
Appendix

A Proofs in Section 4

A.1 Proof of Lemma 1

By taking the second derivative of f(φ, θ) in (3) w.r.t. φ,
we have

∇2
φφf(φ, θ) = θθTEz∼N (0,σ2I)[g

′′
2 (θT (φ+ z))]

By the concavity of g2, we know the scalar term
Ez∼N (0,σ2I)[g

′′
2 (θT (φ+ z))] ≤ 0. Thus, we have

∇2
φφf(φ, θ) � 0

Similarly, by taking the second derivative of f(φ, θ) in
(3) w.r.t. θ, we have

∇2
φφf(φ, θ) = Ez∼N (v,σ2I)[g

′′
1 (θTx)xxT ]

+ Ez∼N (0,σ2I)[g
′′
2 (θT (φ+ z))(φ+ z)(φ+ z)T ]

By the concavity of g1 and g2, we know the scalar terms
g′′1 (θTx) ≤ 0 and g′′2 (θT (φ + z)) ≤ 0. Since xxT � 0
and (φ+ z)(φ+ z)T � 0, we have

∇2
θθf(φ, θ) � 0

as required. �

A.2 Proof of Lemma 2

Proof. First, we have

∇φf(φ, θ) = Ez∼N (0,σ2I)[g
′
2(θT (φ+ z))θ]

Since the equilibrium point (φ∗, θ∗) satisfies θ∗T (φ∗ +
z) = 0, for points (φ, θ) near the equilibrium, we know
g′2(θT (φ+ z)) = g′2(0) + g′′2 (0)θT (φ+ z) + o(‖θ‖) by
Taylor expansion. That is, by ignoring the small term
with norm o(‖θ‖), we have

∇φf(φ, θ) ≈ Ez∼N (0,σ2I)[g
′
2(0)θ + g′′2 (0)θθT (φ+ z)]

= g′2(0)θ + g′′2 (0)θθTφ

(a)
≈ g′2(0)θ

where (a) is also from ignoring the small term with norm
o(‖θ‖). Similarly,

∇θf(φ, θ) = Ex∼N (v,σ2I)

[
g′1(θTx)x

]
+ Ex̃∼N (φ,σ2I)

[
g′2(θT x̃)x̃

]
(a)
≈Ex∼N (v,σ2I)

[(
g′1(0) + g′′1 (0)θTx

)
x
]

+ Ex̃∼N (φ,σ2I)

[(
g′2(0) + g′′2 (0)θT x̃

)
x̃
]

=g′1(0)v + g′′1 (0)
(
σ2I + vvT

)
θ + g′2(0)φ

+ g′′2 (0)
(
σ2I + φφT

)
θ

(b)
≈g′1(0)v + g′2(0)φ+ (g′′1 (0) + g′′2 (0))

(
σ2I + vvT

)
θ

where (a) is from g′1(θTx) = g′1(0)+g′′1 (0)θTx+o(‖θ‖)
and g′2(θT x̃) = g′2(0) + g′′2 (0)θT x̃ + o(‖θ‖) by Taylor
expansion, and (b) is from ‖φ− v‖ = o(1).

For second-order derivatives, we have

∇2
φφf(φ, θ) =Ez∼N (0,σ2I)

[
g′′2 (θT (φ+ z))θθT

]
(a)
≈g′′2 (0)θθT

where (a) also follows from g′′2 (θT (φ + z)) = g′′2 (0) +
o(1) by Taylor expansion. Also,

∇2
θφf(φ, θ) = Ex̃∼N (φ,σ2I)[g

′
2(θT x̃)I + g′′2 (θT x̃)x̃θT ]

(a)
≈ Ex̃∼N (φ,σ2I)[

(
g′2(0) + g′′2 (0)θT x̃

)
I + g′′2 (0)x̃θT ]

= g′2(0)I + g′′2 (0)θTφI + g′′2 (0)φθT

(b)
≈ g′2(0)I

where (a) is from g′2(θT x̃) = g′2(0)+g′′2 (0)θT x̃+o(‖θ‖)
and g′′2 (θT x̃) = g′′2 (0) + o(1) by Taylor expansion, and
(b) is from ‖θ‖ = o(1), and

∇2
θθf(φ, θ) = Ex∼N (v,σ2I)

[
g′′1 (θTx)xxT

]
+ Ex̃∼N (φ,σ2I)

[
g′′2 (θT x̃)x̃x̃T

]
(a)
≈ Ex∼N (v,σ2I)

[
g′′1 (0)xxT

]
+ Ex̃∼N (φ,σ2I)

[
g′′2 (0)x̃x̃T

]
(b)
≈ (g′′1 (0) + g′′2 (0))

(
σ2I + vvT

)
where (a) is from g′′1 (θTx) = g′′1 (0) + o(1) and
g′′2 (θT x̃) = g′′2 (0) + o(1) by Taylor expansion, and (b) is
from ‖φ− v‖ = o(1). �

A.3 Proof of Theorem 1

Proof. For the vanilla GAN, we know g1(t) = g2(−t) =
− log(1 + e−t). Then we have g′1(0) = 1

2 , g′2(0) = − 1
2

and g′′1 (0) = g′′2 (0) = − 1
4 . From the proof of Lemma 2,

the updates (5) of SimGD for points near the equilibrium
w∗ become

w(k+1) = w(k) + η

[
1
2θ

(k)

1
2 (φ(k) − v) + 1

2

(
σ2I + vvT

)
θ(k)

]
= w(k) + η

[
0 1

2I
− 1

2I − 1
2

(
σ2I + vvT

)]︸ ︷︷ ︸
,A

w(k)

(15)

wherew(k) ,

[
φ(k) − v
θ(k)

]
. Next, we need to compute the

eigenvalues of the Jacobian A. By definition, let Ay =



λy where the eigenvector satisfies y =

[
y1
y2

]
6= 0, then

we have

1

2
y2 = λy1 (16)

−1

2
y1 −

1

2

(
σ2I + vvT

)
y2 = λy2 (17)

First, we know λ 6= 0, otherwise, we get y = 0 which
violates the definition of eigenvectors. Thus from (16)
we have y1 = 1

2λy2. Plugging it into (17) yields

−λvvT y2 = (2λ2 + σ2λ+
1

2
)y2 (18)

Then we can evaluate λ in two cases:

1) vT y2 = 0. From (18) we have (4λ2 + 2σ2λ+ 1)y2 =
0. Similarly we know y2 6= 0, otherwise, we get y1 = 0
as well from (17) which again violates the definition of
eigenvectors. Thus, the coefficient satisfies 4λ2+2σ2λ+
1 = 0, and solving this equation yields λ1,2(A) in the
theorem.

2) vT y2 6= 0. By left multiplying vT on both sides of
Eq. (18) we get −λ‖v‖2vT y2 = (2λ2 + σ2λ+ 1

2 )vT y2.
Since vT y2 6= 0, then 4λ2 +2(σ2 +‖v‖2)λ+1 = 0, and
solving this equation yields λ3,4(A) in the theorem. �

A.4 Proof of Corollary 1

Proof. In the first part of the proof, we try to find the
range of the step size η. Given σ2 < 2, we know λ1,2(A)
are complex eigenvalues and thus |1 + ηλ1,2(A)| =
1
4η

2 − σ2

2 η + 1. Since it requires |1 + ηλ1,2(A)| < 1
to ensure the non-asymptotic convergence, by setting
1
4η

2 − σ2

2 η + 1 < 1 we get 0 < η < 2σ2. As we know

ζ =
√

( 2
σ2 )2 − 1 in the simple vanilla GAN example,

then σ2 = 2√
1+ζ2

, which means 0 < η < 4√
1+ζ2

.

In the second part of the proof, we try to find the lower
bound of the number of iterations N given the step size

constraint. We know 1
4η

2 − σ2

2 η + 1 ≥
√

1−
(
σ2

2

)2
with the equality holds at η = σ2. Therefore, for
the step size η satisfying 0 < η < 4√

1+ζ2
, we have

1√
1+ 1

ζ2

≤ |1 + ηλ1,2(A)| < 1. Thus, for the up-

dates w(k) = (I + ηA)w(k−1), it is easy to get w̃(k) =
(I + ηΛ)w̃(k−1) where the eigen-matrix Λ satisfying
Λ = PAP−1 with P invertible and w̃(k) = Pw(k).
Apparently, |w̃(k)

j | = |I + ηλ1,2(A)|k|w̃(0)
j | where the

index j refers to the entry in w̃(k) related to the eigen-
values λ1,2(A). Also, we know ‖w̃(k)‖ ≥ |w̃(k)

j |
and ‖w̃(k)‖ = ‖Pw(k)‖ ≤ ‖P‖‖w(k)‖, so we have

‖w(k)‖ ≥ |I + ηλ1,2(A)|k‖P‖−1|w̃(0)
j |. Therefore, for

the ε-error solution ‖w(N)‖ ≤ ε after N iterations, we
have (1 + 1

ζ2 )−
N
2 ‖P‖−1|w̃(0)

j | ≤ ε. By letting C0 =

‖P‖−1|w̃(0)
j |, we can easily get the lower bound of N .

�

A.5 Proof of Corollary 2

Proof. In the first part of the proof, we try to find
the range of the step size η. Given β2 > 2, λ3,4(A)
are both real eigenvalues. Similarly, to ensure the non-
asymptotic convergence, the step size η also satisfies |1+
ηλ3,4(A)| < 1. From Theorem 1 we have 1 + ηλ3(A) =

1− β2+
√

(β2)2−4
4 η and 1+ηλ4(A) = 1− β2−

√
(β2)2−4
4 η.

Next, we analyze λ3(A) and λ4(A) separately. To en-
sure |1 + ηλ3(A)| < 1, then 0 < η < 8

β2+
√

(β2)2−4
.

As we know τ = 1
4 (β2 +

√
(β2)2 − 4)2 in the simple

vanilla GAN example, then 8

β2+
√

(β2)2−4
= 4√

τ
, which

means 0 < η < 4√
τ

. Also, to satisfy |1 + ηλ4(A)| < 1,

then 0 < η < 2(β2 +

√
(β2)

2 − 4) = 4
√
τ . As

we know τ > 1 by definition, the step size η satisfies
0 < η < min{ 4√

τ
, 4
√
τ} = 4√

τ
.

In the second part of the proof, we try to find the lower
bound of the number of iterations N given the step size
constraint. We know |1 + ηλ4(A)| = |1− 1

2
√
τ
η| and for

0 < η < 4√
τ

we get 1 − 2
τ < 1 − 1

2
√
τ
η < 1, There-

fore, if 1 < τ < 2, then −1 < 1 − 2
τ < 0, and thus

0 < |1 + ηλ4(A)| < 1. If τ ≥ 2, then 1 − 2
τ > 0, and

thus 1 − 2
τ < |1 + ηλ4(A)| < 1. Putting them together,

we get max{1− 2
τ , 0} < |1+ηλ4(A)| < 1. Similar to the

proof of Corollary 1, we rewrite the updates as w̃(k) =
(I + ηΛ)w̃(k−1) where the eigen-matrix Λ satisfying
Λ = PAP−1 with P invertible and w̃(k) = Pw(k). Here
we focus on |w̃(k)

j′ | = |I + ηλ1,2(A)|k|w̃(0)
j′ | where the

index j′ refers to the entry in w̃(k) related to the eigenval-
ues λ4(A). Also, we know ‖w(k)‖ ≥ |I+ηλ1,2(A)|kC1

where C1 = ‖P‖−1|w̃(0)
j′ |. Therefore, for τ > 2, we

get ‖w(k)‖ ≥ (1 − 2
τ )

k
2C1. For the ε-error solution

‖w(N)‖ ≤ ε, we have (1 − 2
τ )

N
2 C1 ≤ ε which yields

the lower bound of N . �

B An Example of Full Rank
Representations

In the simple vanilla GAN example, if we consider the
zero noise-limit case, i.e. σ2 = 0, and assume n = 1,
from Theorem 1 we know the eigenvalues of the Jacobian



A are

λ1,2(A) =
−v2 ±

√
(v2)

2 − 4

4
(19)

When v → 0, λ1,2(A) → ± 1
2 i with an infinitely large

imaginary-to-real ratio ζ, which obviously suffers from
the impact of the Phase Factor.

To alleviate this issue, one solution could be to in-
crease the expressive power of discriminator. For in-
stance, it is suggested by Mescheder et al. (2018) that
we can replace the linear discriminator Dθ(x) = θx by
the discriminator with the so-called full-rank represen-
tations Dθ(x) = θex. Similarly, in the zero noise-limit
case with n = 1, we first rewrite the objective (3) as
f(θ, φ) = g1(θex) + g2(−θex). For the vanilla GAN,
we have g1(t) = g2(−t) = − log(1 + e−t). Then the
Jacobian A of all points within Bδ(w∗) is evaluated as

A =

[
0 1

2e
v

− 1
2e
v − 1

2e
2v

]
and its eigenvalues are

λ1,2(A) =
−e2v ±

√
e4v − 4e2v

4
(20)

Now when v → 0, λ1,2(A) → −1±
√
3i

4 with the
imaginary-to-real ratio ζ =

√
3. By Corollary 1, the im-

pact of the Phase Factor has been effectively alleviated
when v is very small.

However, the impact of the Conditioning Factor, if it ex-
ists, becomes much more severe. Asymptotically when v
is sufficiently large, from (19) we know that τ increases
in the order of v4, but (20) shows that τ increases in the
order of e2v . For example, if we assume v = 5, the
eigenvalues of the original Jacobian (19) is evaluated as
λ1,2(A) = −25±

√
621

2 with τ = Ω(102). However, af-
ter using the discriminator with full-rank representations,
the eigenvalues of the new Jacobian (20) is evaluated as
λ1,2(A) = −e10±

√
e20−4e10
4 with τ = Ω(105).

C A Condition of Choosing the
Regularization Matrix

First, we note that the regularization matrix Γ introduced
by a good Jacobian regularization method cannot be ar-
bitrary and a particular condition is given as follows.

Condition 1 (Non-Reversing-Flow Condition). By ap-
plying the regularization matrix Γ, it should not reverse
the overall gradient flow for the original minimax prob-
lem (1).

A counterexample of the Non-Reversing-Flow Condition

is to choose Γ = −MT where M , ∂∇̃f(w(k))
∂w(k)

T

such

that the new Jacobian becomes A = −MTM . Now the
Jacobian A is a Hessian which has no complex eigenval-
ues and thus it could avoid the Phase Factor. From (6),
the updates become

w(k+1) = w(k) − ηMT ∇̃f(w(k))

= w(k) − η∇2f(w(k))∇f(w(k))

As we know, in general, the objective f(φ, θ) is not
convex-concave in φ and θ. For example, f(φ, θ) be-
comes concave-concave in φ and θ near the equilibrium
in the simple vanilla GAN example (3). Therefore, for
any w(k) satisfying ∇2

φφf(w(k)) ≺ 0, particularly if
assuming ∇2

φφf(w(k)) = −t2I where t is a non-zero
scalar, the update for φ becomes

φ(k+1) = φ(k)+ηt2∇φf(w(k))−η∇2
θφf(w(k))∇θf(w(k))

According to the first two terms on the right-hand side of
the above equation, it is actually a gradient flow of the
generator Gφ maximizing the objective f(φ, θ) instead.
This partly explains why directly minimizing a surrogate
loss l(w) = 1

2‖∇f(w(k))‖2 does not work well in prac-
tice as has been observed by Mescheder et al. (2017).

Next, we point out that ConOpt may also violate the
Non-Reversing-Flow Condition in some cases. Simi-
larly, for any pointw(k) satisfying∇2

φφf(w(k)) ≺ 0, par-
ticularly if we assume ∇2

φφf(w(k)) = −t2I , the update
for φ in (28) for ConOpt becomes

φ(k+1) =φ(k) + η(γt2 − 1)∇φf(w(k))

− ηγ∇2
θφf(w(k))∇θf(w(k))

If γt2 > 1, it is also a gradient flow of the generator
Gφ maximizing the objective f(φ, θ) instead. Note that
the Hessian ∇2

φφf(w(k)), introduced by ConOpt to the
parameter updates, serves as the root cause of violat-
ing Condition 1. This might also partly explains why
ConOpt is less robust than our proposed method in some
experiments. Even worse, as γ increases, it is more likely
for ConOpt to reverse the gradient flow. It intuitively ex-
plains why γ should be kept relatively small for ConOpt.

D Proofs in Section 5

D.1 Proof of Theorem 2

Proof. we revisit each of these three regularization meth-
ods by evaluating and analyzing the eigenvalues of their
Jacobians in the simple vanilla GAN example separately.

Only regularizing generator. The regularized updates
for generator become

φ(k+1) = φ(k) − η∇φf(w(k))− 1

2
ηγ∇φ

∥∥∥∇θf(w(k))
∥∥∥2

(21)



In the simple vanilla GAN example, from (4) in Lemma

2, ∂∇̃f(w
(k))

∂w(k) =

[
0 − 1

2I
1
2I − 1

2

(
σ2I + vvT

)]. Also the reg-

ularization matrix becomes Γ =

[
I γ

2 I
0 I

]
. Thus, for all

points in Bδ(w∗), the Jacobian is

A = Γ
∂∇̃f(w(k))

∂w(k)

T

=

[
I γ

2 I
0 I

] [
0 1

2I
− 1

2I − 1
2

(
σ2I + vvT

)]
=

[
−γ4 I

1
2I −

γ
4

(
σ2I + vvT

)
− 1

2I − 1
2

(
σ2I + vvT

) ]
By definition of eigenvalues, let Ay = λy where y =[
y1
y2

]
6= 0, then

−γ
4
y1 +

(
1

2
I − γ

4
(σ2I + vvT )

)
y2 = λy1 (22)

−1

2
y1 −

1

2

(
σ2I + vvT

)
y2 = λy2 (23)

From (22) we have y1 = 1
λ+ γ

4

(
1
2I −

γ
4 (σ2I + vvT )

)
y2

(note that λ 6= −γ4 ; otherwise, we get y = 0). Plugging
it into (23) yields

−λvvT y2 =

(
2λ2 + (

1

2
γ + σ2)λ+

1

2

)
y2 (24)

Similarly, we can also solve (24) in two cases yielding
the eigenvalues of the Jacobian as follows,

λ1,2(A) =
−
(
σ2 + γ

2

)
±
√(

σ2 + γ
2

)2 − 4

4
,

λ3,4(A) =
−
(
β2 + γ

2

)
±
√(

β2 + γ
2

)2 − 4

4

(25)

As we can see, the resulting ζ =
√

( 2
σ2+ γ

2
)2 − 1 for

σ2 + γ
2 < 2, which means increasing γ will decrease

ζ and thus could alleviate the impact of the Phase
Factor by Corollary 1. However, the resulting τ =
((β2+ γ

2 )+
√

(β2+ γ
2 )

2−4)
2

4 for β2 + γ
2 > 2, which means

increasing γ will also increase τ and thus the impact of
Conditioning Factor will not be alleviated but become
much severer by Corollary 2. Therefore, if the Condi-
tioning Factor is the main obstacle for the GAN conver-
gence (for example, ‖v‖ is sufficiently large in the simple
vanilla GAN example), only regularizing generator as in
(21) will make the convergence performance of the GAN
training worse.

Only regularizing discriminator. The regularized up-
dates for the discriminator become

θ(k+1) = θ(k) + η∇θf(w(k))− 1

2
ηγ∇θ

∥∥∥∇φf(w(k))
∥∥∥2

(26)

Similarly in the simple vanilla GAN example, the reg-

ularziation matrix becomes Γ =

[
I 0
−γ2 I I

]
. For any

point in Bδ(w∗), the Jacobian is

A = Γ
∂∇̃f(w(k))

∂w(k)

T

=

[
I 0
−γ2 I I

] [
0 1

2I
− 1

2I − 1
2

(
σ2I + vvT

)]
=

[
0 1

2I
− 1

2I − 1
2

((
σ2 + γ

2

)
I + vvT

)]
Then by following from the exact proof of Theorem 1
after replacing σ2 in the Jacobian of (15) by σ2 + γ

2 , we
can get the eigenvalues of the Jacobian as follows,

λ1,2(A) =
−
(
σ2 + γ

2

)
±
√(

σ2 + γ
2

)2 − 4

4
,

λ3,4(A) =
−
(
β2 + γ

2

)
±
√(

β2 + γ
2

)2 − 4

4

(27)

As the eigenvalues here are exactly the same with (25),
the local convergence properties of only regularizing the
discriminator are identical to those of only regularizing
the generator. Similarly, if Conditioning Factor becomes
the main obstacle for GAN convergence, only regulariz-
ing discriminator as in (26) will make the convergence
performance of the GAN training worse.

Consensus optimization (ConOpt). The regularized
updates for the generator and discriminator are

w(k+1) = w(k) + η∇̃f(w(k))− 1

2
ηγ∇

∥∥∥∇f(w(k))
∥∥∥2
(28)

Since for ConOpt, it is a little bit tricky to obtain the
eigenvalues of its Jacobian directly, we turn to comparing
the eigenvalues of it Jacobian with those of the Jacobian
for SimGD.

First, we defineM , ∂∇̃f(w(k))
∂w(k)

T

. For SimGD, we know
its Jacobian is M . For ConOpt, since the regularization
matrix Γ = I − γMT , its Jacobian is

A = ΓM = M − γMTM (29)

Then, we define λ(M) and λ(M) as the two eigenvalues
of M with the largest and smallest absolute values, re-
spectively, and the similar definitions of λ(A) and λ(A)



apply to A. Thus, the condition numbers of A and M are
τ(A) , |λ(A)|

|λ(A)| and τ(M) , |λ(M)|
|λ(M)| , respectively.

If σ2 < 2 and β2 > 2, from Theorem 1 we know for
any point in Bδ(w∗), the Jacobian for SimGD satisfies

|λ1,2(M)| = 1
2 , |λ3(M)| =

β2+
√

(β2)2−4
4 > 1

2 and

|λ4(M)| =
β2−
√

(β2)2−4
4 < 1

2 . Thus, λ(M) = λ3(M)
and λ(M) = λ4(M), which are both negative values.

By definition of eigenvalues, we have My1 = λ(M)y1
and My2 = λ(M)y2 where y1 and y2 are two nor-
malized eigenvectors of M with unit length. Thus,
yT1 My1 = λ(M) and yT2 My2 = λ(M). From (29),
we have yT1 My1 = λ(M) − γλ(M)

2
and yT2 My2 =

λ(M)−γλ(M)
2. From the definition of λ(A) and λ(A),

we know |yT1 Ay1| ≤ |λ(A)| and |yT2 Ay2| ≥ |λ(A)|, then
|λ(M) − γλ(M)

2| ≤ |λ(A)| and |λ(M) − γλ(M)
2| ≥

|λ(A)|. Combining the two inequalities yields

τ(A) ≥ τ(M) · 1 + γ|λ(M)|
1 + γ|λ(M)|

(30)

Define by ∆(γ) , 1+γ|λ(M)|
1+γ|λ(M)| . As |λ(M)| > |λ(M)| >

0 and γ > 0, we have ∆(γ) > 1, which means τ(A) >
τ(M) for any γ > 0. Even worse, since the derivative
∆′(γ) = λ(M)−λ(M)

(1−γλ(M))2 > 0, when γ increases, ∆(γ) also
increases. Thus, by using ConOpt, the impact of Condi-
tioning Factor is not alleviated but becomes more severe
by Corollary 2. Furthermore, the Jacobian will be worse-
conditioned as γ increases. Therefore, although ConOpt
could alleviate the impact of the Phase Factor as shown
in Mescheder et al. (2017), it will make the GAN con-
vergence performance worse if the Conditioning Factor
becomes the main obstacle for the GAN convergence.

From the above analysis, all these three gradient-based
regularization methods cannot alleviate the Phase Factor
and Conditioning Factor simultaneously. �

D.2 Proof of Theorem 3

Proof. When applying the proposed Jacobian regulariza-
tion in the simple vanilla GAN example (3), the regular-

ization matrix becomes Γ =

[
I γ

2 I
−γ2 I I

]
. Therefore,

for any point in Bδ(w∗),

A = Γ
∂∇̃f(w(k))

∂w(k)

T

=

[
I γ

2 I
−γ2 I I

] [
0 1

2I
− 1

2I − 1
2

(
σ2I + vvT

)]
=

[
−γ4 I

1
2I −

γ
4

(
σ2I + vvT

)
− 1

2I −γ4 I −
1
2

(
σ2I + vvT

)]

By definition of eigenvalues, let Ay = λy where y =[
y1
y2

]
6= 0, then

−γ
4
y1 +

(
1

2
I − γ

4
(σ2I + vvT )

)
y2 = λy1 (31)

−1

2
y1 −

γ

4
y2 −

1

2

(
σ2I + vvT

)
y2 = λy2 (32)

Similarly, λ 6= 0, otherwise, we get y = 0 which violates
the definition of eigenvectors. By applying (31)− (32) ∗
γ
2 , we have y1 = 1

λ

(
γ
2λ+ γ2

8 + 1
2

)
y2. Plugging it into

(32) yields

−λvvT y2 =

(
2λ2 + (γ + σ2)λ+

γ2

8
+

1

2

)
y2 (33)

Similarly, we can solve (33) in two cases yielding the
desired results by following the same process in the proof
of Theorem 1. �

D.3 Proof of Corollary 3

Proof. From Theorem 3 we know for σ2 < 2, λ1,2(A)

are complex eigenvalues only if γ < 2
σ2 − σ2

2 . According
to the above definition of ζ, we get

ζ =

{√
h1(γ)− 1, γ < 2

σ2 − σ2

2

0, γ ≥ 2
σ2 − σ2

2

(34)

where h1(γ) = γ2+4
(σ2+γ)2 > 1. Since the derivative

of h1(γ) satisfies h′1(γ) = 2(γ+σ2)(σ2γ−4)
(σ2+γ)4 < 0 and

ζ is a monotonically increasing function of h1(γ) for
γ < 2

σ2 − σ2

2 , ζ is a monotonically decreasing func-
tion of γ for γ < 2

σ2 − σ2

2 . As ζ = 0 if γ ≥ 2
σ2 − σ2

2 ,
by the continuity of the function in (34), we have ζ is a
monotonically decreasing function of γ where ζ → 0 as
γ → ∞. It means that we can increase γ to alleviate the
impact of the Phase Factor.

Furthermore, from Theorem 3 we know for β2 > 2,

τ =
(√

h2(γ) +
√
h2(γ)2 − 1

)2
(35)

where h2(γ) = (β2+γ)2

γ2+4 > 1. Since the derivative of

h2(γ) satisfies h′2(γ) = 2(γ+β2)(4−β2γ)
(γ+4)4 < 0 for γ > 4

β2

and τ is a monotonically increasing function of h2(γ), τ
is a monotonically decreasing function of γ for γ > 4

β2 .
As β2 > 2, then 4

β2 < 2 and we thus can safely replace
the above condition γ > 4

β2 by γ ≥ 2. In the limit of
γ →∞, we have h2(γ)→ 1 and thus from (35) τ → 1.
It means that we can increase γ to alleviate the impact of
the Conditioning Factor for all γ > 4

β2 .



Therefore, it is reasonable to keep increasing the tunable
parameter γ so as to alleviate or even eliminate both the
Phase Factor and Conditioning Factor simultaneously,
which demonstrates the advantages of JARE. �

E Proof in Section 6

E.1 Proof of Lemma 3

Although the proof is very similar to Mescheder et al.
(2018), we provide the proof details for completeness.

Since we know the objective is

f(φ, θ) , Ex∼Pr [g1(Dθ(x))] + Ez∼P0 [g2(Dθ(Gφ(z)))]

By taking its derivative w.r.t. φ and θ at the equilibrium
(φ∗, θ∗), respectively, we have

∇φf(φ∗, θ∗) = Ez∼P0 [g′2(Dθ∗(x))∇φGφ∗(z)
· ∇xDθ∗(x)]|x=Gφ∗ (z)

(36)

∇θf(φ∗, θ∗) =Ex∼Pr [g′1(Dθ∗(x))∇θDθ∗(x)]

+ Ex∼Pφ∗ [g′2(Dθ∗(x))∇θDθ∗(x)]

(37)

Since the JacobianA at (φ∗, θ∗) in general GANs trained
via SimGD are given by

A =

[
−∇2

φφf(φ∗, θ∗) −∇2
φθf(φ∗, θ∗)

∇2
θφf(φ∗, θ∗) ∇2

θθf(φ∗, θ∗)

]
First, from Assumption 1 we know that Dθ∗(x) = 0 for
some local neighborhood of any x ∈ X , which means
we also have ∇xDθ∗(x) = 0 and ∇2

xxDθ∗(x) = 0 for
any x ∈ X . By taking the derivative of (36) w.r.t. φ at
the equilibrium (φ∗, θ∗) and using ∇xDθ∗(x) = 0 and
∇2
xxDθ∗(x) = 0 for any x ∈ X , we have

∇2
φφf(φ∗, θ∗) = 0

By taking the derivative of (37) w.r.t. φ at the equilibrium
(φ∗, θ∗), we have

∇2
φθf(φ∗, θ∗) = Ez∼P0 [g′′2 (Dθ∗(x))∇φGφ∗(z)

· ∇2
xθDθ∗(x)]|x=Gφ∗ (z)

(a)
= g′′2 (0)Ez∼P0

[∇φGφ∗(z)∇2
xθDθ∗(x)]|x=Gφ∗ (z)

where (a) is from the assumption that Dθ∗ = 0.

By taking the derivative of (37) w.r.t. θ, respectively, at
the equilibrium (φ∗, θ∗), we have

∇2
θθf(φ∗, θ∗)

(a)
=Ex∼Pr [(g′1(0) + g′2(0))∇2

θθDθ∗(x)

+ (g′′1 (0) + g′′2 (0))∇θDθ∗(x)Dθ∗(x)T ]

(b)
=(g′′1 (0) + g′′2 (0))Ex∼Pr [∇θDθ∗(x)Dθ∗(x)T ]

where (a) is from Assumption 1 that Pr = Pφ∗ and
Dθ∗ = 0, (b) is from Assumption 2 that g′1(0) = −g′2(0).

Finally, by setting P = ∇2
φθf(φ∗, θ∗) and Q =

∇2
θθf(φ∗, θ∗), we get the results. �

E.2 Proof of Theorem 4

Since the Jacobian A =

[
0 −P
PT Q

]
, by the definition

of eigenvector equations we have[
0 −P
PT Q

] [
y1
y2

]
= λ

[
y1
y2

]
where y1, y2 and λ may be complex-valued. We can
rewrite the above equations as follows:

−Py2 = λy1 (38)

PT y1 +Qy2 = λy2 (39)

Plugging Eq. (38) into Eq. (39) yields

λ2y2 − λQy2 + PTPy2 = 0 (40)

Case 1. Consider y2 = 0, then 1) if P has the full col-
umn rank, we have y1 = 0 as well which violates the
definition of eigenvectors; 2) if P does not have the full
column rank, we have λ = 0.

Case 2. Consider y2 6= 0, we can multiply Eq. (40) by
yH2 (conjugate transpose of y2) and then divide by ‖y2‖2
in both sides, yielding

λ2 − yH2 Qy2
‖y2‖2

λ+
yH2 P

TPy2
‖y2‖2

= 0 (41)

Let a1 =
yH2 Qy2
‖y2‖2 and a2 =

yH2 P
TPy2

‖y2‖2 , by solving the
equation λ2 − a1λ + a2 = 0, we can get the results of
(10). Next, we need to evaluate a1 and a2, respectively.

First note that a1 =
yH2 Qy2
‖y2‖2 is actually the Rayleigh

Quotient of Q. Therefore, we consider a set of m or-
thonormal eigenvectors {xQ,i}mi=1 corresponding to its
m eigenvalues {λi(Q)}mi=1, and then there exists some
set of m coefficients {bi}ni=1, such that

y2 =

m∑
i=1

bixQ,i

where bi may be complex-valued. Thus, we have

Qy2 =

m∑
i=1

biλi(Q)xQ,i



and

a1 =

∑m
i=1 |bi|2λi(Q)∑m

i=1 |bi|2
=

m∑
i=1

αiλi(Q)

where we let αi = |bi|2∑m
i=1 |bi|2

for i = 1, · · · ,m, which
satisfies αi ≥ 0 and

∑m
i=1 αi = 1.

Similarly, as a2 =
yH2 P

TPy2
‖y2‖2 is a Rayleigh Quotient of

PTP , we have

a2 =

m∑
i=1

α̃iλi(P
TP )

with α̃i satisfying α̃i ≥ 0 and
∑m
i=1 α̃i = 1.

Finally, if P does not have the full column rank, we can
choose y2 ∈ Null(P ) and y1 = 0 such that a2 = 0 and
thus λ = 0 becomes a solution of Eq. (41). Therefore,
the analysis of Case 1 is a special case of Case 2. �

E.3 Proof of Theorem 5

From Lemma 3, we know that for JARE, the correspond-
ing regularization matrix is

Γ =

[
I −γP

γPT I

]
Thus, the Jacobian becomes

A = Γ

[
0 −P
PT Q

]
= −γ

[
PPT PQ

0 PTP

]
+

[
0 −P
PT Q

]
In the limit of γ →∞, we have

A = −γ
[
PPT PQ

0 PTP

]
Its eigenvalues λ(A) are solutions of det(λI − A) = 0.
As a block upper triangular matrix, we have

det(λI −A) = det(λI + γPTP )det(λI + γPPT )

which means the eigenvalues of A satisfy

λ(A) = −γλ(PTP ) and λ(A) = −γλ(PPT )

Also, since PTP and PPT have the same set of eigen-
values, we have

λ(A) = −γλ(PTP )

as required. �



F More experimental results

F.1 More results on Isotropic Gaussian
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(a) µ = 2
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(b) µ = 4
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Figure 5: Training dynamics of SimGD, ConOpt and JARE for the discriminator (top row) and the generator (bottom
row) with varying mean value µ where σ = 0.2. Note that as µ increases, the convergence rate for either SimGD or
ConOpt becomes slower. When µ = 6, the generator training curve for the ConOpt directly blow up.
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(a) σ = 0.5
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Figure 6: Training dynamics of SimGD, ConOpt and JARE for the discriminator (top row) and the generator (bottom
row) with varying standard deviation σ where µ = 2. Note that the damping effect in SimGD becomes stronger as the
standard derivation σ increases.

F.2 More results on Mixture of Gaussians



(a) SimGD

(b) ConOpt (γ = 10)

(c) ConOpt (γ = 1000)

(d) Ours (γ = 10)

(e) Ours (γ = 1000)

Figure 7: Comparison of SimGD (a), ConOpt (b,c) and Ours (d,e) on the mixture of Gaussians over iterations where r = 2. From
left to right, each row consists of the results after 0, 2000, 4000, 6000, 8000 and 10000 iterations.



(a) SimGD

(b) ConOpt (γ = 10)

(c) ConOpt (γ = 1000)

(d) Ours (γ = 10)

(e) Ours (γ = 1000)

Figure 8: Comparison of SimGD (a), ConOpt (b,c) and Ours (d,e) on the mixture of Gaussians over iterations where r = 10.
From left to right, each row consists of the results after 0, 2000, 4000, 6000, 8000 and 10000 iterations.



F.3 Network architectures

z ∈ R128 ∼ N (0, I)
dense, 2× 2×Mf

4× 4, stride=2, deconv. Mf ReLU
ResBlock Mf

4× 4, stride=2, deconv. Mf ReLU
ResBlock Mf

4× 4, stride=2, deconv. Mf ReLU
ResBlock Mf

4× 4, stride=2, deconv. 3 tanh

(a) Generator

x ∈ R32×32×3

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

dense→ 1

(b) Discriminator

Table 2: ResNet architectures v1 for CIFAR-10 where Mf denotes the number of filters.

z ∈ R128 ∼ N (0, I)
dense, 4× 4×Mf

4× 4, stride=2, deconv. Mf ReLU
ResBlock Mf

4× 4, stride=2, deconv. Mf ReLU
ResBlock Mf

4× 4, stride=2, deconv. Mf ReLU
ResBlock Mf

3× 3, stride=1, conv. 3 tanh

(a) Generator

x ∈ R32×32×3

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

dense→ 1

(b) Discriminator

Table 3: ResNet architectures v2 for CIFAR-10 where Mf denotes the number of filters.

z ∈ R128 ∼ N (0, I)
dense, 4× 4×Mf

4× 4, stride=2, deconv. Mf ReLU
ResBlock Mf

4× 4, stride=2, deconv. Mf ReLU
ResBlock Mf

4× 4, stride=2, deconv. Mf ReLU
ResBlock Mf

4× 4, stride=2, deconv. Mf ReLU
ResBlock Mf

3× 3, stride=1, conv. 3 tanh

(a) Generator

x ∈ R64×64×3

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

dense→ 1

(b) Discriminator

Table 4: ResNet architectures for CelebA where Mf denotes the number of filters.



z ∈ R128 ∼ N (0, I)
dense, 4× 4×Mf

4× 4, stride=2, deconv. Mf ReLU
ResBlock Mf

4× 4, stride=2, deconv. Mf ReLU
ResBlock Mf

4× 4, stride=2, deconv. Mf ReLU
ResBlock Mf

4× 4, stride=2, deconv. Mf ReLU
ResBlock Mf

4× 4, stride=2, deconv. Mf ReLU
ResBlock Mf

3× 3, stride=1, conv. 3 tanh

(a) Generator

x ∈ R128×128×3

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

4× 4, stride=2, conv. Mf ReLU
ResBlock Mf

dense→ 1

(b) Discriminator

Table 5: ResNet architectures for ImageNet where Mf denotes the number of filters.



F.4 Generated images on CIFAR-10 with four methods: GAN, SN-GAN, ConOpt and JARE.

GAN

Ours

ConOpt

SN-GAN

A B C D E F

Figure 9: Generated images on CIFAR-10 with four training methods: standard GAN (or GAN), SN-GAN, ConOpt
and JARE (Ours) in all the A-F settings. Best viewed in the electronic version by zooming in. We can see that only
JARE is able to generate realistic images when training on CIFAR-10 across all six settings.



(a) Random samples for CelebA (b) Random samples for ImageNet

Figure 10: Random samples generated by JAREs trained on CelebA and ImageNet, respectively, in an unsupervised manner. For
CelebA, the sample size is 64× 64, and for ImageNet, the sample size is 128× 128.

F.5 More Rresults on CelebA and ImageNet.

In this experiment, we qualitatively evaluate the generated samples of JARE on the CelebA (with size of 64 × 64)
(Liu et al., 2015) and ILSVRC2012 (ImageNet, with size of 128 × 128) (Russakovsky et al., 2015) datasets. Due to
the limitation of our computational budgets, we do not apply large hyperparameter searches. Instead, we use a similar
training setup as for the CIFAR-10 experiments, with slightly different network architectures. Please see Tables 4 and
5 in Appendix F.3 for details.

Figure 10 (a) and (b) show the randomly generated samples of JARE trained on CelebA and ImageNet, respectively.
We can see that for CelebA, JARE can produce realistic and diverse celebrity faces with various backgrounds. For
ImageNet, JARE can stabilize the training well while other training methods quickly collapse. While not completely
realistic, it can generate visually convincing and diverse images from 1000 ImageNet classes in a completely unsu-
pervised manner. The good results of JARE on CelebA and ImageNet demonstrate its ability of stabilizing the GAN
training on more complex tasks.


