
Supplementary Material

In this appendix, we provide the proof of Lemma 3.1
in the main paper (Section 1), the details of CEP mes-
sage updates in Bayesian tensor decomposition, logisitic
regression and probit regression (Section 2), and more
experimental results in Section 3.

1 Proof of Lemma 3.1

Lemma 3.1 When the conditional moment h is part of
the sufficient statistics of θ\m, i.e., each element of h
belongs to Φm, the fixed points of EP are also that of CEP
without Taylor approximations.

Proof. Upon convergence, EP reaches a fixed point such
that for ∀i,m,

Ep̂i(θ\m)[Φm] = Eq(θ\m)[Φm], (1)

Ep̂i(θ)
(
φ(θm)

)
= Ep̂i(θ\m)[h] = Eq(θm)[φ(θm)], (2)

where the conditional moment h = Ep̂i(θm|θ\m)

(
φ(θm)

)
.

When h ⊂ Φm, we have Ep̂i(θ\m)[h] = Eq(θ\m)[h] from
(1). Then from (2), we further obtain Eq(θ\m)[h] =
Eq(θm)[φ(θm)], which is the fixed point when CEP con-
verges without Taylor approximations.

2 CEP for Bayesian Tensor Decomposition,
Logistic Regression and Probit Regres-
sion

2.1 Bayesian Tensor Decomposition

2.1.1 Continuous Tensor

Let us first consider continuous entry values {yi}i∈S . The
joint probability of the Bayesian tensor decomposition
model, according to (12) in Section 4.1 of the main paper,
is given by

p({yi}i∈S ,U , τ) = Gam(τ |a0, b0)

K∏
k=1

dk∏
s=1

N (uks |µks , vI)

·
∏
i∈S

N (yi|1>(u1
i1 ◦ . . . ◦ uKiK ), τ−1).

We first introduce an exponential family term to approxi-
mate each factor in the joint probability. Since the prior
distributions of the embeddings U and τ are already inside
the exponential family, we do not need any approxima-
tion. We then use factorized messages to approximate the
likelihood of each observed entry value yi,

N (yi|1>(u1
i1 ◦ . . . ◦ uKiK ), τ−1) ≈ f̃i(τ)

K∏
k=1

f̃ki (ukik),

where f̃i(τ) = Gam(τ |ai, bi) and f̃ki (ukik) =

N (ukik |m
k
i ,S

k
i ). Therefore, the approximate posterior

distribution is

q(U , τ) ∝ Gam(τ |a0, b0)

K∏
k=1

dk∏
s=1

N (uks |µks , vI)

·
∏
i∈S

f̃i(τ)

K∏
k=1

f̃ki (ukik).

Obviously, the approximate posterior is factorized over
all {uks}1≤k≤K,1≤s≤dk and τ ,

q(U , τ) = q(τ)

K∏
k=1

dk∏
s=1

q(ukik)

where q(τ) is a Gamma distribution and each q(ukik)
Gaussian. To update the messages for each entry yi, we
need to first divide q(U , τ) by them to obtain the calibrat-
ing distribution

q\i(U , τ) ∝ q(U , τ)

f̃i(τ)
∏K
k=1 f̃

k
i (ukik)

and then construct the tilted distribution

p̂i(U , τ) ∝ q\i(U , τ)N (yi|1>(u1
i1 ◦ . . . ◦ uKiK ), τ−1).

Since we only require the moments for the inverse vari-
ance τ and the embedding vectors that associate with
entry i, ui = {u1

i1
, . . . ,uKiK}, the other embeddings vec-

tors will be marginalized out and we only need to consider
the marginal titled distribution for {ui, τ},

p̂i(ui, τ) ∝ q\i(τ)

K∏
k=1

q\i(ukik)

· N (yi|1>(u1
i1 ◦ . . . ◦ uKiK ), τ−1), (3)

where

q\i(τ) = Gam(τ |a\i, b\i), q\i(ukik) = N (ukik |m
k
ik
,Skik),

and

a\i = a0 +
∑

j∈S,j 6=i

aj − |S|+ 1,

b\i = b0 +
∑

j∈S,j 6=i

bj,

Skik =

 ∑
j∈S, j 6=i, jk=ik

Skj
−1

+ vI

−1 ,
mk
ik

= Skik

 ∑
j∈S, j 6=i, jk=ik

Skj
−1

mk
j + vµkik

 .



Here |S| is the size of S, i.e., the number of observed
entries.

Due to the production term in the Gaussian likelihood,
The moments w.r.t p̂i(ui, τ) (see (3)) are intractable. To
overcome this barrier, we use CEP. Specifically, to update
each message f̃ki (ukik), we first compute the conditional
moments w.r.t the conditional tilted distribution given τ
and u

\k
i = {u1

i1
, . . . ,uk−1ik−1

,uk+1
ik+1

, . . . ,uKiK} fixed,

p̂i(u
k
ik
|u\ki , τ) ∝ N (ukik |m

k
ik
,Skik)N (yi|z\ki

>
ukik , τ

−1),

where z
\k
i is the Hadmard product of the vectors in u

\k
i .

It is easy to see that this is a Gaussian distribution, and
the conditional moments can be calculated from

cov(ukik |u
\k
i , τ) =

[
Skik
−1

+ τ(z
\k
i z
\k
i

>
)
]−1

, (4)

E(ukik |u
\k
i , τ) = cov(ukik |u

\k
i , τ)

[
Skik
−1

mk
ik

+ τyiz
\k
i

]
.

(5)

Note that for Gaussian random variables, we only need the
first and second moments. The mean is the first moment,
and the covariance second central moment. To obtain the
second raw moment, we can simply add the outer-product
of the mean to the covariance. To be concise, we will
stick our presentation to the mean and variance.

Next, we compute the expectation of the conditional mo-
ments (4)(5) w.r.t the current approximate posterior for
u
\k
i and τ , i.e., q(u\ki , τ). To this end, we will use the

first-order Taylor expansions at the expectation of the
statistics (i.e., moments) that appear in (4)(5), including
τ , zki and zki zki

> (see (8) in the main paper). Their expec-
tations are given by

Eq(τ) =
a0 +

∑
i∈S ai − |S|

b0 +
∑

i∈S bi
,

Eq(z\ki ) = Eq(u1
i1) ◦ . . . ◦ Eq(uk−1ik−1

)

◦ Eq(uk+1
ik+1

) ◦ . . . ◦ Eq(uKiK ),

Eq(z\ki z
\k
i

>
) = Eq(u1

i1u
1
i1

>
) ◦ . . . ◦ Eq(uk−1ik−1

uk−1ik−1

>
)

◦ Eq(uk+1
ik+1

uk+1
ik+1

>
) ◦ . . . ◦ Eq(uKiKuKiK

>
),

where for ∀t 6= k,

Eq(utit) = covq(u
t
it)

 ∑
j∈S, jt=it

Stj
−1

mt
j + vµkit

 ,

Eq(uitu>it) = covq(u
t
it) + Eq(utit)Eq(u

t
it)
>
,

covq(u
t
it) =

 ∑
j∈S, jt=it

Stj
−1

+ vI

−1 .
(6)

By taking expectation over the first-order Taylor expan-
sion w.r.t q(u\ki , τ), we obtain the approximated expec-
tation of the conditional moments (see (10) in the main
paper). This can be done by simply replacing τ , z

\k
i and

z
\k
i z
\k
i

>
in (4)(5) with E(τ), E(z

\k
i ) and E(z

\k
i z
\k
i

>
),

respectively. We then use the expected conditional mo-
ments to build a new posterior for ukik and then obtain the
updated message f̃ki (ukik) = N (ukik |m

k
i

∗
,Ski
∗
) accord-

ingly:

Ski
∗

=

(
Eq(τ)Eq(z\ki z

\k
i

>
)

)−1
,

mk
i

∗
= Ski

∗ (
yiEq(τ)Eq(z\ki )

)
.

We follow the same procedure to update f̃i(τ). The con-
ditional tilted distribution of τ is

p̂i(τ |ui) = Gam(τ |â, b̂)
∝ Gam(τ |a\i, b\i)N (yi|1>(u1

i1 ◦ . . . ◦ uKiK ), τ−1)

where

â = a\i +
1

2
,

b̂ = b\i +
1

2
(yi − 1>(u1

i1 ◦ . . . ◦ uKiK ))2.

The conditional moments are given by

Ep̂i(τ |ui)(τ) =
â

b̂
, (7)

Ep̂i(τ |ui)

(
log(τ)

)
= ψ(â)− log(b̂), (8)

where ψ(·) is the digamma function. To compute the
expectation of the conditional moments, we can use the
first-order Taylor expansion. This can be done by sub-
stituting for â and b̂ in the conditional moments (7)(8)
their expectation w.r.t q(ui), i.e., Eq(â) and Eq(b̂). The
computation of Eq(â) and Eq(b̂) is straightforward and
analytical (see (18) in the main paper),

Eq(â) = â,

Eq(b̂) = b\i +
1

2
y2i − yi1>

[
Eq(u1

i1) ◦ . . . ◦ Eq(uKiK )
]

+
1

2
tr
[
Eq(u1

i1u
1
i1

>
) ◦ . . . ◦ Eq(uKiKuKiK

>
)
]
. (9)

We then use the expected conditional moments to build
a new posterior for τ and obtain the updated message
f̃i(τ) = Gam(τ |a∗i ,b∗i ), where

a∗i =
1

2
,

b∗i =
1

2
y2i − yi1>

[
Eq(u1

i1) ◦ . . . ◦ Eq(uKiK )
]

+
1

2
tr
[
Eq(u1

i1u
1
i1

>
) ◦ . . . ◦ Eq(uKiKuKiK

>
)
]
.



2.1.2 Binary Tensor

When entry values are binary, according to (13) in Section
4.1 of the main paper, the joint probability is

p({yi}i∈S ,U) =

K∏
k=1

dk∏
s=1

N (uks |µks , vI)

·
∏
i∈S

ψ
(
(2yi − 1)1>(u1

i1 ◦ . . . ◦ uKiK )
)

where ψ(·) is the cumulative density function (CDF) of
the standard Gaussian distribution. We use factorized
Gaussian messages to approximate each likelihood,

ψ
(
(2yi − 1)1>(u1

i1 ◦ . . . ◦ uKiK )
)
≈

K∏
k=1

f̃ki (ukik),

where f̃ki (ukik) = N (ukik |m
k
i ,S

k
i ). The approximate pos-

terior is given by

q(U) =

K∏
k=1

dk∏
s=1

N (uks |µks , vI)
∏
i∈S

K∏
k=1

f̃ki (ukik).

To update messages for entry i, we first obtain the cali-
brating distribution

q\i(U) ∝ q(U , τ)∏K
k=1 f̃

k
i (ukik)

,

and then the tilted distribution

p̂i(U) ∝ q\i(U)ψ
(
(2yi − 1)1>(u1

i1 ◦ . . . ◦ uKiK )
)
.

Again, due to the production term in the likelihood, the
moments w.r.t the tilted distribution are intractable to
calculate. Therefore, we use CEP. Following the same
procedure as in Section 2.1.1, to update each message
f̃ki (ukik) for entry yi, we first obtain the conditional tilted
distribution by

p̂i(u
k
ik
|u\ki )

∝ N (ukik |m
k
ik
,Skik)ψ

(
(2yi − 1)1>(u1

i1 ◦ . . . ◦ uKiK )
)
,

where

Skik =

 ∑
j∈S, j 6=i, jk=ik

Skj
−1

+ vI

−1 ,
mk
ik

= Skik

 ∑
j∈S, j 6=i, jk=ik

Skj
−1

mk
j + vµkik

 .

To compute the conditional moments of ukik , we can use
the same trick as applying EP for Bayesian probit regres-
sion (Dusek, 2013). We first derive the normalizer of the
conditional tilted distribution,

Z =∫
N (ukik |m

k
ik
,Skik)ψ

(
(2yi − 1)1>(u1

i1 ◦ . . . ◦ uKiK )
)
dukik

= ψ

 (2yi − 1)z
\k
i

>
mk
ik√

1 + z
\k
i

>
Skikz

\k
i

 .

Then we can compute the conditional moments through
the derivatives of the logarithm of the normalizer,

cov(ukik |u
\k
i ) = Skik − SkikASkik , (10)

E(ukik |u
\k
i ) = mk

ik
+ Skik

∂ logZ

∂mk
ik

, (11)

where

A =
∂ logZ

∂mk
ik

(
∂ logZ

∂mk
ik

)> − 2
∂ logZ

∂Skik
.

Next, we compute the expectation of the conditional
moments (10)(11) w.r.t q(u\ki ), the current posterior of
u
\k
i . To enable tractable computation, we use the first-

order Taylor expansion of (10)(11) at the moments of
u
\k
i , and then take expectation. Again, it is equiva-

lent to substituting E(z
\k
i ) and tr

(
SkikE(z

\k
i z
\k
i

>
)
)

for

z
\k
i and z

\k
i

>
Skikz

\k
i , respectively. Denote the expected

conditional mean and covariance by η and Ω. We use
them to construct a new posterior of ukik and obtain the
updated message f̃ki (ukik) = N (ukik |m

k
i

∗
,Ski
∗
) accord-

ingly, where

Ski
∗

=
(
Ω−1 − Skik

−1)−1
,

mk
i

∗
= Ski

∗ (
Ω−1η − Skik

−1
mk
ik

)
.

2.2 Logistic Regression

In this section, we provide the details of updating mes-
sages in EP and CEP for Bayesian logistic regression.
Both methods are based on quadrature rules.

First, according to Section 4.2 in the main paper, the joint
probability is

p(y,w|X) = p(w)

n∏
i=1

1/
(
1 + exp(−(2yi − 1)w>xi)

)
,



where p(w) = N (w|0, λI). We use factorized messages
to approximate each logistic likelihood,

1/
(
1 + exp(−(2yi − 1)w>xi)

)
≈
∏
m

f̃im(wm)

where f̃im(wm) = N (wm|µim, vim).

To update the messages for i-th sample, we first obtain
the calibrating distribution,

q\i(w) ∝ p(w)
∏
j 6=i

∏
m

f̃jm(wm) =
∏
m

N (wm|µ\im, v\im),

where

v\im =
1

1/λ+
∑
j 6=i 1/vjm

, µ\im = v\im
∑
j 6=i

µjm
vjm

,

and the tilted distribution,

p̂i(w) ∝ 1

1 + exp(−(2yi − 1)w>xi)
q\i(w).

2.2.1 Moment Matching in EP

To update each message f̃im(wm), we first consider the
moment matching in EP. Due to the logistic likelihood,
the moments of wm w.r.t the tilted distribution p̂i(w) is
intractable. To overcome this problem, we use an idea sim-
ilar to (Gelman et al., 2013). We first split w into wm and
w\m, and project them onto xim and xi\m, respectively.
Here xi\m are xi excluding the m-th element. Conse-
quently, we obtain two random variables, η1 = wimxim
and η2 = w>\mxi\m, and their calibrating distributions,

q\i(η1) = N (η1|ximµ\im, x2imv\im),

q\i(η2) = N (η2|
∑
l 6=m

xilµ
\i
l ,
∑
l 6=m

x2ilv
\i
l ).

Instead of matching the moments of w that may demand
a high-dimensional integration, we can match the mo-
ments for η1 and η2, because the integration only involves
two variables, and can be accurately approximated by a
two-dimensional quadrature. Specifically, the tilted distri-
bution of {η1, η2} is

p̂i(η1, η2)

∝ q\i(η1)q\i(η2) · 1

1 + exp(−(2yi − 1)(η1 + η2))
.

Since wm is related to η1, we need to compute the mo-
ments of η1 w.r.t p̂i(η1, η2). To this end, we use 9 Gauss-
Hermite quadrature nodes and weights for both η1 and η2,
denoted by {γ1j , αj} and {γ2j , αj}, respectively. Note
that the nodes are adjusted according to the mean and

variance in q\i(η1) and q\i(η2), while the weights are
the same. We then compute the zeroth, first and second
moment of η1 w.r.t the unnormalized titled distribution,

E0 ≈
∑
k

∑
j

αkαj
1 + exp(−(2yi − 1)(γ1k + γ2j))

,

E1 ≈
∑
k

∑
j

αkαjγ1k
1 + exp(−(2yi − 1)(γ1k + γ2j))

,

E2 ≈
∑
k

∑
j

αkαjγ
2
1k

1 + exp(−(2yi − 1)(γ1k + γ2j))
.

The mean and variance of η1 can then be calculated by

β =
E1

E0
, σ2 =

E2

E0
−
(E1

E0

)2
.

It is easy to verify that σ2 is always non-negative and
therefore valid. Next, we construct a new posterior for
η1, q∗(η1) = N (η1|β, σ2). Dividing q∗(η1) by the cali-
brating distribution q\i(η1), we then obtain the updated
message for η1, N (η1|βi, σ2

i ).

Finally, we map η1 back to wm to obtain the updated
message for wm. Specifically, we have

N (η1|βi, σ2
i ) = N (wmxim|βi, σ2

i )

∝ exp(−w
2
mx

2
im

2σ2
i

+
wmximβi

σ2
i

)

∝ N (wm|µ∗im, v∗im) = f̃im(wm) (12)

where

v∗im =
σ2
i

x2im
, µ∗im = v∗im

ximβi
σ2
i

.

2.2.2 Moment Matching with CEP

We now consider to use CEP to match moments to update
each message f̃im(wm). To this end, we first obtain the
conditional tilted distribution,

p̂i(wm|w\m) ∝ q\i(wm)gim(wm|w\m),

where q\i(wm) = N (wm|µ\im, v\im) and

gim(wm|w\m)

=
(
1 + exp((2yi − 1)(wmxim + w>\mxi\m))

)−1
.

To obtain the conditional moments, we use Gauss-
Hermite quadrature with 9 nodes and weights {γj , αj}.
As in Section 2.2.1, we first compute the zeroth, first and
second moment of wm w.r.t the unnormalized conditional



tilted distribution,

E0 =

∫
q\i(wm)gim(wm|w\m)dwm

≈
∑
j

αjgim(γj |w\m),

E1 =

∫
wmq

\i(wm)gim(wm|w\m)dwm

≈
∑
j

αjγjgim(γj |w\m),

E2 =

∫
w2
mq
\i(wm)gim(wm|w\m)dwm

≈
∑
j

αjγ
2
j gim(γj |w\m).

We then obtain the conditional mean and variance of wm
by

E(wm|w\m) =
E1

E0
,

var(wm|w\m) =
E2

E0
−
(
E1

E0

)2

.

We can also derive the Hessian matrix w.r.t w\m,

∇∇E(wm|w\m)

=
E1

∑
j tjcj − E0

∑
j tjγjcj

E3
0

xi\mxi
>
\m,

∇∇var(wm|w\m)

= ∇∇E(w2
m|w\m)− 2∇E(wm|w\m)∇E(wm|w\m)

>

− 2E(wm|w\m)∇∇E(wm|w\m),

where

∇E(wm|w\m) =
E1

∑
j tj − E0

∑
j tjγj

E2
0

(2yi − 1)xi\m,

∇∇E(w2
m|w\m) =

E2

∑
j tjcj − E0

∑
j tjγ

2
j cj

E3
0

xi\mxi
>
\m,

tj = αjg
2
im(γj |w\m),

cj = E0(1− 2gim(γj |w\m)) + 2
∑
j

αjg
2
im(γj |w\m).

Next, to compute the expected conditional moments, we
derive their first or second order Taylor expansions at
the expectation of w\m and then take expectation w.r.t
q(w\m) (see (10)(11) in the main paper). We then use
the expected conditional moments to construct a new
posterior of wm, N (wm|µm, vm). When the first order
Taylor expansion is used, we obtain

µm = h1(Eq(w\m)), vm = h2(Eq(w\m))

where

h1(w\m) = E(wm|w\m), h2(w\m) = var(wm|w\m).

When the second order Taylor expansion is used, we
obtain

µm = h1(Eq(w\m)) +
1

2
tr
(
varq(w\m)h3(Eq(w\m))

)
,

vm = h2(Eq(w\m)) +
1

2
tr
(
varq(w\m)h4(Eq(w\m))

)
.

where

h3(w\m) = ∇∇E(wm|w\m),

h4(w\m) = ∇∇var(wm|w\m).

Finally, dividingN (wm|µm, vm) by the calibrating distri-
bution N (wm|µ\im, v\im), we obtain the updated message
f̃im(wm) = N (wm|µ∗im, v∗im), where

v∗im =

(
1

vm
− 1

v
\i
m

)−1
,

µ∗im = v∗im

(
µm
vm
− µ

\i
m

v
\i
m

)
.

2.3 Probit Regression

In this section, we provide the details of message updating
in CEP for Bayesian probit regression. Given the data,
the joint probability of the model is

p(y,w|X) = p(w)

n∏
i=1

ψ
(
(2yi − 1)w>xi

)
,

where p(w) = N (w|0, λI) and ψ(·) is the cumulative
density function (CDF) of the standard Gaussian distri-
bution. We use factorized messages to approximate each
likelihood,

ψ
(
(2yi − 1)w>xi

)
≈
∏
m

f̃im(wm).

The approximate posterior is therefore

q(w) ∝ p(w)

n∏
i=1

∏
m

f̃im(wm).

To update the messages for the i-th sample, we derive the
calibrating distribution

q\i(w) ∝ p(w)
∏
j 6=i

∏
m

f̃jm(wm) =
∏
m

N (wm|µ\im, v\im),

where

v\im =
1

1/λ+
∑
j 6=i 1/vjm

, µ\im = v\im
∑
j 6=i

µjm
vjm

,



and the tilted distribution

p̂i(w) ∝ ψ
(
(2yi − 1)w>xi

)
q\i(w).

To update each message f̃im(wm), we first derive the
conditional tilted distribution,

p̂i(wm|w\m) ∝ ψ
(
(2yi − 1)w>xi

)
N (wm|µ\im, v\im).

We can use the same method in (Dusek, 2013) to obtain
the conditional moments,

E(wm|w\m) = µ\im + v\im
∂ logZim

∂µ
\i
m

,

cov(wm|w\m) = v\im − v\im
2

(
(
∂ logZim

∂µ
\i
m

)2 − 2
∂ logZim

∂v
\i
m

)
,

where

Zim =

∫
ψ
(
(2yi − 1)w>xi

)
N (wm|µ\im, v\im)

=ψ

 (2yi − 1)(ximµ
\i
m + w>\mxi\m)√

1 + x2imv
\i
m

 .

For simplicity, we define

N = N

 (2yi − 1)(ximµ
\i
m + w>\mxi\m)√

1 + x2imv
\i
m

|0, 1

 ,

ψ = ψ

 (2yi − 1)(ximµ
\i
m + w>\mxi\m)√

1 + x2imv
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,
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\i
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We can then derive the Hessian matrix of the conditional
moments w.r.t w\m,

∇∇E(wm|wi\i) = T1c
3
1v
\i
mximxi\mxi

>
\m,
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4
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\i
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2
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>
\m,

where
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2
2 − 1)

N
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N 2
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N 3

ψ3
,

T2 = c1c2(3− c21c22)
N
ψ

+ (4− 7c21c
2
2)
N 2

ψ2

− 12c1c2
N 3
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− 6
N 4
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Figure 1: Average prediction accuracy v.s. running itera-
tion. The rank of the embeddings is 3.

Next, to compute the expected conditional moments, we
use their first or second order Taylor expansions at the ex-
pectation of w\m and then take expectation w.r.t q(w\m)
(see (10)(11) in the main paper). We then use the expected
conditional moments to construct a new posterior of wm,
from which we can update the message f̃im(wm). The
process is the same as in Section 2.2.2.

3 Experiment

In this section, we supplement more experimental results.

3.1 Bayesian Probit and Logistic Regression

We first in Table 1 list the results of test AUC on six real-
world datasets from UCI machine learning repository1,
australian, breast, crab,ionos, pima and sonar. As we can
see, for Bayesian probit regression, CEP-1 is better than
or close to EP; CEP-2 always obtains the best test AUC
among all the methods. For Bayesian logistic regression,
both CEP-1 and CEP-2 are close to EP. CEP-2 obtains
the highest AUC on brerast, ionos, pima and sonar while
CEP-1 on the remaining two, australian and crab. Note
that KJIT performs the best on crab and the worst on
pima and sonar. These results are consist with the test
log-likelihoods in Table 1 of the main paper.

3.2 Bayesian Tensor Decomposition

Next, we show in Fig. 1, 2 and 3 how the predictive
performance of CEP, LP and VMP vary along with the
running iterations when rank of the embeddings is 3, 5
and 8 respectively. Note that in the main paper, we only
show the performance when the rank is 10 (due to the
space limit). As we can see, the prediction accuracy of
all the three methods converge rapidly and remain stable
with more iterations. The predictive performance of CEP
is close to or slightly better than VMP on Alog dataset. On
Enron dataset, CEP significantly outperforms VMP. On

1https://archive.ics.uci.edu/ml/index.
php

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php


Dataset CEP-1 CEP-2 LP EP VB KJIT
australian 0.873± 0.008 0.873± 0.010 0.873± 0.009 0.873± 0.010 0.873± 0.009 0.873± 0.009

breast 0.675± 0.021 0.683± 0.020 0.675± 0.021 0.677± 0.020 0.676± 0.019 0.676± 0.019
crab 0.993± 0.001 0.992± 0.001 0.993± 0.001 0.993± 0.001 0.993± 0.001 0.994± 0.001
ionos 0.912± 0.011 0.925± 0.010 0.912± 0.012 0.914± 0.010 0.908± 0.010 0.902± 0.010
pima 0.830± 0.005 0.831± 0.005 0.831± 0.005 0.830± 0.005 0.830± 0.005 0.819± 0.011
sonar 0.820± 0.015 0.831± 0.016 0.820± 0.016 0.827± 0.016 0.825± 0.014 0.651± 0.041

(a) Bayesian logistic regression
Dataset CEP-1 CEP-2 LP EP VB

australian 0.883± 0.009 0.883± 0.009 0.883± 0.009 0.880± 0.009 0.878± 0.010
breast 0.686± 0.016 0.690± 0.016 0.681± 0.020 0.677± 0.020 0.672± 0.022
crab 0.995± 0.002 0.995± 0.002 0.995± 0.002 0.995± 0.002 0.995± 0.002
ionos 0.926± 0.006 0.929± 0.006 0.896± 0.006 0.903± 0.005 0.883± 0.010
pima 0.825± 0.004 0.825± 0.004 0.825± 0.004 0.825± 0.004 0.825± 0.004
sonar 0.813± 0.023 0.831± 0.022 0.804± 0.020 0.813± 0.022 0.797± 0.021

(b) Bayesian probit regression

Table 1: Average test AUC on six real datasets.
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Figure 2: Average prediction accuracy v.s. running itera-
tion. The rank of the embeddings is 5.
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Figure 3: Average prediction accuracy v.s. running itera-
tion. The rank of the embeddings is 8.

both datasets, CEP improves upon LP by a large margin.
These results are consistent with that when the rank of the
embeddings is 10 (see Fig. 4 in the main paper).
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