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Abstract

In this paper, we consider the problem of es-
timating all possible causal effects from ob-
servational data with two types of background
knowledge: direct causal information and non-
ancestral information. Following the IDA
framework, we first provide locally valid ori-
entation rules for maximal partially directed
acyclic graphs (PDAGs), which are widely used
to represent background knowledge. Based on
the proposed rules, we present a fully local algo-
rithm to estimate all possible causal effects with
direct causal information. Furthermore, we con-
sider non-ancestral information and prove that
it can be equivalently transformed into direct
causal information, meaning that we can also
locally estimate all possible causal effects with
non-ancestral information. The test results on
both synthetic and real-world data sets show
that our methods are efficient and stable.

1 INTRODUCTION

Directed acyclic graphs (DAGs) are widely used in causal
inference. When the underlying causal DAG is fully spec-
ified by background knowledge (Meek, [1995) or exper-
imental data (He & Geng] 2008}, Hauser & Biihlmann)
2012), the causal effect of a treatment on a target can be
estimated from observational data using the back-door
adjustment criterion (Pearl, 2009). However, with obser-
vational data, one can only learn a completely partially
directed acyclic graph (CPDAG) representing a class of
Markov equivalent DAGs (Spirtes et al., [2000), making
it difficult to identify all causal effects since equivalent
DAGs may entail different causal relations.
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To estimate causal effects from observational data with-
out a fully specified DAG, some researchers focus on the
identifiability of a causal effect (Perkovic et al., 2015}
2017; [PerkovicC et al., 2018; Jaber et al., [2018a.b, 2019).
Since not all causal effects can be uniquely identified, an
alternative approach is to learn a CPDAG first, then enu-
merate all DAGs in the learned Markov equivalence class
and estimate the causal effect for each of those equivalent
DAGs (Maathuis et al.,|2009). For any treatment-target
pair, this method returns a multi-set of all possible causal
effects of the treatment on the target. Since enumerat-
ing all DAGs is infeasible when the size of the Markov
equivalence class is large (He et al.l 2015), Maathuis et al.
(2009) further proposed a local algorithm called IDA to
estimate the multi-set. Instead of enumerating all DAGs,
IDA only enumerates possible parental sets of the treat-
ment, which is shown to be efficient since enumerating
possible parental sets only requires the local structure
around the treatment (Maathuis et al., [2009)).

Incorporating background knowledge into causal infer-
ence has drawn more and more attentions in recent years
(Perkovic et al.l [2017; [Henckel et al., 2019; [Perkovic,
2019). In real applications, practitioners usually have
prior knowledge about the causal system. For example, if
the causal system is related to time, we may assume that
the subsequent events are not the causes of the prior events.
In social sciences, it is reasonable to assume that intrinsic
attributes, such as gender and race, are not affected by
other variables. In medical sciences, previous studies may
indicate that some behaviors will definitely cause some
diseases, like smoking causes bronchitis or eating betel
nuts causes oral cancer. Recently, |Perkovi¢ et al.|(2017)
extended IDA to deal with the cases where direct causal
information is available. They proposed a semi-local algo-
rithm to enumerate all possible causal effects. However,
the semi-local IDA needs the entire CPDAG instead of the
local structure around the treatment to check the validity
of a possible parental set, which limits the application of
the semi-local IDA to high dimensional systems.



In this paper, we consider the problem of estimating
all possible causal effects from observational data with
background knowledge. Our paper extends the work
of Maathuis et al.| (2009) and |Perkovic et al.|(2017), and
has the following contributions:

e We provide locally valid orientation rules for max-
imal partially directed acyclic graphs (PDAGs),
which is sufficient and necessary to check whether
a set of variables in a maximal PDAG can be the
parents of a given target.

e Based on the proposed rules, we give a fully local
algorithm to enumerate all possible causal effects
with direct causal information.

e We prove that non-ancestral information can be
equivalently transformed into direct causal informa-
tion, making it possible to locally enumerate all pos-
sible causal effects with non-ancestral information.

2 PRELIMINARIES

In this section, we introduce the notation, definitions and
related work.

2.1 CAUSAL GRAPHICAL MODELS

A graph G = (V,E) is directed (undirected, or partially
directed) if all edges in the graph are directed (undirected,
or a mixture of directed and undirected ones). The skele-
ton of G is an undirected graph obtained from removing
all arrowheads in G. For any V' C V, the induced sub-
graph of G over V' is the graph with vertex set V' and
edge set E’, where E' C E contains all and only edges
between vertices in V.

Given a graph G, X is a parent of X; and X is a child of
Xi lez — Xj in g, and X7 is aszblmg OfXj lez —Xj
in G. If there is an edge between X; and X, then they are
adjacent. We use pa(X;,G), ch(X;,G), sib(X;,G), and
adj(X;, G) to denote the sets of parents, children, siblings,
and adjacent vertices of X in G, respectively. A graph is
called complete if every two distinct vertices are adjacent.
A path is a sequence of distinct vertices (Xy,,- -+, Xx,)
such that any two consecutive vertices are adjacent. If
every two distinct vertices in a graph are connected by a
path, then the graph is called connected. A path is called
partially directed from Xy, to Xy, if Xy, < Xy, , does
not occur in G forany ¢ = 1,...,j5 — 1. A partially di-
rected path is directed (undirected) if all edges on the path
are directed (undirected). A (partially directed, directed,
or undirected) cycle is a (partially directed, directed, or
undirected) path from a vertex to itself. The length of a
path (cycle) is the number of edges on the path (cycle).

Particularly, a cycle with length three is called a triangle.
A vertex X; is an ancestor of X; and X is a descen-
dant of X if there is a directed path from X; to X or
X; = Xj; the sets of all ancestors and all descendants of
X in a graph G are denoted by an(X;,G) and de(X;, G),
respectively. A chord of a path (cycle) is any edge join-
ing two nonconsecutive vertices on the path (cycle). A
path (cycle) without any chord is called chordlessﬂ An
undirected graph is chordal if it has no chordless cycle
with length greater than three. A directed graph is acyclic
(DAG) if there are no directed cycles.

The notion of d-separation induces a set of conditional
independence relations encoded in a DAG (Pearl, |1988)).
Two DAGs are Markov equivalent if they induce the same
set of conditional independence relations. For three dis-
tinct vertices X;, X; and Xy, if X; — X, < X and X
is not adjacent to X}, in G, then the triple (X;, X;, X;)
is called a v-structure collided on X ;. |Pearl et al.| (1989)
have shown that two DAGs are equivalent if and only if
they have the same skeleton and the same v-structures. A
Markov equivalence class or simply equivalence class,
denoted by [G], contains all DAGs equivalent to G. A
Markov equivalence class [G] can be uniquely represented
by a partially directed graph called completely partially
directed acyclic graph (CPDAG) G*, in which two ver-
tices are adjacent if and only if they are adjacent in G
and a directed edge occurs if and only if it appears in
every DAG in [G] (Pearl et al.l [1989). Given a CPDAG
G*, we use G and G to denote the undirected subgraph
and directed subgraph of G*, respectively. The former is
defined as the undirected graph resulted by removing all
directed edges in G*, and the later is the directed graph
obtained by removing undirected edges. |Andersson et al.
(1997) proved that G* is a chain graph, which means, (1)
the undirected subgraph G of G* is the union of disjoint
connected chordal graphs, and (2) every partially directed
cycle is an undirected cycle in G*. The isolated con-
nected chordal graphs of G are called chain components
of G* (Andersson et al.| [1997).

A causal DAG model consists of a DAG G and a joint
distribution P over a common set V such that P satisfies
the causal Markov assumption with respect to G, which
requires that P can be factorized as,
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In this paper, we also assume that there is no hidden
variable or selection bias, and a CPDAG representing
the Markov equivalence class containing the underlying

"The word ‘chordless’ is mostly used in graph theory (see,
e.g. Blair & Peyton,|1993), while in some papers, such paths
are called ‘unshielded’ (see, e.g. |Perkovic et al.l 2017)



causal DAG can be recovered from dataE]

2.2 INTERPRETING BACKGROUND
KNOWLEDGE

Background information can be regarded as a set of con-
straints. In this paper, we consider both direct causal
information (Meekl, |1995}; |PerkoviC et al.,|2017) and non-
ancestral information. A direct causal claim, denoted
by X — Y, is defined as a constraint which requires
X to be a direct cause of Y. Likewise, a non-ancestral
claim, denoted by X — Y, is defined as a constraint
which requires X to be a non-ancestor of Y. A direct
causal information set is a set of direct causal claims, and
a non-ancestral information set is a set of non-ancestral
claims. We use By, BB,, and B to denote a direct causal
information set, a non-ancestral information set, and an
(arbitrary) background knowledge set, respectively.

For a CPDAG G*, any DAG obtained by orienting the
undirected edges in G* without creating new v-structures
or directed cycles is a member of the equivalence class
represented by G* (Pearl et al., [1989; Meekl, [1995)). Let
B denote a background knowledge set related to the true
underlying causal DAG. With the constraints in 3, we may
further reduce the number of possible DAGs including
the true one. More formally, a set of constraints B is
consistent with a given CPDAG G~ if there is at least
one DAG G in the Markov equivalence class represented
by G* such that G satisfies all constraints in B. If B is
consistent with G*, then the subset of equivalent DAGs
satisfying all constraints in B is called a restricted Markov
equivalence class with respect to G* and 5.

Representing background knowledge graphically can
bring a lot of convenience. Clearly, given a CPDAG
G*, a direct causal information set can be equivalently
interpreted by orienting corresponding undirected edges
in G, resulting a partially directed graph . For sim-
plicity, we say H (or orientations of some undirected
edges in G*) is consistent with G* if the corresponding
direct causal information is consistent with G*, and the
corresponding restricted Markov equivalence class is rep-
resented by H. Meek| (19935)) proved that, with a series
of orientation rules called Meek’s criteria, some undi-
rected edges in a consistent 7 may be further directed
(see Algorithm [6]in Appendix [B.T|for details), and the
resulting graph is a maximal partially directed acyclic
graph (maximal PDAG), where two distinct vertices X
and Y are adjacent if and only if they are adjacent in G*,
and X — Y appears if and only if X — Y appears in
every DAG in the restricted Markov equivalence class
represented by H. Conversely, if H is inconsistent, then

Note that recovering CPDAG from observational data may
need additional assumptions.

Algorithm 1 The IDA algorithm

Require: A CPDAG G*, a target variable Y.
Ensure: {Ox}xcv, where © x stores all possible causal
effectsof X onY.
1: for each variable X € V do
: setOx =0,
3:  foreach S C sib(X,G*) such that orienting S —
X and X — sib(X,G*) \ S does not introduce
any v-structure collided on X do

4: estimate the causal effect of X on Y by adjust-
ing for S U pa(X, G*), and add the causal effect
to Oy,

5:  end for

6: end for

7: return {Ox }xev.

the resulting graph is not a maximal PDAG.

2.3 CAUSAL INFERENCE

Given a DAG G and two distinct variables X and Y, the
causal effect of X on Y can be interpreted by the post-
intervention distribution of Y intervening on X via do
operator (Pearl, 1995/ 2009). With observational data, if
Y ¢ pa(X,G), then the post-intervention distribution can
be calculated from the pre-intervention distribution by:

P(yldo(X = z))
- / P(yIX =z, pa())P (pa(z)) d (pa(x)) .

IfY € pa(X,G), then P(y|do(X = z)) = P(y). Equa-
tion (EI) is a special case of back-door adjustment (Pearl,
1995}, 2009)), and pa(x, G) is a special back-door adjust-
ment set. However, if we only know a CPDAG G*, the
causal effect of X on Y may not be identifiable from
observational data. To address this problem, Maathuis
et al.| (2009) provided a novel framework called IDA. As
shown in Algorithm[I] IDA enumerates all possible causal
effects of X on Y by listing all possible parental sets and
adjusting for each of them. To decide whether a set of
variables is possible to be the parents of X, Maathuis et al.
(2009) provided a locally valid orientation rule.

(D

Lemma 1 (Maathuis et al.,[2009, Lemma 3.1) Given a
CPDAG G*, avariable X, and S C sib(X,G*), orienting
S — X foreach S € S and X — C for each C €
sib(X,G*) \ S is consistent with G* if and only if new
orientations do not introduce v-structures collided on X.

For simplicity, below we will use A — B for two disjoint
sets A and B to denote that for any A € A and B € B,
A — B. Thanks to Lemma [} although IDA needs a
CPDAG as input, it only needs the local structure around



Algorithm 2 The semi-local IDA algorithm

Require: A CPDAG G*, a consistent direct causal infor-
mation set 34, a target variable Y.
Ensure: {Ox } xcy, where O x stores all possible causal
effectsof X on Y.
1: Construct the maximal PDAG H from G* and By,
using Meek’s criteria,
2: for each variable X € V do
3 setOx =1,
4:  foreach S C sib(X,H) do
5: orient S — X and X — sib(X,H)\ Sin H,
and denote the resulting graph by Hs_, x,

6: using Meek’s criteria to check whether Hg_, x
is consistent with G*,

7: if Hs_, x is consistent with G* then

8: estimate the causal effect of X on Y by ad-

justing for S U pa(X, H), and add the causal
effect to O x,

9: end if
10:  end for
11: end for

12: return {Ox }xcy.

the treatment to list all possible parental sets and estimate
all possible causal effects. The results are stored in a
multi-set © x, which can be regarded as an unordered list.

Recently, |[Perkovi¢ et al.|(2017) proposed the semi-local
IDA which can semi-locally find all possible parental sets
of a treatment in a maximal PDAG and then estimate
all possible causal effects by adjusting for each of them.
Algorithm@] shows the schema. Different from IDA, Al-
gorithm 2] uses Meek’s criteria to check the validity of
candidate parents (line 6). However, Meek’s criteria are
global orientation rules and require an entire H as input.

3 INCORPORATING DIRECT CAUSAL
INFORMATION

In this section, we study the locally valid orientation rules
for maximal PDAGs, and present a fully local algorithm
for estimating all possible causal effects with direct causal
background information.

3.1 LOCALLY VALID ORIENTATION RULES
FOR MAXIMAL PDAGS

Let G* be a CPDAG learned from data, and B, denote a
direct causal information set which is consistent with G*.
As discussed earlier, one can use a maximal PDAG H to
interpret B;. Therefore, the key step for estimating all
possible causal effects locally is to develop locally valid
orientation rules for maximal PDAGs. The following
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Figure 1: An example to show that the rule in Lemmais
no longer valid for maximal PDAGs. Figure [Ia]shows a
CPDAG, and Figure|1b|shows the maximal PDAG when
adding A — B to G*. Figures[Ic]to[Th|enumerate all pos-
sible parental sets of X without background knowledge.
Figures|Tito [Tk] enumerate all possible parental sets of X
with direct causal information A — B.

example demonstrates that the rule in Lemma [I] is no
longer valid. That is, the criterion in Lemma [T may cause
directed cycles when applied to a maximal PDAG.

Example 1 Consider the graphs in Figure[I| Given a
CPDAG G* in Figure @] we would like to estimate all
possible causal effects of X on'Y using IDA. From G*
we can see that sib(X,G*) = {A, B, C}. Clearly, there
are 8 different subsets of sib(X,G*). However, neither
{4, B,C%} nor { A, C} can be a parental set of X based
on Lemmall] since A — X <« C is a new v-structure.
Hence, there are 6 possible parental sets of X, which are
listed in Figures[Idto[Th] Now, assume that we know A
is a direct cause of B in the underlying DAG. With this
background knowledge, we orient A— B inG* as A — B.
Furthermore, based on Meek’s criteria, we can further
orient B — C and X — C, which results the maximal
PDAG H. In this case, sib(X,H) = {A, B}. Obviously,
setting the parents of X to be 0, {A}, {B}, or {A, B}
does not introduce a new v-structure, but only three of
them are valid, since letting B be the parent and A be the
child would cause a directed cycle A — B — X — A.

Example |l| shows that when orienting undirected edges
connected to a treatment in a maximal PDAG, it is not
only necessary to avoid creating new v-structures, but
also important to avoid directed cycles. Given a maximal
PDAG H consistent with a CPDAG G*, a variable X, and
S C sib(X,H), we use Hs_, x to represent the partially
directed graph resulted by orienting S — X and X —



sib(X, H)\S in H. The next theorem shows the sufficient
and necessary conditions for checking whether or not
Hs_, x is consistent with G*.

Theorem 1 Let H be a maximal PDAG consistent with
a CPDAG G*. For any vertex X and S C sib(X,H), the
following three statements are equivalent.

(1) There is a DAG G in the restricted Markov equiva-
lence class represented by H such that pa(X,G) =
S U pa(X,H) and ch(X,G) = sib(X,H) U
ch(X,H)\S.

(2) Compared with H, Hs_, x does not introduce any
new V-structure collided on X or any directed trian-
gle containing X.

(3) The induced subgraph of H over S is complete, and
there does notexistan S € Sanda C € adj(X,H)\
(SUpa(X,H)) such that C — S.

The proof of Theorem [I] is provided in Appendix [B.1]
An important aspect of Theorem|[I]is that, it theoretically
proves that the only directed cycles we need worry about
when orienting undirected edges around a variable X are
those triangles containing X, and the only v-structures
which might be introduced into the graph are those col-
lided on X . Thus, with TheoremE], we can locally check
whether a set of variables can be the parents of X.

3.2 ESTIMATING CAUSAL EFFECTS

With the help of Theorem (1} we can locally compute all
possible causal effects of a treatment on a target. Algo-
rithm[3|shows the framework. Algorithm [3|first constructs
the maximal PDAG H from G* and B, by using Meek’s
criteria, then for each treatment variable X, it enumerates
all subsets of sib(X, H) and locally checks whether it can
be treated as the parental set of X. The correctness of
Algorithm [3]is guaranteed by Theorem|[I]

Compared with the semi-local IDA, DIDA (Algorithm
is a fully local algorithm, which means it only needs
the local structure of the treatment when estimating all
possible causal effects of the treatment on the target. Fur-
thermore, one can easily see that IDA is an instance of
DIDA with no background knowledge, since if B; = 0,
‘H is identical to G*, and orienting undirected edges con-
nected to a given variable in a CPDAG never produces
directed cycles.

4 INCORPORATING
NON-ANCESTRAL INFORMATION

In practice, we may also have background knowledge
about non-ancestral relations among variables. In fact,

Algorithm 3 DIDA: A fully local method for estimating
possible causal effects with direct causal information.

Require: A CPDAG G*, a consistent direct causal infor-
mation set 34, a target variable Y.
Ensure: {Ox}xcy, where O is the multi-set of possi-
ble causal effects of X on Y.
1: Construct the maximal PDAG H from G* and By
using Meek’s criteria,

: for each variable X € V do

set Ox = 0,

4:  for each S C sib(X,#) such that orienting S —
X and X — sib(X, )\ S does not introduce any
V-structure collided on X or any directed triangle
containing X do

W N

5: estimate the causal effect of X on Y by adjust-
ing for S U pa(X, H), and add the causal effect
to Ox,

6: end for

7: end for

8: return {GX}XEV-

non-ancestral information is more common than direct
causal information, since the later is a special case of the
former, with the additional information that two variables
are adjacent in the true DAG. However, incorporating non-
ancestral information into causal inference is not easy. In
this section, we prove that a non-ancestral information
set can be equivalently transformed into a direct causal
information set. Thus, non-ancestral information, like
direct causal information, can be interpreted graphically
via maximal PDAGs.

4.1 EQUIVALENT BACKGROUND
KNOWLEDGE

In this part, we give theoretical foundations as well as an
algorithm for transforming non-ancestral information. We
begin our discussion with a new concept called equivalent
background knowledge.

Definition 1 (Equivalent Background Knowledge)
Given a CPDAG G*, two background knowledge sets 31
and Bs are equivalent with respect to G*, if the restricted
Markov equivalence class with respect to G* and By is
identical to the restricted Markov equivalence class with
respect to G* and Bs.

Definition [T means that two background knowledge sets
are equivalent if and only if they put the same constraints
on an equivalence class. Note that, the equivalence of
background knowledge depends on G*. Generally, two
equivalent background knowledge sets with respect to one
CPDAG may not be equivalent anymore with respect to



Algorithm 4 Construct equivalent direct causal informa-
tion

Require: A CPDAG G*, a consistent non-ancestral in-
formation set 13,,.
Ensure: An equivalent direct causal information set 5.
1: Set By = 0,
2: for each constraint X -~ Y in B,, do
3:  find the critical set C of X with respectto Y in G*,
and add C' — X to B, for each C € C,
4: end for
5: return 5.

another CPDAG.

In the following, we will prove that a non-ancestral infor-
mation set is equivalent to a certain direct causal infor-
mation set with respect to a given CPDAG. Another new
concept is needed here.

Definition 2 (Critical Set) Let G* be a CPDAG. X and
Y are two distinct vertices in G*. The critical set of X
with respect to 'Y in G* consists of all adjacent vertices of

X lying on at least one chordless partially directed path
from X toY.

Note that Y itself may be in the critical set. Critical sets
are important in transforming non-ancestral information
to direct causal information, as stated in the following
lemma.

Lemma 2 Let G* be a CPDAG. For any two distinct ver-
tices X and Y in G*, X is not an ancestor of Y in the
underlying DAG if and only if every vertex in the critical
set of X with respect to'Y in G* is a direct cause of X in
the underlying DAG.

The proof of Lemmal[2]is in Appendix[B.2] With Lemma[2]
we can construct an equivalent direct causal information
set from a given non-ancestral information set. Algorithm
H] shows the procedure. Notice that, the main step of
Algorithm[z_f] is to find the critical set, which can be done
by using width-first-search (Perkovi¢ et al., 2017).

The correctness of Algorithm []is guaranteed by Theo-
rem [2] where the proof is given in Appendix [B.3] It is
worth noting that Algorithm [] (and Theorem [2)) is not
only for consistent non-ancestral information, but also for
the mixture of consistent non-ancestral and direct causal
information, as the later is a special case of the former.
Thus, if the input background knowledge of Algorithm
M]is a consistent direct causal information set, then the
output is identical to the input minus a collection of in-
formation that does not introduce any constraint, e.g., the
information X - Y while Y — X is already present in
the CPDAG.

Algorithm 5 NIDA: A fully local method for estimating
possible causal effects with non-ancestral information

Require: A CPDAG G*, a consistent non-ancestral in-
formation set B3,,, a target variable Y.
Ensure: {Ox}xcy, where O is the multi-set of possi-
ble causal effects of X on Y.
1: Construct the equivalent direct causal information By
by calling Algorithm ] with input G* and B,,,
2: compute {O x } xcv by calling DIDA (Algorithm 3)),
with input G*, By, and Y,
3: return {Ox}xecy.

Theorem 2 Let G* be a CPDAG. For any consistent non-
ancestral information set BB,,, the direct causal informa-
tion set By constructed according to Algorithm[d]is equiv-
alent to B,,.

4.2 TRANSFORMING NON-ANCESTRAL
INFORMATION AND ESTIMATING
CAUSAL EFFECTS

Section 1] shows that a consistent non-ancestral infor-
mation set can be equivalently transformed into a direct
causal information set. Therefore, we can graphically
interpret non-ancestral information via maximal PDAGs.
Once we obtain a maximal PDAG, the possible causal
effects of a treatment on a target can be estimated locally
based on DIDA (Algorithm [3). The above procedure is
summarized in Algorithm 5]

Similar to Algorithm ] NIDA is also valid when the
input is a direct causal information set. From this point
of view, DIDA is a special case of NIDA. However, if
one is certain that the type of background knowledge
is direct causal information, we suggest to use DIDA
directly, since calling Algorithm ] in NIDA may bring
unnecessary costs.

Example 2 We use an example to show how NIDA works.
Consider the graphs in Figure[2as well as the treatment
X. Figure[2d| shows the CPDAG G* learned from data.
Suppose we also have the background knowledge which
states that A is not an ancestor of Y and X is not an
ancestor of C. Notice that, X is not an ancestor of C
is also a piece of direct causal information, i.e., C is a
direct cause of X, since X and C are adjacent in G*.
The background knowledge is marked on Figure 2B} Fig-
ure |2c| shows the partially directed graph H, resulted
by converting the output of Algorithm[|to a PDAG, that
is, forany X — Y in By, if X — Y in G*, then we ori-
ent X —Y as X — Y. Besides C — X, C — A and
B — A are oriented as C — A and B — A respectively
since A— B — Y and A — C — Y are chordless par-
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Figure 2: An example to illustrate how NIDA (Algorithm works.

tially directed paths. Figure[2d|further gives the maximal
PDAG extending H, based on Meek’s criteria. Since
sib(X, Ha) = {A, B}, there are four candidate parental
sets of X, namely, { A, B}, {A}, {B}, and (. However,
setting {A} to be X'’s parental set will introduce a di-
rected triangle, see Figure[2h| Thus, the only three possi-
ble parental sets are illustrated in Figure 2el2g]

S EXPERIMENTS

The algorithms proposed in this paper enable us to fully
locally estimate possible causal effects with two different
types of background knowledge. In this section, with
both synthetic and real-world data, we empirically show
that the local nature of our algorithms can indeed reduce
the computational costs. In Section 5.1, we compare
DIDA and NIDA to IDA and the semi-local IDA, with
direct causal information and non-ancestral information,
respectively. Note that, the semi-local IDA is not directly
applicable to non-ancestral information, thus we com-
bined it with Algorithm[] In Section[5.2] we apply our
methods to the Arabidopsis thaliana data set. Since DIDA
is a special case of NIDA, we only use NIDA in this part.

5.1 SIMULATIONS

Our simulations were conducted as follows. In the
first scenario, we first sampled a random DAG G with
N = 100 vertices and expected neighborhood size e €
{1,2,...,10}, then randomly picked a treatment X and a
target Y, and generated a consistent direct causal informa-
tion set By (G) by randomly choosing p € {0, 10, ...,100}
percent of directed edges in G as background knowledge.
Notice that in our simulations, a chosen direct causal
claim may put no constraint on the Markov equivalence
class. This procedure was repeated 100 times, resulting
100 (G, B4(G)) pairs for each setting. (There are totally
10 x 11 settings.) Next, for each (G, B4(G)) pair, we ran-
domly generated a multivariate Gaussian distribution with

edge weights uniformly sampled from [0.5, 2] indepen-
dently and independent standard normal noises (Maathuis
et al.| |2009), and sampled 1000 observations from this
distribution. Finally, we transformed each sampled DAG
to the corresponding CPDAG, added background knowl-
edge to the CPDAG, and estimated possible causal ef-
fects of the chosen treatment on the chosen target. In the
second scenario, we consider non-ancestral background
knowledge. The non-ancestral background information
set with respect to a given DAG G was generated by
randomly choosing p € {0, 10, ..., 100} percent of non-
ancestral relations according to G, i.e., variable pairs like
(X,Y) where Y is not an ancestor of X. Except for
sampling background knowledge, other procedures were
similar to those in the first scenario. We note that, fol-
lowing [Perkovic et al.|(2017)), the input CPDAG for each
setting in both scenarios is the true CPDAG rather than
the estimated one, since we do not want to bring any esti-
mation bias caused by learning graphs to the evaluation
of different methods. Besides, it is difficult to incorporate
background knowledge to a incorrect CPDAG since they
may conflict to each other.

Figure [3|shows the average CPU time of IDA, the semi-
local IDA and DIDA (NIDA), with direct causal informa-
tion (Figure [3a) and non-ancestral information (Figure
. As expected, it takes more time to estimate the multi-
set of possible effects when the graph is dense. Since IDA
is directly applied to the CPDAGs without considering
background knowledge, the average CPU time of IDA
is stable when the percentage of background knowledge
varies. Similar to IDA, the average CPU time of DIDA
(NIDA) is also stable, as DIDA (NIDA) is fully local and
adding background knowledge does not change the neigh-
borhood size. Although the figure suggests that DIDA
(NIDA) is slightly faster than IDA, we find this difference
is insignificant, as shown in Figure E} On the other hand,
the average CPU time of the semi-local IDA decreases
when the percentage of background knowledge increases.
When no background knowledge is given, the semi-local
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Figure 3: The average CPU time (secs.) of IDA, the semi-local IDA and DIDA (NIDA), with direct causal information
and non-ancestral information. IDA is directly applied to the CPDAGs without adding any background knowledge. en

is an abbreviation for ‘expected neighborhood size’.

IDA is usually slower than both IDA and DIDA (NIDA),
but as the percentage of background knowledge increases,
the number of undirected edges in the maximal PDAG
decreases, which makes the CPU time of the semi-local
IDA converge to that of DIDA (NIDA).

Another important feature indicated by Figure [3|is that,
non-ancestral information is more informative than direct
causal information. Fix an expected neighborhood size,
one can see that the average time of the semi-local IDA
given non-ancestral information decreases faster than that
given direct causal information. This means that with the
same percentage of background knowledge, there are less
undirected edges in the maximal PDAG resulted from
adding non-ancestral information. Figure[5)in Appendix
[A]also supports this claim, where we report the average
number of possible effects of one treatment on one target.
This interesting feature is supported by Lemma [2] and
Theorem[2l A direct causal claim can at most orient one
edge, while a non-ancestral claim can potentially orient
more than one undirected edge.

We also analyze the distribution of the CPU time. As an
example, Figure 4] shows the estimated densities with the
expected neighborhood size e € {2, 8} and the percent-
age of direct causal information p € {0,0.5}. From the
figures we know that the CPU time distributions of IDA
and DIDA are unimodal, while that of the semi-local IDA

is usually multimodal. Another important result is that,
the CPU time distributions of all three methods have one
common peak near zero. When the graph becomes dense
or more background knowledge is given, the other peaks
of the semi-local IDA become flat. Finally, the CPU time
distribution of the semi-local IDA becomes unimodal.

5.2 REAL-WORLD DATA

We now apply NIDA to the Arabidopsis thaliana data
set (Opgen-Rhein & Strimmer, [2007). The Arabidopsis
thaliana data set can be directly loaded from R package
GeneNet (Schifer et al.l 2006). The data set consists of
11 samples of 800 genes, and each variable approximately
follows a Gaussian distribution. We used a hybrid method
to learn a CPDAG from the Arabidopsis thaliana data set
(see Appendix |A| for more details). The final CPDAG
contains 32 undirected edges and 266 directed edges, and
there are 185 genes in the network after removing all sin-
gletons. The background knowledge was obtained from
the ARTH150 network Pl The ARTH150 network is a DAG
with 107 nodes and 150 directed edges, which describes
the causal relations among a subset of 800 genes in the
Arabidopsis thaliana data set. We constructed B,, by
adding all Y -» X such that X is an ancestor of Y in the

3The network can be found at|http://www.bnlearn|
com/bnrepository/l
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Figure 4: The estimated densities of CPU time (secs.) of different approaches, with the expected neighborhood size
e € {2, 8} and the percentage of direct causal information p € {0,0.5}.

ARTH150 network. Clearly, B,, is a non-ancestral infor-
mation set. The total number of non-ancestral relations
in B3, is 525. After adding the background knowledge to
the CPDAG, the maximal PDAG contains 16 undirected
edges and 282 directed edges.

All methods were applied to all 185 x 184 pairs of distinct
variables (X,Y) in the learned maximal PDAG to esti-
mate the possible effects of each X on each Y. Similar
to the simulation results, the CPU time distributions of
IDA and NIDA are unimodal while the CPU time distri-
bution of the semi-local IDA is multimodal. In fact, the
maximal time of the semi-local IDA is 65.48 seconds,
while the maximal time of IDA and NIDA is 3.68 and
3.02 seconds respectively. Since the maximal PDAG only
contains 16 undirected edges, the semi-local IDA and
NIDA perform similarly on average. However, NIDA is
more stable across all situations, no matter how large the
set of possible causal effects is.

6 CONCLUDING REMARKS

Estimating causal effects from observational data has been
widely studied. However, in practice, one may also have
prior knowledge about the causal system. This additional
information may have great influence on causal inference.
In this paper, we consider the problem of estimating all
possible causal effects from observational data with di-
rect causal information and non-ancestral information.
We provide locally valid orientation rules for maximal
PDAGs, which extend Maathuis et al.| (2009, Lemma 3.1).
Based on the rules, we propose a fully local algorithm

to estimate all possible causal effects of a treatment on a
target. We further consider non-ancestral information and
prove that a non-ancestral information set can be equiv-
alently transformed into a direct causal information set,
making it possible to estimate possible causal effects with
non-ancestral information locally. Experiments show that
our algorithms are efficient and stable.

There are some interesting future directions. First, how to
represent incoherent background knowledge with maxi-
mal PDAGs is an important problem in real applications.
To solve the problem, we may need additional information
such as the confidence level of each claim, and perhaps
use the Answer Set Programming (ASP) to find a maximal
PDAG that minimizes the confidence level of the input
claims which the maximal PDAG does not satisfy (Zha-
lama et al., 2019). Moreover, it is worth considering the
causal system containing hidden variables and selection
biases (Richardson & Spirtes|, 2002} [Zhang}, 2008)). How-
ever, as discussed in |Perkovi¢ et al.[|(2017), interpreting
background knowledge graphically in this case is still
challenging. Another possible extension is to consider
other forms of background knowledge, such as ancestral
relations or structural priors.
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Supplementary Material

This is the supplement to ‘IDA with Background Knowl-
edge’. In this material, we provide additional experimen-
tal results as well as the detailed proofs of theorems and
lemmas in the main text.

A IMPLEMENTATION DETAILS AND
ADDITIONAL RESULTS

Our algorithms were implemented with R and all experi-
ments were run on a computer with 2.50GHz CPU and 8
GB of memory. IDA and the semi-local IDA were called
from R package pcalg (Kalisch et al., 2012)); the Ara-
bidopsis thaliana data set was directly loaded from R
package GeneNet (Schifer et al.l 2000); the tabu search
algorithm was called from R package bnlearn (Scutari,
2010).

The Hybrid Approach for Learning the CPDAG To
learn a CPDAG from the Arabidopsis thaliana data
set, we firstly used the shrinkage approach proposed
by [Schifer & Strimmer| (2005)) to learn the moral graph
of the true causal DAG, then used tabu search to fur-
ther remove redundant edges and orient the remain-
ing edges (Scutari et all |2019). The shrinkage ap-
proach was called from R package GeneNet, with
edge significance threshold 0.999. The estimated moral
graph contains 426 undirected edges. Next, based on
the ARTH150 network from bnlearn repository (http:
//www.bnlearn.com/bnrepository/), we used
tabu search called from R package bnlearn to learn
a DAG. As mentioned in Section [5} the ARTH50 net-
work is a DAG with 107 nodes and 150 directed edges,
which describes the causal relations among a subset of
800 genes in the Arabidopsis thaliana data. In our tabu
search stage, we forced the estimated DAG to contain all
directed edges which are present in ARTH150, and not
to contain any edge which is not present in the learned
moral graph. Finally, we transformed the learned DAG to
the corresponding CPDAG. The final CPDAG contains
32 undirected edges and 266 directed edges, and there are
185 genes in the network after removing all singletons.

Additional Results on Synthetic Data With the syn-
thetic data sets, we study the influence of background
knowledge on estimating causal effects. Figure [3]illus-
trates the average number of possible causal effects of
one pair of treatment and target. With the growth of the
neighborhood size, the number of causal effects decreases,
since there are less undirected edges in the graph when
the expected neighborhood size varies from 1 to 10. No-
tice that, the number of possible causal effects is not a
decreasing function of the expected neighborhood size. If

we keep on adding edges, the graph will finally become a
complete undirected graph, indicating that the number of
possible causal effects reaches the maximum. Thus, ide-
ally, the number of possible causal effects first decreases
and then increases as the expected neighborhood size
grows. In addition, more background knowledge implies
less number of possible causal effects, and similar to the
analysis given in the main text, non-ancestral information
is more informative than direct causal information, since
the number of possible causal effects decreases faster in

Figure [5b|

Additional Results on Real-World Data  With the pro-
posed methods, we further analyze the estimated possi-
ble causal effects based on the results given by IDA and
NIDA. The results show that when no background knowl-
edge is available, there are 7400 pairs of treatment and
target such that for each pair the causal effect of the treat-
ment on the target is not unique, while with the back-
ground knowledge, this number drops to 4255. Moreover,
among those 7400 pairs where the causal effects are not
unique without background knowledge, the average num-
ber of possible causal effects is 2.6, while among those
4255 pairs, the average number of possible causal effects
is 2.39. We also study whether the interval determined by
the maximum and the minimum possible causal effects
contains zero. The results show that there are 2104 pairs
whose possible effects intervals contain zero when no
background knowledge is given, while this number drops
to 1012 when the background knowledge is given.

B PROOFS

In this section, we provide the detailed proofs of Theorem
Lemma 2] and Theorem[2]in the main text.

B.1 PROOF OF THEOREMII]

Let G* be a CPDAG and H be a partially directed graph re-
sulted from orienting some undirected edges in G*. Note
that, for now H may not be a maximal PDAG or con-
sistent with G*. As discussed in Section G*isa
chain graph, and the undirected subgraph G; of G* is a
union of disjoint (connected) chordal graphs called chain
components. Let 13 be the corresponding direct causal
information of H, i.e.,

B={X—->Y|X—>YisinHbutX —YisinG*}.

Since X — Y is in G* if and only if X and Y are in
the same chain component, B = (", B(C), where C =
(Ve,Ec) is a chain component and

B(C)={X Y |X > YisinHbut X — YisinC}.
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Figure 5: The average number of possible causal effects of one treatment on one target.

As discussed in |Maathuis et al.| (2009} Section 8, proof
of Lemma 3.1), H is consistent with G* if and only if
every B(C) is consistent with C. Therefore, we can sepa-
rately consider the orientation of each chain component,
or equivalently, the orientation of each connected chordal
graph.

Note that,|Andersson et al.|(1997) proved that a chordal
graph itself is a CPDAG. Therefore, in order to prove
Theorem|[I} we can assume G* is a chordal graph without
loss of generality. In this case, the DAGs in the Markov
equivalence class represented by G* are those without any
v-structures and vice versa. Therefore, to prove Theorem
[1] it suffices to prove the following lemma.

Lemma 3 Let H = (V,Ey) be a maximal PDAG con-
sistent with a chordal graph C. For any vertex X and
S C sib(X, H), the following three statements are equiv-
alent.

(1) There is a DAG G in the restricted Markov equiva-
lence class represented by H such that pa(X,G) =
S Upa(X,H) and ch(X,G) = sib(X,H) U
ch(X,H)\S.

(2) Hs— x does not have any V-structure collided on X
or any directed triangle containing X.

(3) The induced subgraph of H over S is complete, and
there does not existan S € S anda C' € sib(X, H)U
ch(X,H)\ S such that C — S.

Let C be a chordal graph and H be a partially directed
graph resulted from orienting some undirected edges in
C. Denote the set of directed edges in H by D(H). As
discussed in Section Meek] (1995) proposed an al-
gorithm which uses Meek’s criteria to check whether
H is consistent with C. Algorithm [6] which is borrowed
from |Perkovic et al.| (2017, Algorithm 1), shows the proce-
dure, and the visualization of Meek’s criteria is provided
in Figure[6] To check the consistency of 7, we only need
to apply Algorithm [6]to C and D(#). If the returned
value is not FAIL, then H is consistent. Similarly, to
show that the partially directed graph Hg_, x introduced
in statement (2) of Lemma 3]is consistent, we only have
to prove that applying Meek’s criteria (or more formally,
Algorithm|[6) to C and D(Hs—, x ) would not return FAIL.

In the following sections, we will first introduce some



Algorithm 6 Constructing the maximal PDAG

Require: A maximal PDAG G, a set of directed edges

D.
Ensure: A maximal PDAG G or FAIL.
1: Set g' =g,
2: while D # () do
3:  choose an edge © — v from D,
4. D=D\{u— v},
5. ifu—voru—wvisinG then
6: orient © — v in g’,
7: close the edge orientations under the rules in
Figure[6]
8: else
9: return FAIL.
10:  endif

11: end while
12: return G .

R S AN

Rule 1 Rule 2
Rule 3 Rule 4

Figure 6: The visualization of four rules of Meek’s criteria.
If the graph on the left-hand side of a rule is an induced
subgraph of a PDAG G, then orient the undirected edge
such that the resulting subgraph is the one on the right-
hand side of the rule.

technical lemmas, and then prove Lemma 3|in Appendix

B.1.1 Technical Lemmas

In this section, we introduce some technical lemmas that
are useful in the proof of Lemma 3]

Let C = (V,E) be a chordal graph, and H be a maximal
PDAG consistent with C. The next result shows that the
induced subgraph of # is still a maximal PDAG.

Lemma 4 Let H be a maximal PDAG consistent with
a chordal graph C = (V,E), then for any V' CV, the
induced subgraph of H over V' is a maximal PDAG con-
sistent with the induced subgraph of C over V.

Proof. Let the induced subgraph of C over V' be C’ , and

the induced subgraph of H over V' be H'. Clearly, C’ is
a chordal graph. For any DAG G in the restricted Markov
equivalence class represented by H, G does not have any
v-structures. Suppose that the induced graph of G over \4
is G’, then G’ is also a DAG without v-structures, meaning
that G’ is in the Markov equivalence class represented by
C'. Now, consider H'. For any directed edge u — v in H’,
we have u — v in ‘H, and thus v — v is in G. Therefore,
the partially directed graph ' is consistent with C’.

To prove that H' is a maximal PDAG, we consider an ar-
bitrary undirected edge u— v in H’. Since H' is a induced
subgraph of H, we have u — v in H, meaning that there
exist two DAGs G, and G5 in the restricted Markov equiv-
alence class represented by H such that w — v in G; and
u <— v in Go. Since both of the induced subgraphs of G;
and G5 over V/ are in the restricted Markov equivalence
class represented H’, u — v cannot be further directed,
which completes the proof. (]

Recall that Lemma [I| proves that for any CPDAG G*
and a variable X in G*, orienting S — X and X —
sib(X,G*) \ S (the resulting graph is denoted by G . )
is consistent for S C sib(X, G*) if and only if new ori-
entations do not introduce any v-structure collided on X .
Since CPDAGS are chain graphs (Andersson et al., |{1997),
it can be shown that G¢ .  is consistent if and only if S
induces a complete subgraph of G*. Moreover, if G§_,
is consistent, then after applying Meek’s criteria to G§_,
until none of the four rules applies, [He & Geng| (2008}
Theorem 6) showed that the resulting maximal PDAG is
still a chain graph, that is, (1) the undirected subgraph
of this maximal PDAG is the union of disjoint connected
chordal graphs, and (2) every partially directed cycle in
this maximal PDAG is an undirected cycle (Andersson
et al.||1997)).

We next focus on the chordal graph C. Since C is also
a CPDAG, for a variable X, if S C sib(X, C) induces a
complete subgraph, then Cs_, x is consistent. The follow-
ing result shows that if we close the edge orientations of
Cs_, x under Meek’s criteria, the newly oriented edges in
the resulting graph C*, except for those from X’s parents
to X’s children, can all be oriented by Rule 1 and/or Rule
4 of Meek’s criteria.

Lemma 5 Suppose that C is a chordal graph and Cs_, x
is consistent with C. Denote by C* the maximal PDAG
resulted from applying Meek’s criteria to Cs_, x until no
more edge can be oriented. For any v — u in C* such

that v — w is in Cs_, x, if v — u can only be oriented by
Rule 2, thenv € S and u € sib(X,C) \ S.

Proof. Since C is chordal, C* should not contain any
v-structure. Thus, Rule 3 of Meek’s criteria can not be
triggered as the left-hand side of Rule 3 has a v-structure.
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Figure 7: An illustration of the cases discussed in the
proof of Lemma5]

Suppose that v — wu can only be oriented by Rule 2, then
there is a vertex wq such that v — wg and wg — wu in
C*. If both of v — wg and wg — w are in Cs_, x, then
wo = X and v € S and u € sib(X,C) \ S, which leads
to the desired result. Now assume that v — wq is not in
Cs_ x, or equivalently, v — wy is oriented by Rule 1, 2 or
4 of Meek’s criteria. If v — wy can be oriented by Rule
1, then there is a vertex a such that a — v but a and wy
are not adjacent in C*. Since a and wy are not adjacent,
a # u. If a and w are not adjacent (Figure[7a), then v — u
can be oriented as v — w by Rule 1, which contradicts
our assumption. If @ and u are adjacent (Figure[7b), then
u — wo should be oriented as u — wq by Rule 4, which
is also impossible. Hence, v — wq can not be oriented
by Rule 1. On the other hand, if v — w can be oriented
by Rule 4, then there are two vertices a and b such that
a — bisin C*, and b, w( are adjacent, b, v are adjacent,
a, wq are not adjacent in C*. Clearly, a,b # u. If b and
u are not adjacent, then a and u are not adjacent (Figure
[7d), since otherwise, a, b, wo, u form a chordless cycle
with length four (Figure[7d). In this case, b — wy should
be oriented as b — wg by Rule 1 and consequently v — u
can be oriented as v — u by Rule 4, which leads to a
contradiction. Thus, b and u are adjacent. On the other
hand, if @ and u are not adjacent (Figures , thenv — u
can still be oriented as v — u by Rule 4. Therefore, a
and u should be adjacent (Figures [7f). However, if a and
u are adjacent, u — wq should be oriented as u — wq by
Rule 4, which is contradicted to the assumption. Hence,
v — wo can not be oriented by Rule 4, which means
v — wp can only be oriented by Rule 2. Similarly, we
can prove that wy — w can only be oriented by Rule 2 if
it is not in Cs_, x. Since one of v — wy and wy — w is
not in Cs_, x, we have that either v — wq or wg — u can
only be oriented by Rule 2.

Based on the above analysis, we can construct an edge
set M in which every edge is either in Cs_, x, or the one
that can only be oriented by Rule 2. We first add v — u
to M. If every edge in M is also in Cs_, x, then the

construction is over. Otherwise, we pick out an edge from
M which is not in Cg_, x. Denote the chosen edge by
a — b. Since a — b can only be oriented by Rule 2, by
the argument given in the last paragraph, there is a w such
that a — w — b in C*, and both of them are either in
Cs_, x, or the ones that can only be oriented by Rule 2.
We add a — w and w — b to the edge set M and remove
a — bfrom M. Let

Vi = {w € V | wis an endpoint of some edge in M }.

We claim that, every time after we remove an edge from
M, if |M| = m, then (1) V| = m + 1, (2) the edges in
M form a directed path with length m which starts from
v and ends with u , and (3) the induced subgraph of C*
over Vs is complete.

In fact, since v — wu can only be oriented by Rule
2, m > 2. The case where m = 2 has been dis-
cussed already. Suppose the claims hold for m — 1. Let
Vv = {v1,..,vm} and M = {v; — viH};’:ll (Fig-
ure [§), where v; = v and v,,, = w. If the construc-
tion is over when |M| = m — 1, then our induction
is over. Otherwise, there is an edge v; — v;41 in M
which is not in Cs_, x and can only be oriented by Rule
2. Thus, there is an a # v; such that v; — a — v;41 in
C*. Clearly, after adding v; — a and ¢ — v; 41 to M
and removing v; — v;41 from M, we have |[M| = m
and the first two claims hold true. To prove the third
claim, we first observe that for any j = 1,2...,¢ — 1,
vi+1 and v; are adjacent in C*. Since a — v;41 in C*,
if a is not adjacent to v;, v;11 should point at v;. Thus,
a — Vig1 —> Vj — Vjq1 —> -+ = Vi—1 —v; —>aisa
directed cycle in C*, which is impossible. On the other
hand, since vy, vy, are adjacent, v;11, v, are adjacent and
v1, v;+1 are adjacent, if a is not adjacent to v,,, v1 — v,
can be oriented by Rule 4, which is contradicted to our
assumption that v; — v,,, can only be oriented by Rule
1. Next, we consider v,,_1. If a is not adjacent to v,, 1,
then the induced subgraph over a, v;41,Vy—1, Uy trig-
gers Rule 4, and thus we have v,;, — v,,—1 in C*, which
is a contradiction. Similarly, we can prove that a should
be adjacent to v, 2, ..., v;+2. Therefore, a is adjacent to
every v;, and thus the induced subgraph of C* over V
is complete.

V= Uy —> > Vj — Vjpq —> Vjyp —>——>VUpm_1—>Up

a

Figure 8: An illustration of the induced subgraph over
V. Note that v;’s are adjacent to each other.



Finally, as there are a limited number of vertices in the
graph, the construction will eventually stop, meaning that
every edge in M is in Cs_, x . However, since the edges
in M form a directed path but the length of any directed
path in Cg_, x is at most two, M can at most contain two
edges, which completes the proof of Lemma 5] (]

B.1.2 Proof of Lemma[3|

Finally, we can prove Lemma 3]

Proof. (2) < (3) follows directly from the definitions
of chordal graph and chain graph, thus we only prove
that statement (1) is equivalent to statement (3). Assume
statement (1) holds true. Since C is chordal, G does not
have any v-structure. Hence, statement (3) is true.

Now assume that statement (3) is true. Denote the set of
directed edges in a partially directed graph G by D(G). It
is clear that D(Hg—, x ) can be treated as the union of two
subsets: D(H) and D, where

D={u—wv | X =uorv,andu — visin Hg_ x },

denotes all directed edges in Hg_, x with X being their
one endpoint. Note that the intersection of D(#) and D
may not be empty, since D(H) N D consists of all edges
inpa(X,H) = X and X — ch(X,H).

As discussed at the beginning of this section, to prove
Hs—, x is consistent, we only need to prove that applying
Algorithm@ to C and D(Hs—, x ) would not return FAIL.
Since Algorithm [6] checks one edge per time, applying
Algorithm[6]to C and D(Hs_, x) is equivalent to the fol-
lowing two-steps procedure: first applying Algorithm [6]
to C and D, if the result is not FAIL, then applying Algo-
rithm[6]to the returned partially directed graph and the set
of directed edges D(H). Clearly, Hg—, x is consistent if
and only if neither of the two steps in the above procedure
returns FAIL.

We first prove that the first step in the above procedure
never returns FAIL. Based on statement (3), the induced
subgraph of H over S is complete. If pa(X, H) = 0, then
pa(X,H) US is complete. If pa(X,H) # 0, for any
p € pa(X,H)and any S € S, p and S should be adjacent
in H, since otherwise, X should point at S in H due to the
maximality of . Thus, pa(X, ) US is also complete.
Therefore, by Lemmall] orienting pa(X,H)US — X
and X — ch(X, H)Usib(X,H)\S in C is valid, meaning
that applying Algorithm[6]to C and D will not return FAIL
since D contains exactly those edges in pa(X, H)US —
X and X — ch(X,H) U sib(X,H)\S.

Below we will prove that the second step never returns
FAIL. Denote the returned maximal PDAG of the first
step by C*. From |[He & Geng| (2008, Theorem 6) we

know that C* is a chain graph. Consider the following
three subsets of D(H):

U={u—veDH)|u—veDC)}
P={u—veDH)|u—ve DI}
N={u—veDH)|u+ve D)}

It is clear that D(H) = U U P U N, and for any v —
v € N,v— u ¢ D. The following proof consists of two
parts. The first part is to prove that the second step never
returns FAIL if and only if N = (), and the second part is
to prove that N = ().

Part 1. If applying Algorithm[6]to C* and D(#) never re-
turns FAIL, then it is easy to see that N = (). Conversely,
if N = (), then D(H) = U U P. Since the directed edges
in P already exist in C*, if we apply Algorithm [6]to C*
and P, the returned graph is still C*. Therefore, we only
need to prove that applying Algorithm[6|to C* and U never
returns FAIL. Recall that C* is a chain graph. By the same
argument given at the beginning of Appendix [B.T} we can
separately consider each chain component of C* and show
that the subset of U which consists of the directed edges
whose endpoints are in the same chain component is con-
sistent with that chain component. Let C7, = (Vep, Ecp)
be a chain component of C*. It is straightforward to ver-
ify that C7, is the induced subgraph of C* over V., and
thus is the induced subgraph of C over V. Consider the
induced subgraph of H over V., which is denoted by
H(Vep). Since H is maximal, by LemmaE], the induced
subgraph of H over V¢, is consistent with C;,. On the
other hand, by the definition of U, the subset of U which
consists of the directed edges whose endpoints are in V,
is identical to D(#(Vcp)). Thus, applying Algorithm 6]
to C* and U never returns FAIL. This completes the proof
of Part 1.

Part 2. We next show that N is indeed an empty set.
Suppose that N is not empty, then there is an edge u — v
in H but the direction is reversed in C*. Since C* is the
returned graph of Algorithm|[6] any directed edge in C*
is either in D or oriented by one of the four rules of
Meek’s criteria during the run of Algorithm[6] However,
since C is a chordal graph, C* should not contain any
v-structure. Thus, Rule 3 of Meek’s criteria can not be
triggered as the left-hand side of Rule 3 has a v-structure
(see Figure @) Furthermore, since for any u — v € N,
we have v — u ¢ D, v — w in C* can only be oriented
by Rule 1, 2, or 4 of Meek’s criteria. Note that, v — u
could be oriented by more than one rule. However, by
Lemma [5] the edges that can only be oriented by Rule
2 are those from X’s parents to X’s children, that is,
v € pa(X,H)US and u € ch(X,H) U sib(X,H)\ S.
By statement (3), u should not point at v in . This
means we can assume v — u is oriented by Rule 1 or 4
of Meek’s criteria without loss of generality.



Below we will construct a directed path in H such that
every edge on the path, denoted by a — b, is either in N
or shares the head with an edge in N, that is, there is an
edge ¢ — bin N. We first choose an arbitrary edge in
N to be the first edge of the path. This is possible since
we assume N # (). Assume we have constructed a path
with length m. let u — v be the last edge on the path.
If w — visin N, then as proved in the last paragraph,
we have v — w in C* and v — w is not in D. Hence,
v — u can be oriented by Rule 1 or 4 of Meek’s criteria.
If v — wu is oriented by Rule 1, then there is a vertex a
such that ¢ — v in C* and a, u are not adjacent. Since
u — v in ‘H, due to the maximality of H, v — a should
appear in H. Thus, v — ais in /N and we add it to the
path. If v — w is oriented by Rule 4, then there are two
vertices a and b such that a — b, and a, v are adjacent,
and b, v are adjacent, and b, u are adjacent. Since u — v
is in H, by the maximality of H, we have v — a and
b — ainH. Thus, b — aisin N. Again, we add v — a
to the path. If v — v is not in N, by assumption, there
is an edge w — v in N. By the similar argument we can
add an edge v — a to the path, where v — a is either in
N or shares the head a with some edge in V.

Clearly, the above construction will not stop, meaning that
we will have an infinite long directed path. However, since
there is a limited number of edges in #, and there is no
directed cycle in H, the above construction is impossible.
Therefore, we have N = (). Together with the proof of
Part 1, we can conclude that the second step never returns
FAIL. Consequently, Hs_, x is consistent. This completes
the proof of Lemma 3] O

B.2 PROOF OF LEMMA 2]

Proof. Let G be the underlying DAG, and C be the critical
set of X with respect to Y in G*. Suppose that C' € Cis
not a direct cause of X in G, then X — C in G. By the
definition of critical set, C' lies on a chordless partially
directed path 7 from X to Y in G*. Since X — C
in G, by Maathuis & Colombo| (2015, Lemma 7.2) or
Perkovi¢ et al.| (2017, Lemma B.1), the corresponding
path of 7 in G is directed. Therefore, X is an ancestor
of Y in the underlying DAG. Conversely, suppose that
X is an ancestor of Y in the underlying DAG. Let 7 be
the shortest directed path from X to Y in G. Clearly,
the corresponding path of 7 in G* is a chordless partially
directed path. Let the vertex adjacent to X on 7 be C,
then C' € C and C is not a direct cause of X. This
completes the proof. U

B.3 PROOF OF THEOREM 2]

Proof. Let G be a DAG in the restricted Markov equiva-
lence class with respect to G* and 5,,. Forany C' — Y

in B4, by Algorithm[4] there is a vertex X # Y such that
C' is in the critical set of X with respect to Y in G* and
X -» Y isin B, . Therefore, X is not an ancestor of
Y in G. By Lemma@, C — Y in G. Hence, G is in the
restricted Markov equivalence class with respect to G*
and B,. The other direction can be proved similarly. [
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