Randomized Iterative Algorithms for Fisher Discriminant Analysis
(Appendix)

Appendix A PRELIMINARIES

We start by reviewing a result regarding the convergence of a matrix von Neumann series for (I — P)_l. This will be
an important tool in our analysis.

Proposition 7. Let P be any square matrix with |P||y < 1. Then (I — P) ™" exists and
I-P)'=I+) P

Appendix B  EVD-BASED ALGORITHMS FOR FDA

For RFDA, we quote an EVD-based algorithm along ~Algorithm 2 Algorithm for RFDA problem (3)

with an important result from [36] which together are Input: A € R**d Q € R™">¢and A > 0;

the building blocks of our iterative framework. Let M € G+ (ATA +)I,) AT,

R°*¢ be the matrix such that M = QT AG. Clearly, M M + QTAG;

is symmetric and positive semi-definite. Compute thin SVD: M = V EMVK/I;
Output: X = GV

Theorem 8. Using Algorithm 2, let X be the solution of problem (3) , then we have
XX"=GG'.

For any two data points w1, wo € R?, Theorem 8 implies

(Wl — WQ)TXXT(Wl - Wg) = (Wl - WQ)TG GT(W1 - Wg)

= [|(w1 — w2) X[z = [[(w1 — w2)"Gl2.

Theorem 8§ indicates that if we use any distance-based classification method such as k-nearest neighbors, both X and G
shares the same property. Thus, we may shift our interest from X to G.

Appendix C PROOF OF THEOREM 1

Proof of Lemma 3. Using the full SVD representation of A we have
GY =V;XIU(U;Z;2[U} +AU;UJ)'LY
= VS}H(Z2] + M) 'UFLY)
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which completes the proof. O

Detailed proof of Lemma 4. First, using SVD of A, we express GU) in terms of G,
GY =V,;XIU(U;3,;V}SSTV,X U] +AU,;UJ)'LY
=V;X[(Z,V}SSTV,%] + AL,) 'UJLY)
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Eqn. (31) used the fact that 2, VTSSTV X, = E§+E Eqn. (32) follows from the fact that X2 YHAENET 23, € Rxn

is a diagonal matrix with i-th diagonal element

0-2 A

=1
2+)\+0i2+)\

(B3 +ATAZ %, =

)

forany i = 1...p. Thus, we have (23 + AX,\E72%,) = I,,. Since ||E|2 < 1, Proposition 7 implies that (I, + E)~*
exists and

L+E)'=TL+) (-)E'=1,+Q.
=1
Thus, eqn. (32) can further be expressed as
GV =vER~I®, (I, + E) ', = UuTLY)
=V, (I, +Q) =, 2 'UTLY
= Vi 'UTLY) + VE,QE, = UTLY)
=GY 4+ VvE,Qx,='UTLY), (33)

where the last line follows from Lemma 3. Further, we have

e ¢
IQll. = ||Z ), < ZHE% <Somi<Y (5) =122, < G4
{=1 1




where we used the triangle inequality, the sub-multiplicativity of the spectral norm, and the fact that ¢ < 1. Next, we

combine eqns. (33) and (34) to get
lw = m)T(GY = GY)s = ||(w — m)TVEL,QE, B UTLY|,
< (W = m) TV ]2 252 Qll2[BA = UTLY ||
<ell(w —m) V|| Zy = UTLO |
= |[VVT(w —m)[o| 2,27 UTLD |,

which completes the proof.
The next bound provides a critical inequality that can be used recursively to establish Theorem 1.

Detailed proof of Lemma 6. From Algorithm 1, we have forj =1...¢t —1
L) — ) _ 2y — AGO
=LY — (AAT + AL,)(ASSTAT + AIL,) 'L,
Now, starting with the full SVD of A, we get
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Here, eqn. (38) holds because ¥, V'SSTVY, = 22 + E and the fact that 22 +AX,\ X 2%, € R"*" is a diagonal

matrix whose ¢th diagonal element satisfies

01-2 n A
ol+ N o2+ A

(B +ATHZ R, = =1,

forany i = 1...p. Thus, we have (3 + AX,\X72%,) = I,,. Since ||E|2 < 1, Proposition 7 implies that (I, + E)~*

exists and

L+E)'=L+) (-)E' =L+Q,
{=1

where Q = Y2, (—1)‘E*.

Thus, we rewrite eqn. (38) as

(AAT + \I,)(ASSTAT + \L,)"'LY



— U, ULY 4 U2+ A,)E 'S, (I, + E) ' 2,2 1UTLY
=U,UTLY + U2+ AL,)2713, (I, + Q) Zp=~'UTLY)
=U,UTLY + UZ? + )2 1= 'UTLY) 4+ U(Z2 +0,)2712,QE, 2 'UTLY

=U,UTLY + UUTLY) 4+ U(Z2 4+ 0,)=712,QE, 2 ULy (39)
= (UUT + U, UDLY + U(Z?2 + M ,)2712,QE, =" UTLY)
=U,UILY + U(Z? + AL,)X7'2,Q8, 2 'UTLY). (40)

Eqn. (39) holds as (32 4+ A\I,)X"'33 %! = 1,,. Further, using the fact that U; U} = I,,, we rewrite eqn. (40) as
(AAT +2L,)(ASSTAT +-\I,,)'LY) =LY + U(Z? + A,)2'3,QE,\ = 'UTLY). (41)
Thus, combining eqns. (36) and (41), we have
LUt = —UZ? +A,)27!13,QE,\ = 'UTLY). (42)
Finally, using eqn. (42), we obtain

[ZAEZTTUTLUY |y = [ 1UTU(R? + ML) 712, QE, 21 UTLY) ||,
= |ZAE= (22 4+ L) 2 ZQE S UTLY) |y
= [QELAZUTLY |, < Q2| ZxZ ' UTLY) |,
<e||ZEZTUTLY ||y,

where the third equality holds as 3\ X 71 (X2 + I p)Z‘l 3\ = I, and the last two steps follow from sub-multiplicativity
and eqn. (34) respectively. This concludes the proof. O

Proof of Theorem 1. Applying Lemma 6 iteratively, we get
IZAETTUTLO |y < |Za=TUTLE Y|, < <7 E B UTLW ||, (43)
Now, from eqn (43), we apply sub-multiplicativity to obtain

ISAZUTLO |, = [S3871UTQl < S8 [ UT [0l = max (03 +3)F <AF, @4)
<i<p

Notice that L(*) = € by definition. Also, 2TQ = I.. and thus ||€2||; = 1. Furthermore, we know that |[UT||; = 1 and
22 = ax (62 4+ A\)”2 and the last inequality holds since (62 + \)~2 < A~ % foralli =1...p.
<i<p

Finally, combining eqns. (22), (43) and (44), we conclude
H(“ In)T(AG G)H2 H v "T(“’ IIl)Hg,
\f

which completes the proof. O

Appendix D PROOF OF THEOREM 2

Lemma 9. For j = 1...t, let LY) and GY) be the intermediate matrices in Algorithm 1, GU) be the matrix
deﬁned in eqn. (12) and R be defined as in Lemma 3. Further let S € RY*5 be the sketching matrix and define
= VTSSTV —1,. Ifeqn. (8) is satisfied, i.e., ||E||2 < §, thenforall j =1,...,t, we have

Iw —m)T(GW — Gy <& [VVT(w —m)|2 [RT'ETUTLO) 5, (45)

where R =1, + AX 2



Proof. Note that £2 = R~!. Applying Lemma 3, we can express G(/) as

GU) = VR 'z 'UTLY), (46)
Next, rewriting eqn. (30) gives
GY) =vx(=VTSSTVE +A1,) 'UTLY) 47
= VE(Z(1, +E)S + L) 'UTLY) = vES~YI, + E+ A2 "2) "'~ 1UTLY
—V(R+E)'S'UTLY) = VR, + R7'E)) 'S~ 1UTLY) . (48)
Further, notice that
[RBs < BBl < R § = (U;j VELERE: (49)

Now, Proposition 7 implies that (I, + R™E)~! exists. Let Q = 332, (—1)“ (R E)*, we have

(L+R'E)' =L+ ) (-1)'R'E) =1,+Q.
=1

Thus, we can rewrite eqn. (48) as
GY =V(I,+QR 'z 'UTLY
=VR ! UL + VQR'Z'UTLY
=GY 4+ VQR ! UTLY), (50)

where eqn. (50) follows eqn. (46). Further, using eqn. (49), we have

@l = |31 (R B) s < 3 |(RE) \|2<Z||R <Y (5) =1 L5se o
=1 =1

=1

where we used the triangle inequality, sub-multiplicativity of the spectral norm, and the fact that ¢ < 1. Next, we
combine eqns. (50) and (51) to get

[(w —m)T(GD — G|, = [[(w —m) VQR'S'UTLY) |,
)V Q2 [RT'ETTUTL@ |,
<el(w—m) V[ |R'EUTLE|,
=e|(w-m) " VVT o[ R'S™UTLY) |,
=c|[VVT(w —m)||]RT'E'UTLY) |5, (52)

<[l(w—-m

where the first inequality follows from sub-multiplicativity and the second last equality holds due to the unitary
invariance of the spectral norm. This concludes the proof. O

Remark 10. Repeated application of Lemmas 5 and 9 yields:
(w —m)T(G — G2 = f(w —m) Z GO — @)l = [|(w —m) (G - Z G9)),
= [[(w —m) (G(t ~ Gy <e|[VVT(w —m)[s [R'E" 1UTL Do (53)
The next bound provides a critical inequality that can be used recursively in order to establish Theorem 2.

Lemma 11. Ler L), J = 1,...,1, be the matrices of Algorithm 1 and R is as defined in Lemma 3. For any
j=1,...,t — 1 define E =VTSSTV —1,. Ifeqn. (8) is satisfied i.e.|E||2 < 5, then

IR!'SUTLUY |, < e |[RTISTUTLY)| 5. (54)



Proof. From Algorithm 1, we have forj =1,...,¢t — 1,
LU = LO) - xYW) — AGYW =LY — (AAT + ML) (ASSTAT + AL, 'LY), (55)
Rewriting eqn. (37), we have
(AAT + \I,)(ASSTAT + AL,)'LY
=U,UTLY + UZ? +AL,)(ZV'SSTVE + \I,)'UTLY)
—U,UTLY + U(Z? + A\L)(Z(I, + E)X + AL,) " 'UTLY
—U,UTLY + U2+ L) 11, + E+ X )" ' 'UTLO). (56)

Here, eqn. (56) holds because (I, + E+ AX~2) is invertible since it is a positive definite matrix. In addition, using the
fact that R = (I, + AX~2), we rewrite eqn. (56) as

(AAT + \I,)(ASSTAT + \L,)"'LO
—U,UTLY 4 U2+ M\,)S YR+ E)"'s~1UTLY

~\ 1 .
—U,UTLY 4 U2 + AL, ( (I ,)+R*1E)) »-1uTLY)

=U,UTLY + UZ? + AT 1R s~ 1UTLY 4+ U(S? +M1,)S QR 'UTLY)
— (UUT+ U, UDLY + U2+ A,)2 'QR ' 'UTLY)
= U;UJLY + U(Z? + \[,)E'QRIZUTLO). (57)

)
( )xT
=U,UTLY + UZ? +M,)2" 1( +R'E)"'RIz-UTLOY)
—U,UTLY + U2 4+ M,)= 711, + QR 'S 1UTLY
( p)Z
) (

The second and third equalities follow from Proposition 7 (using eqn. (49)) and the fact that R~! exists. Further, Q is
as defined as in Lemma 9. Moreover, the second last equality holds as (X2 4+ \I,)X"'R~'X~! =1 ,. Now, using the
fact that U fUT =1I,,, we rewrite eqn. (57) as

(AAT + L) (ASSTAT +AL,) 'LY = LU + U(Z? + AL,)='QR'Z'UTLY). (58)
Thus, combining, eqns. (55) and (58), we have
LUD = —U(Z?+A,)2'QRIZUTLY). (59)

Finally, from eqn. (59), we obtain
||R—1E—1UTL(J'+1)H2 — ||R_12_1UTU(22 + )\IP)E—1QR—1E—1UTL(j)||2
— ||R_12_1(22 +AI ) —1QR—12—1UTL(]')H2
= [QR'ETUTLY) |, < [ Q[o|RT'ETUTLY) 5
<e|RTIZT 1UTL(J)H2, (60)

where the third equality holds as R™!371(£2 + A\I,)X~! = I, and the last two steps follow from sub-multiplicativity
and eqn. (51) respectively. This concludes the proof. O

Proof of Theorem 2. Applying Lemma 11 iteratively, we have

IRTIZTIUTLO |, < [RTIZTIWUTLEY |, < ... < HRTIZTIUTLOY,. (61)

Now, from eqn (61) and noticing that L(Y) = € by definition, we have

‘ -

IRTSUTLO |, < [RTS o[ UT |2 = n{ % }< , (62)

1<i<p | o2 + A

S

2



where we used sub-multiplicativity and the facts that [|[UT || = 1, Q7€ = I, and ||€2||2 = 1. The last step in eqn. (62)
holds since foralli =1...p,

(i =VN?>0 = o?+A>20VA = — < —. (63)
o7+ AT 2V
Finally, combining eqns. (53), (61) and (62), we obtain
t
w-m)' (G -G < £ VVT(w—m)ls,
(v —m) (@~ @)l < = [VVT(w —m)]
which concludes the proof. O

Appendix E  SAMPLING-BASED CONSTRUCTIONS

We now discuss how to satisfy the conditions of eqns. (5) or (8) by sampling, i.e., selecting a small number of features.
Towards that end, consider Algorithm 3 for the construction of the sampling-and-rescaling matrix S. Finally, the next
result appeared in [6] as Theorem 3 and is a strengthening of Theorem 4.2 of [20], since the sampling complexity s is
improved to depend only on | Z||% instead of the stable rank of Z when ||Z||2 < 1. We also note that Lemma 12 is
implicit in [8].

Algorithm 3 Sampling-and-rescaling matrix Lemma 12. Let Z € R™" with |Z||> < 1 and let S be
Input: Sampling probabilities p;, i = 1,...,d; constructed by Algorithm 3 with
number of sampled columns s < d;
s o o> M, (10 110)
fort =1to sdo T3 0

Pick i; € {1,...,d} with P(i; = i) = pi;
Sit =1/\/5pi:

end for |ZTSSTZ ~Z"Z|; <.
Output: Return S;

then, with probability at least 1 — 9,

Applying Lemma 12 with Z = V3, we can satisfy the condition of eqn. (5) using the sampling probabilities
pi = [|[(VEL)ix|l3/dy (recall that |[VE,||% = dy and [[VE, |2 < 1). Itis easy to see that these probabilities are
exactly proportional to the column ridge leverage scores of the design matrix A. Setting s = O(c~2d) Ind)) suffices to
satisfy the condition of eqn. (5). We note that approximate ridge leverage scores also suffice and that their computation
can be done efficiently without computing V [8]. Finally, applying Lemma 12 with Z = 'V we can satisfy the condition
of eqn. (8) by simply using the sampling probabilities p; = ||V.||3/p (recall that || V||% = p and ||V |2 = 1), which
correspond to the column leverage scores of the design matrix A. Setting s = O(e~2pIn p) suffices to satisfy the
condition of eqn. (8). We note that approximate leverage scores also suffice and that their computation can be done
efficiently without computing V [13].

Appendix F SKETCH-SIZE REQUIREMENTS FOR STRUCTURAL CONDITIONS

We provide details on the sketch-size requirements for satisfying the structual conditions of eqns. (5) or (8) when
various constructions of the sketching matrix S are used. It was shown in [9] that eqn. (11) can be achieved using a
count-sketch matrix S with s = O(555) columns or an SRHT matrix S with s = O(e2(r + log(1/es)) log %) columns
(here, 4 is the failure probability). As discussed in Section 2.2, setting r = d or = p in eqn. (11) for eqns. (5) or (8),
respectively, we obtain the sketch-size requirements summarized in Table 1.

Appendix G ADDITIONAL EXPERIMENT RESULTS

Table 2 shows the CPU wall-clock times for running RFDA (on a single-core Intel Xeon E5-2660 CPU at 2.6GHz)
by either computing G exactly in eqn. (3) or via our iterative algorithm. For both datasets, we report the per-iteration
runtime of our algorithm with various sketching-matrix constructions using a sketch size of s = 5, 000.
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Table 1: Sketch-size requirements for satisfying eqns. (5) or (8) with probability at least 1 — 6.

Dataset SVD Exact Uniform Leverage Ridge leverage Count-sketch
ORL  1.335 0.232  0.101 0.101 0.101 0.103
PEMS 35781 3.770 0917 0.892 0.899 0.970

Table 2: CPU wall-clock times (in seconds) for RFDA on ORL and PEMS.

As noted in Section 5, we conjecture that using independent sampling matrices in each iteration of Algorithm 1 (i.e.,
introducing new “randomness” in each iteration) could lead to improved bounds for our main theorems. We evaluate
this conjecture empirically by comparing the performance of Algorithm 1 using either a single sketching matrix S (the
setup in the main paper) or sampling (independently) a new sketching matrix at every iteration j.

Figure 3 shows the relative approximation error vs. number of iterations on the PEMS dataset for increasing sketch
sizes. Figure 4 plots the relative approximation error vs. sketch size after 10 iterations of Algorithm 1 were run. We
observe that using a newly sampled sketching matrix at every iteration enables faster convergence as the iterations
progress, and also reduces the sketch size s necessary for Algorithm 1 to converge.
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Figure 3: Relative approximation error (on log-scale) vs. number of iterations on PEMS dataset for increasing sketch
size s. Top row: using a single sketching matrix S throughout. Botfom row: sample a new S; at every iteration j.
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Figure 4: Relative approximation error vs. sketch size on ORL and PEMS after 10 iterations. Single S: using a single

sketching matrix S throughout the iterations. Multiple S;: sample a new S; at every iteration j. Errors are on log-scale

note the difference in magnitude of the approximation errors across plots.
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