
Appendices
A Proof of Lemma 1

Proof. By definition, c ends its service upon completing
r. First we build up a transition graph G′ = (S, E′)
among the set of possible states in the corresponding
MDP, where E′ = {(s, s′)|∃a ∈ A s.t. Pass′ > 0}.
Clearly, G′ is a directed acyclic graph (DAG). Thus from
Bellman Expectation Equation

vπ(s) =
∑
a∈A

π(a|s)

(
Vas +

∑
s′∈S
Pass′vπ(s′)

)
,

we can see that there exists an optimal deterministic pol-
icy, π(a∗|s) = 1 where

a∗ = arg max
a∈A(s)

Vas +
∑
s′∈S
Pass′vπ(s′)

= arg max
a∈A(s)

Vas + ERta,la
[vπ(ta, la,Rta,la)] ,

(2)

and the state value together with the optimal policy
can be determined following the topological ordering of
states in G′.

Next we show that CST(t, l|r) = ERt,l
[vπ(t, l,Rt,l)] by

induction on t. It holds for t = tr where CST(tr, lr|r) =
0 as line 1 of Algorithm 1 shows. Assume it holds for all
(t, l) with t > t′. Then we are to show it is correct for
t = t′. By the induction hypothesis and Equation 2, the
platform will always choose an available action a with
the highest Vas + CST(ta, la|r). In line 5-7 and as visu-
alized in Figure 2, the platform will look in the order of
a1, . . . , aj and pick the first location ai that is a destina-
tion of a request r ∈ Rt′,l. Otherwise, the driver will
be guided to drive idly to d∗. Let Pi = Pr[Xl,ai,t′ ≥
1|Xl,ak,t′ = 0, ∀k < i], thus we have

ERt′,l [vπ(t′, l,Rt′,l)]

=

j∑
i=1

Pi · (Vl,ai,t′ + CST(t′ + δ(l, ai), ai|r))

+ Pr[Xl,ak,t′ = 0, ∀k ≤ j] · CST(t′ + δ(l, d∗), d∗|r)
= CST(t′, l|r).

The last equality follows from line 8-13, which con-
cludes the proof. It follows qπ∗(s, a) = Vas +
CST(ta, la|r) as a corollary.

B Algorithm for UPDATEPROBDIST

We show in Algorithm 5 the update of distribution. It
calculates pw’s following the intuition as we introduced

Figure 2: An Illustration of Algorithm 1. In the bar for
ai, s represents CST(t+δ(l, ai)) and v represents Vl,ai,t.

Algorithm 4 GETPROBABILITY(l, t, x, h(·)|r)
1: if l = lr ∧ t = tr then return
2: Retrieve the CST values CST(d, t+δ(l, d)|r) for d ∈
S(l, t|r)

3: d∗ ← arg maxd∈S(l,t|r) CST(d, t+ δ(l, d)|r)
4: Denote {ai} the sequence of d ∈ S(l, t|r) in de-

creasing order of Vl,d,t + CST(d, t+ δ(l, d)|r)
5: j ← the largest index of {ai} such that Vl,aj ,t +

CST(aj , t+ δ(l, aj)|r) > CST(d∗, t+ δ(l, d∗)|r)
6: p← 1
7: for i = 1 to j do
8: w ← (l, ai, t)
9: pw ← pw + x · p

10: GETPROBABILITY(ai, t+δ(l, ai), x·p·h(Xw ≥
1), h(·)|r)

11: p← p · (1− h(Xw ≥ 1))

12: GETPROBABILITY(d∗, t+ δ(l, d∗), x · p, h(·)|r)

(line 1-3) and then the distribution is updated following
Equation (1) (line 4-6). Algorithm 4 shows the calcula-
tion of pw’s, which follows a routine similar to calculat-
ing the CST value in Algorithm 1

C Proof of Theorem 2

Proof. Consider a graph of 4 vertices A,B,C,D. Let
the weights of edges δ(B,D) = δ(C,A) = δ(A,D) =
µ, δ(A,B) = δ(D,C) = µ − 1 and δ(B,C) = t
(1 ≤ t ≤ µ), which represent the number of time steps
required to travel along the edges as shown in Figure 3.
Suppose that T = 4µ− 2 + t and there is only 1 vehicle.
The vehicle starts work at A at time 1.

Consider an instance on this graph and time horizon [T ]
where we have 6 requests r1 = (B,C, 2µ, t), r2 =
(A,D, 1, µ), r3 = (D,C, µ + 1, µ − 1), r4 =
(C,B, 2µ, t), r5 = (B,A, 2µ + t, µ − 1), r6 =
(A,D, 3µ+ t− 1, µ).

The platform receives sufficiently many of r1’s at the be-
ginning and the algorithm will take one of r1’s with a to-



Algorithm 5 UPDATEPROBDIST(h(·), a, r)
1: Initialize pw ← 0 for all w ∈ W
2: (la, ta)← the location-time pair action a leads to
3: GETPROBABILITY(la, ta, 1, h(·)|r)
4: for w ∈ W do
5: for i = 1 to |D| do
6: h(Xw ≥ i)← (1− pw) · h(Xw ≥ i) + pw ·
h(Xw ≥ i+ 1)

7: return h(·)

Figure 3: A Road Network Graph

tal revenue of t. This is because a deterministic algorithm
should always accept the first feasible request, otherwise
it would lead to a competitive ratio of∞.

After that, r2, r3, . . . , r6 appear sequentially but the plat-
form could accept none of them.

In this case, the offline optimal solution would have taken
all the requests except r1 to fill up the entire time horizon
with a total revenue of 4µ−2+ t. Thus we have the ratio
to be at least 4µ−2+t

t |t=1 = 4µ− 1.

D Proof of Theorem 3

Proof. Let RALG be the set of requests the First-Fit al-
gorithm accepts and ROPT be the one of the offline op-
timal solutions. For any request r = (or, dr, tr, vr) ∈
RALG, assume it is served by driver c. Let tr,1 = tr
and tr,2 = tr + δ(or, dr). Consider a time interval
I = [tr,1 − (2µ− 1), tr,2 + (2µ− 1)].

We claim that the travel time interval of any request r′

that is incompatible with request r and driver c, lies
within I . This is because if the time interval of a request
does not lie entirely in I , then the end time of this request
should be no later than tr,1−µ (start time of this request
should be no earlier than tr,2 +µ), thus it should be com-
patible with r.

Thus, the total value of the requests in ROPT incompati-
ble with r and driver c, is at most 4µ − 2 + tr,2 − tr,1.
Let OPT =

∑
r∈ROPT

vr and ALG =
∑
r∈RALG

vr, hence

OPT ≤
∑
r∈RALG

(4µ− 2 + tr,2 − tr1). As a result,

OPT

ALG
=

OPT∑
r∈RALG

tr,2 − tr,1

≤
∑
r∈RALG

4µ− 2 + tr,2 − tr,1∑
r∈RALG

tr,2 − tr,1

=
|RALG|(4µ− 2)∑
r∈RALG

tr,2 − tr,1
+ 1

≤ |RALG|(4µ− 2)

|RALG|
+ 1 = 4µ− 1.

E Offline Algorithm for Stage 1 without
On-Demand Requests

The offline optimal solution of Stage 1 without on-
demand requests can be obtained by solving a maximum
cost network flow (MCNF).

Given the set of available vehicles D and all the sched-
uled requests R, we construct a network G = (V,E).
We construct two vertices vi and v′i for each vehicle i,
one entry-vertex vr,in and one exit-vertex vr,out for each
request r, 2 virtual vertices S and T as the global source
and sink.

We construct four types of edges in E. First, we con-
struct edges from S to vi and from v′i to T , each with flow
1 and cost 0. Secondly, we construct edges from vr,in to
vr,out, with flow 1 and cost vr, which mean each request
could be taken no more than once. Thirdly, we construct
edges from vi to vr,in and from vr,out to v′i, each with
flow 1 and cost 0, which mean the first and last request
the vehicle i could possibly served. Lastly, we construct
edges from vri,out to vrj ,in if the distance between re-
gion i and region j allows a vehicle to pick up request j
after serving request i.

Then by applying any MCNF algorithm, we could obtain
the optimal solution.

F The Greedy-KM and Enhanced-KM

Greedy-KM works as follows. Given the set of
available vehicles D and the state (tc, lc,Rtc,lc) of
each vehicle, we construct a bipartite graph GB =
(D,

⋃
c∈DRtc,lc , EB), where we have edges between

c ∈ D and r ∈ Rtc,lc with weight vr. Greedy-KM
dispatches order by finding a weighted maximum match-
ing on GB . In implementation, we employ the Kuhn-
Munkres (KM) algorithm [Munkres, 1957] to solve it.

In Enhanced-KM, the bipartite graph is constructed in



the same way as Greedy-KM, except that the edges be-
tween c ∈ D and r ∈ Rtc,lc have weight vr + CST(tc +
δ(or, dr), dr|r̃c), where r̃c is the next committed sched-
uled request of vehicle c.

G Learning & Planning Algorithm

The LPA is an adaptation of the work of Xu et al. [2018]
to the hard constraints brought in by the scheduled re-
quests.

In their work, they regard consider the transportation as
the MDP and construct a local-view MDP for each driver,
with location-time pairs as the states. As for the state
transition rules and rewards for each state, they are drawn
from the historical data. Actions of drivers are to pick up
on-demand requests nearby or to stay still. For an action
that lasts for T ′ time steps with reward R, they apply a
discount factor γ and the final reward is given by

Rγ =

T ′−1∑
t=0

γt
R

T ′
.

At every time step, they obtain the value function v′ for
all states and then dispatch orders via a matching ap-
proach. The calculation of the value function is shown
as Algorithm 6. We are using the same notation in Al-
gorithm 6 as Xu et al. [2018] did, which do not have the
same meaning as those in our main text.

We do the following to adapt their algorithms to our two-
stage model. In Stage 1, we parse the scheduled requests
and decide immediately for request r by the comparison
of Rγ(r) + V ′(dr, tr + δ(or, dr)) and V ′(or, tr), mean-
ing that a request would be accepted if it could lead to an
increment in the expected value. In Stage 2, we will use
the same reward function as the edge weights for all the
possible state transitions. It is worth noting that we will
forbid the driver to pick up an order whose ending time
is too late for next scheduled request.

Moreover, Xu et al. [2018] mentioned the updates in Al-
gorithm 6 can be done iteratively with the planning. The
time window in our algorithm, however, is only one day.
Thus this iteration cannot help optimize the value func-
tion.

H Clustered Centers in the City

In figure 4, we display the explicit real-world locations
of 21 clustered centers in the Chinese city derived from
the Didi data.

Algorithm 6 LPA

1: Collect all the historical state transitions T =
{(si, ai, ri, s′i)} from data; each state is composed
of a time-location pair: si = (ti, locationi); each
action is composed of the initial state and transited
state: ai = (si, s

′
i);

2: Initialize V ′(s), N ′(s) as zeros for all possible
states.

3: for t = T − 1 to 0 do
4: Get the subset D(t) where ti = t in si.
5: for each sample (si, ai, ri, s

′
i) ∈ D(t) do

6: N ′(si)← N ′(si) + 1
7: V ′(si) ← V ′(si) + 1

N ′(si)
[γ∆t(ai)V ′(s′i) +

Rγ(ai)− V ′(si)]
8: Return the value function V ′(s) for all states.

Figure 4: The Clustered Centers in a City in China de-
rived from data.



I Single-Vehicle Case Performance

In Figure 5, we demonstrate the single-
vehicle performances among all BESTSCORE,
RANDOMBESTSCORE,BESTSCORE-A, BESTSCORE-
R, RANDOMBESTSCORE-A, RANDOMBESTSCORE-R,
and label them as BS, RBS, BS-A, BS-R, RBS-A,
RBS-R respectively in the figure.

Figure 5: The Performance in Single-Vehicle Case.

J CST-Value as the Vehicle Number
Increases

Here we empirically demonstrate how the CST-value
changes as the number of vehicles increases. We fix a tu-
ple of (t, l, r) and assume all vehicles start at (t, l) with r
the next request to serve. Figure 6 shows how CST(t, l|r)
changes and we can see that the decrease of CST(t, l|r)
is quick at first and later slows down.

Figure 6: The Change of CST-function as Vehicles In-
crease.


