L2 ball was considered instead. Having the set as the

simplex, combined with the use of the Hedge algo-
rithm (see below), allowed Syed & Schapire (2008)
to improve the complexity of the algorithm to de-
pend logarithmically on the dimension of the fea-
tures rather than polynomially as in Abbeel & Ng
(2004).

With this feature representation, the average re-
ward of a policy π may be written as ρ(π) = w ·
Φ(π) where Φ(π) is the expected accumulated fea-
ture vector associated with π, defined as Φ(π) =
limN→∞ Eπ

∑N–1
t=0 ϕ(xt)/N. Notice that similar to the

average reward, this limit is not a function of the ini-
tial state when the MDP is ergodic.

We also require the notion of a mixed policy which is
a distribution over stationary deterministic policies.
Our algorithms return a mixed policy, and our anal-
ysis is with respect to this mixed policy. We denote
by Ψ the set of all mixed policies in M and by Π
the set of all deterministic stationary policies in M.
For a mixed policy ψ ∈ Ψ and a deterministic policy
π ∈ Π, we denote by ψ(π) the probability assigned
by ψ to π. A mixed policy ψ is executed by randomly
selecting the policy π ∈ Π at time 0 with probability
ψ(π), and following π after that. The definition of Φ
extends naturally to mixed policies. In terms of av-
erage reward, mixed policies cannot achieve higher
average reward than deterministic policies.

We think of AL as a zero-sum game between two
players, defined by the following k× |Π| matrix:

G(i, π) = Φ(π)[i] – Φ(πE)[i], (2)

where Φ(π)[i] is the i-th component of feature ex-
pectations vector Φ(π) for the deterministic policy
π. Both players play a mixed policy. The row player
selects a vector w ∈ ∆k, which is a probability dis-
tribution over the k features, and the column player
chooses a policy ψ ∈ Ψ. Then, the value of the game
is defined as

v⋆ = max
ψ∈Ψ

min
w∈∆k

[
w ·Φ(ψ) – w ·Φ(πE)

]
= max

ψ∈Ψ
min
w∈∆k

w⊤Gψ . (3)

In Sections 3.2 and 3.3 we propose and analyze two
algorithms for apprenticeship learning with the aver-
age reward criteria, based on the MWAL algorithm
(Syed & Schapire, 2008). Specifically, these algo-
rithms learn a mixed policy ψ̄ that approximately
achieves the max-min value v∗ (defined in Eq. (3))
against any w ∈ ∆k. As in previous work, we assume
that the dynamics are known, yet we have access
to the expert policy via an expert generative model

E. Given a state s, the expert generative model E
provides a sample from πE(s). In Section 3.2 we pro-
pose an algorithm that uses Coupling From The Past
(CFTP) to estimate the feature expectations of the
expert ΦE. In Section 3.3 we propose an algorithm
that queries the expert, at each step, for two tra-
jectories to compute an unbiased estimate g̃t of the
column of the game matrix (Eq. (2)) corresponding
to π(t) based on Lemma 7. Both algorithms update
the strategies of the min (row) and max (column)
players using standard RL methods as follows.

(i) Given a min player strategy w, find
arg maxπ∈Π G(w, π) =

∑k
i=1 w(i)G(i, π). This

step is equivalent to finding the optimal policy in
an MDP with a known reward and can be solved for
example with Value Iteration or Policy Iteration.
(ii) Given a max player strategy π, the min player
maintains a probability vector w ∈ ∆k giving a
weight to each row (feature). To update the weights,
we estimate G(i, π) for each i ∈ {1, . . . , k} and
the policy π of the max player. The algorithms in
Sections 3.2 and 3.3 differ in the way they estimate
these G(i, π)’s. In Section 3.2, we estimate the
features expectations of the expert once before
we start. Then, in each iteration, we evaluate the
feature expectations of π by solving a system of
linear equations using the known dynamics. Then
we estimate G(i, π) by subtracting the features
expectations of π from the estimates of the features
expectations of πE. We note that we can also
handle the case where this step (and the PI step)
is inaccurate. In this case, the representation error
would appear in the bounds of the theorems below.
Importantly, the complexity of both steps in our
algorithms grows with the size of the MDP, but
not with the size of the game matrix. In Section 3.3
we take a different approach and estimate the
difference directly by generating two trajectories of
the expert from two particular states.

3.2 ESTIMATING THE FEATURE
EXPECTATIONS OF THE EXPERT

The algorithm of this section uses CFTP to ob-
tain samples from the expert’s stationary distribu-
tion and uses them to estimate Φ̃E–the expert’s fea-
ture expectations. See Algorithm 2, line 3. Obtain-
ing each of these samples requires Θ(|S|TπE

mix) calls
to the generative model (Theorem 6), totaling at
O(|S|TπE

mix ·m) calls overall. The number of samples
m is taken to be large enough so that the estimate
Φ̃E is ε-accurate. The following theorem describes
the sample complexity of Algorithm 2.

Theorem 8. Assume we run Algorithm 2 for T =
144
ε2 log k iterations, using m = 18

ε2 log(2k/δ) samples
from µ(πE). Let ψ̄ be the mixed policy returned by
the algorithm. Let v⋆ be the game value as in Eq. (3).
Then, we have that ρ(ψ̄) – ρ(πE) ≥ v⋆ – ε with prob-
ability at least 1 – δ, where ρ is any average reward
of the form r(s) = w · ϕ(s) where w ∈ ∆k.

Note that Theorem 8 is similar to Theorem 2 of
Syed & Schapire (2008). The main difference is that
our result applies to the average-reward criteria, and
we evaluate the expert using samples of its station-
ary distribution instead of using trajectories of finite
length (which are biased). This simplifies the anal-
ysis and gives tighter bounds. As a comparison, the
iteration complexity of MWAL is T = O(log(k)

ε2(1–γ)2),
which is also logarithmic in k and linear in 1/ε2 but
depends in the discount factor. In the discounted
case, a complete trajectory is required in order to
have a single unbiased estimate of the feature ex-
pectations. In the average reward case, on the other
hand, a single sample from the stationary distri-
bution suffices to create an unbiased estimate of
the feature expectations, and therefore the iteration
complexity does not depend on the trajectory length.
More details can be found in the proof (Section C.2).

Algorithm 2 MWAL for average reward criteria
1: Given: MDP dynamics M; generative model of

the expert policy E; feature dimension k; number
of iterations T; m the number of samples from
µ(πE).

2: Let β =
√

log k
T (learning rate)

3: Sampling: Use the CFTP protocol with E and
M, to obtain m samples {ϕ(si)}m

i=1 s.t. si are
i.i.d random variables and si ∼ µ(πE). Let Φ̃E =
1
m
∑m

i=1 ϕ(si).
4: Initialize W(1)(i) = 1, for i = 1, . . . , k.
5: for t = 1, . . . , T do
6: Set w(t)(i) = W(t)(i)∑k

i=1 W(t)(i) , for i = 1, . . . , k.
7: Compute an optimal policy π(t) for M with

respect to reward function r(t)(s) = w(t) ·ϕ(s).
8: for i = 1, . . . , k do
9: Set g̃t(i) =

(
Φ(π(t))[i] – Φ̃E[i] + 1

)
/2.

10: W(t+1)(i) = W(t)(i) · exp
(
–βg̃t(i)

)
.

11: end for
12: end for
13: Post-processing: Return the mixed policy ψ̄

that assigns probability 1
T to π(t), for all t ∈

{1, . . . , T}.

Remark. Recall that the expert policy may be

stochastic. At first glance, it may be tempting to try
to estimate the expert policy directly. However, note
that ϕ(πE) is an expectation over the expert’s sta-
tionary distribution. Even if we do manage to esti-
mate the expert’s policy to ε-accuracy in each state,
the small error in the estimated policy may entail
a significant error in its stationary distribution. In
fact, this error might be as large as Ω(TπE

mixε). In
particular, there is no sample size which is oblivious
to TπE

mix and guarantees an ε bounded error.

3.3 ESTIMATING THE GAME MATRIX
DIRECTLY

In the previous section, we introduced an algorithm
that uses the CFTP protocol to sample the expert’s
stationary distribution without any knowledge of the
corresponding Markov chain’s mixing time. How-
ever, this mechanism required to query the expert
for a long trajectory starting from every state to ob-
tain a single sample from the stationary distribution.
This may be tedious for the expert in practice, in
particular in domains with large state spaces.

To relax this requirement, Algorithm 3 uses a dif-
ferent sampling mechanism that is not estimating
Φ(πE) at the beginning of the algorithm. Instead,
Algorithm 3 queries the expert for two trajectories
at each step to generate an unbiased estimate gt of a
particular column of the game matrix. To obtain the
estimate gt (Algorithm 3, line 7), we use the sam-
pling mechanism developed in Section 2 for evalu-
ating the difference in the average reward of two
policies ∆ρ(π, π′) (Lemma 7). Specifically, we start
by sampling a state s0 from the stationary distribu-
tion of π(t). Since π(t) and the dynamics are known,
the stationary distribution of π(t) can be computed
by solving a system of linear equations. Next, we
initiate two trajectories from s0; the first trajectory
follows the expert policy from s0 and the second tra-
jectory takes the first action (at s0) according to π(t)

and follows the expert after that. We accumulate the
features ϕ(s) along the trajectories until they coa-
lesce. The difference between these sums gives the
unbiased estimate gt of G(·, π(t)) = Φ(π(t)) – Φ(πE)
(the column of the game matrix G corresponding to
π(t)).

Theorem 9 below presents the sample complexity
of this approach as a function of b: a parameter
that bounds the estimates gt with high probabil-
ity. Concretely, we assume that for any ℓ > 0,
Pr[‖gt‖∞ > ℓ · b] ≤ e–ℓ. In view of Theorem 4, b
is always upper bounded by |S|TπE

mix. But, we be-
lieve that it can be much smaller in practice and

Algorithm 3 MWAL with generative differences
1: Given: MDP dynamics M; generative model of

the expert policy E; feature dimension k; number
of iterations T; parameter δ; parameter b.

2: Let β =
√

log k
T , B = b log(2Tk/δ)

3: Initialize W(1)(i) = 1, for i = 1, . . . , k.
4: for t = 1, . . . , T do
5: Set w(t)(i) = W(t)(i)∑k

i=1 W(t)(i) , for i = 1, . . . , k.
6: Compute an optimal policy π(t) for M w.r.t

reward function r(t)(s) = w(t) · ϕ(s).
7: Sample gt s.t. E[gt(i)] = G(i, π(t)), ∀i =

1, . . . , k
8: for i = 1, . . . , k do
9: Set g̃t(i) =

(
gt(i) + B

)
/2B.

10: W(t+1)(i) = W(t)(i) · exp
(
–βg̃t(i)

)
.

11: end for
12: end for
13: Post-processing: Return the mixed policy ψ̄

that assigns probability 1
T to π(t), for all t ∈

{1, . . . , T}.

that there exists many cases where b can be known
a-priori due to the structure of the reward function.
For example, consider an MDP with a p–sparse re-
ward function, i.e., the reward (and the feature vec-
tor in these states) is not zero in at most p states.
While it might take a long time for two trajecto-
ries to coalesce, the difference in the reward between
these trajectories can be upper bounded using the
sparsity degree p of the reward. Concretely, consider
an MDP with the following dynamics: P(si, si+1) =
1,∀i ∈ [1, ..n – 1], P(sn, sn) = 1 – ε, P(sn, s1 = ε), and
a p–sparse reward function. For ε� 1/n, the trajec-
tories will coalesce at sn (with high probability), and
we have that for any ℓ > 0, Pr[‖gt‖∞ > ℓ · p] ≤ e–ℓ.

Theorem 9. Assume we run Algorithm 3 for T it-
erations, and there exists a parameter b, such that
for any ℓ, Pr(‖gt‖∞ ≥ ℓ · b) ≤ e–ℓ. Let ψ̄ be the
mixed policy returned by the algorithm. Let v⋆ be
the game value as in Eq. (3). Then, there exists a
constant c such that for T ≥ cB log2 B where B =
b2

ε2 log3 k log2(1/δ), we have that ρ(ψ̄)–ρ(πE) ≥ v⋆–ε
with probability at least 1 – δ, where ρ is the aver-
age of any reward of the form r(s) = w · ϕ(s) where
w ∈ ∆k.

The key difference from the proof of Theorem 8 is in
refining the original analysis to incorporate the vari-
ance of the estimates gt into the algorithm’s iteration
complexity. The proof is found in Section C.3.

4 POLICY GRADIENT

Consider the problem of finding the best policy in
an MDP from the set of all policies that are param-
eterized by a vector θ. Sutton et al. (2000) proposed
a variant of Policy Iteration that uses the unbiased
estimate of the policy gradient and guaranteed that
it converges to a locally optimal policy. We now
describe a sampling mechanism that achieves such
an unbiased sample, resulting in a much simpler al-
gorithm than the biased policy gradients algorithm
of (Baxter & Bartlett, 2001; Marbach & Tsitsiklis,
2001).

The Policy Gradient Theorem (Sutton et al., 2000),
states that for the average-reward criteria,

∂ρ
∂θ

= Es∼µ(π)Ea∼π(s)
∂ log π(s, a)

∂θ
Qπ(s, a) ,

where Qπ(s, a) =
∑∞

t=1 E(rt – ρ(π)|s0 = s, a0 = a, π).
We produce an unbiased estimate of the policy gra-
dient similarly to evaluating the reward difference
between policies described in Section 2. Specifically,
we do the following: (1) use the CFTP method to
get unbiased sample s ∼ µ(π) from the stationary
distribution of π; (2) sample a′ ∼ π(s); (3) initiate
two trajectories from s. The first trajectory starts by
taking action a (the action we want to estimate the
Q function at), and the second starts by taking a′.
Even if these actions are the same, they would not
necessarily lead to the same state as the environment
is stochastic. After the first action is taken, both tra-
jectories follow π until coalescence. The difference
of cumulative rewards between the two trajectories
forms an unbiased estimate of the Q-value. To con-
struct the estimate of the gradient, we multiply the
Q-value estimate by the derivative of log π(s, a) at θ.

5 DISCUSSION

We derived and analyzed reinforcement learning al-
gorithms for average reward criteria. Existing algo-
rithms explicitly require an upper bound on the mix-
ing time. In contrast, we leveraged the CFTP pro-
tocol and derived sampling algorithms that do not
require such an upper bound. For these algorithms,
we provided theoretical bounds on their sample-
complexity and running time. Finally, we offered
an alternative, simpler proof for the correctness of
CFTP. As CFTP is a twenty-year-old protocol, we
hope that our proof will make it more accessible to
the RL community.

References
Abbeel, P. and Ng, A. Y. Apprenticeship learning

via inverse reinforcement learning. In Proceedings
of the twenty-first international conference on Ma-
chine learning, pp. 1. ACM, 2004.

Arrow, K. J., Karlin, S., Scarf, H. E., et al. Stud-
ies in the mathematical theory of inventory and
production. Stanford University Press, 1958.

Baxter, J. and Bartlett, P. L. Infinite-horizon policy-
gradient estimation. Journal of Artificial Intelli-
gence Research, 15:319–350, 2001.

Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P.,
and Bertsekas, D. P. Dynamic programming and
optimal control, volume 1. Athena scientific Bel-
mont, MA, 2005.

Blackwell, D. Discrete dynamic programming. The
Annals of Mathematical Statistics, 1962.

Brafman, R. I. and Tennenholtz, M. R-max-a gen-
eral polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learn-
ing Research, 3(Oct):213–231, 2002.

Chen, Y., Li, L., and Wang, M. Scalable bilinear
learning using state and action features. In In-
ternational Conference on Machine Learning, pp.
833–842, 2018.

Even-Dar, E., Kakade, S. M., and Mansour, Y. On-
line markov decision processes. Mathematics of
Operations Research, 34(3):726–736, 2009.

Freund, Y. and Schapire, R. E. A decision-theoretic
generalization of on-line learning and an applica-
tion to boosting. Journal of computer and system
sciences, 55(1):119–139, 1997.

Gosavi, A. Simulation-Based Optimization: Para-
metric Optimization Techniques and Reinforce-
ment Learning. Springer US, 2014.

Häggström, O. Finite Markov chains and algorith-
mic applications, volume 52. Cambridge Univer-
sity Press, 2002.

Howard, R. A. Dynamic Programming and Markov
Processes. MIT Press, Cambridge, MA, 1960.

Jaksch, T., Ortner, R., and Auer, P. Near-optimal
regret bounds for reinforcement learning. Jour-
nal of Machine Learning Research, 11(Apr):1563–
1600, 2010.

Kearns, M. and Singh, S. Near-optimal reinforce-
ment learning in polynomial time. Machine learn-
ing, 49(2-3):209–232, 2002.

Kearns, M. J., Mansour, Y., and Ng, A. Y. Ap-
proximate planning in large pomdps via reusable

trajectories. In Advances in Neural Information
Processing Systems, pp. 1001–1007, 2000.

Kelly, F. P. Networks of queues with customers of
different types. Journal of applied probability, 12
(3):542–554, 1975.

Levin, D., Peres, Y., and Wilmer, E. Markov Chains
and Mixing Times. American Mathematical Soci-
ety, 2017.

Mahadevan, S. Average reward reinforcement learn-
ing: Foundations, algorithms, and empirical re-
sults. Machine learning, 22(1-3):159–195, 1996.

Marbach, P. and Tsitsiklis, J. N. Simulation-based
optimization of markov reward processes. IEEE
Transactions on Automatic Control, 46(2):191–
209, 2001.

Propp, J. G. and Wilson, D. B. Exact sampling
with coupled markov chains and applications to
statistical mechanics. Random Structures & Al-
gorithms, 9(1-2):223–252, 1996.

Propp, J. G. and Wilson, D. B. How to get a per-
fectly random sample from a generic markov chain
and generate a random spanning tree of a directed
graph. Journal of Algorithms, 27(2), 1998.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley &
Sons, 1984.

Sutton, R. S. and Barto, A. G. Reinforcement learn-
ing - an introduction. MIT Press, 1998.

Sutton, R. S., McAllester, D. A., Singh, S. P., and
Mansour, Y. Policy gradient methods for rein-
forcement learning with function approximation.
In Advances in neural information processing sys-
tems, pp. 1057–1063, 2000.

Syed, U. and Schapire, R. E. A game-theoretic ap-
proach to apprenticeship learning. In Advances in
neural information processing systems, 2008.

Wang, M. Primal-dual π learning: Sample complex-
ity and sublinear run time for ergodic markov de-
cision problems. arXiv:1710.06100, 2017.

White, D. J. Dynamic programming, markov chains,
and the method of successive approximations.
Journal of Mathematical Analysis and Applica-
tions, 6(3), 1963.

Wolfer, G. and Kontorovich, A. Estimating
the mixing time of ergodic markov chains.
arXiv:1902.01224, 2019.

Zahavy, T., Cohen, A., Kaplan, H., and Mansour,
Y. Apprenticeship learning via frank-wolfe. In
Thirty-Fourth AAAI Conference on Artificial In-
telligence, 2020.

