Randomized Iterative Algorithms for Fisher Discriminant Analysis (Appendix)

Appendix A PRELIMINARIES

We start by reviewing a result regarding the convergence of a matrix *von Neumann* series for $(\mathbf{I} - \mathbf{P})^{-1}$. This will be an important tool in our analysis.

Proposition 7. Let **P** be any square matrix with $\|\mathbf{P}\|_2 < 1$. Then $(\mathbf{I} - \mathbf{P})^{-1}$ exists and

$$(\mathbf{I} - \mathbf{P})^{-1} = \mathbf{I} + \sum_{\ell=1}^{\infty} \mathbf{P}^{\ell}.$$

Appendix B EVD-BASED ALGORITHMS FOR FDA

For RFDA, we quote an EVD-based algorithm along with an important result from [36] which together are the building blocks of our iterative framework. Let $\mathbf{M} \in \mathbb{R}^{c \times c}$ be the matrix such that $\mathbf{M} = \mathbf{\Omega}^\mathsf{T} \mathbf{A} \mathbf{G}$. Clearly, \mathbf{M} is symmetric and positive semi-definite.

Algorithm 2 Algorithm for RFDA problem (3)

Input: $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{\Omega} \in \mathbb{R}^{n \times c}$ and $\lambda > 0$; $\mathbf{G} \leftarrow (\mathbf{A}^{\mathsf{T}} \mathbf{A} + \lambda \mathbf{I}_d)^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{\Omega}$;

 $\mathbf{M} \leftarrow \mathbf{\Omega}^\mathsf{T} \mathbf{A} \mathbf{G}$:

Compute thin SVD: $\mathbf{M} = \mathbf{V}_{\mathbf{M}} \mathbf{\Sigma}_{\mathbf{M}} \mathbf{V}_{\mathbf{M}}^{\mathsf{T}}$;

Output: $X = GV_M$

Theorem 8. Using Algorithm 2, let X be the solution of problem (3), then we have

$$XX^T = GG^T$$
.

For any two data points $\mathbf{w}_1, \mathbf{w}_2 \in \mathbb{R}^d$, Theorem 8 implies

$$(\mathbf{w}_1 - \mathbf{w}_2)^\mathsf{T} \mathbf{X} \mathbf{X}^\mathsf{T} (\mathbf{w}_1 - \mathbf{w}_2) = (\mathbf{w}_1 - \mathbf{w}_2)^\mathsf{T} \mathbf{G} \mathbf{G}^\mathsf{T} (\mathbf{w}_1 - \mathbf{w}_2)$$

$$\iff \| (\mathbf{w}_1 - \mathbf{w}_2)^\mathsf{T} \mathbf{X} \|_2 = \| (\mathbf{w}_1 - \mathbf{w}_2)^\mathsf{T} \mathbf{G} \|_2.$$

Theorem 8 indicates that if we use any distance-based classification method such as k-nearest neighbors, both \mathbf{X} and \mathbf{G} shares the same property. Thus, we may shift our interest from \mathbf{X} to \mathbf{G} .

Appendix C PROOF OF THEOREM 1

Proof of Lemma 3. Using the full SVD representation of A we have

$$\begin{split} \mathbf{G}^{(j)} &= \mathbf{V}_f \mathbf{\Sigma}_f^\mathsf{T} \mathbf{U}_f^\mathsf{T} (\mathbf{U}_f \mathbf{\Sigma}_f \mathbf{\Sigma}_f^\mathsf{T} \mathbf{U}_f^\mathsf{T} + \lambda \mathbf{U}_f \mathbf{U}_f^\mathsf{T})^{-1} \mathbf{L}^{(j)} \\ &= \mathbf{V}_f \mathbf{\Sigma}_f^\mathsf{T} (\mathbf{\Sigma}_f \mathbf{\Sigma}_f^\mathsf{T} + \lambda \mathbf{I}_n)^{-1} \mathbf{U}_f^\mathsf{T} \mathbf{L}^{(j)} \\ &= \begin{pmatrix} \mathbf{V} & \mathbf{V}_\perp \end{pmatrix} \begin{pmatrix} \mathbf{\Sigma} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{bmatrix} \begin{pmatrix} \mathbf{\Sigma}^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} + \lambda \mathbf{I}_n \end{bmatrix}^{-1} \begin{pmatrix} \mathbf{U}^\mathsf{T} \\ \mathbf{U}_\perp^\mathsf{T} \end{pmatrix} \mathbf{L}^{(j)} \\ &= \begin{pmatrix} \mathbf{V} & \mathbf{V}_\perp \end{pmatrix} \begin{pmatrix} \mathbf{\Sigma} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{bmatrix} \begin{pmatrix} \mathbf{\Sigma}^2 + \lambda \mathbf{I}_\rho & \mathbf{0} \\ \mathbf{0} & \lambda \mathbf{I}_{n-\rho} \end{pmatrix} \end{bmatrix}^{-1} \begin{pmatrix} \mathbf{U}^\mathsf{T} \\ \mathbf{U}_\perp^\mathsf{T} \end{pmatrix} \mathbf{L}^{(j)} \\ &= \begin{pmatrix} \mathbf{V} & \mathbf{V}_\perp \end{pmatrix} \begin{pmatrix} \mathbf{\Sigma} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} (\mathbf{\Sigma}^2 + \lambda \mathbf{I}_\rho)^{-1} & \mathbf{0} \\ \mathbf{0} & \frac{1}{\lambda} \mathbf{I}_{n-\rho} \end{pmatrix} \begin{pmatrix} \mathbf{U}^\mathsf{T} \\ \mathbf{U}_\perp^\mathsf{T} \end{pmatrix} \mathbf{L}^{(j)} \end{split}$$

$$= (\mathbf{V} \quad \mathbf{V}_{\perp}) \begin{pmatrix} \mathbf{\Sigma} (\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho})^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{U}^{\mathsf{T}} \\ \mathbf{U}_{\perp}^{\mathsf{T}} \end{pmatrix} \mathbf{L}^{(j)}$$

$$= \mathbf{V} \mathbf{\Sigma} (\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho})^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}$$

$$= \mathbf{V} \mathbf{\Sigma} \mathbf{\Sigma}^{-1} (\mathbf{I}_{\rho} + \lambda \mathbf{\Sigma}^{-2})^{-1} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}$$

$$= \mathbf{V} \mathbf{\Sigma}_{1}^{2} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}, \tag{29}$$

which completes the proof.

Detailed proof of Lemma 4. First, using SVD of A, we express $\widetilde{\mathbf{G}}^{(j)}$ in terms of $\mathbf{G}^{(j)}$.

$$\widetilde{\mathbf{G}}^{(j)} = \mathbf{V}_{f} \mathbf{\Sigma}_{f}^{\mathsf{T}} \mathbf{U}_{f}^{\mathsf{T}} (\mathbf{U}_{f} \mathbf{\Sigma}_{f} \mathbf{V}_{f}^{\mathsf{T}} \mathbf{S} \mathbf{S}^{\mathsf{T}} \mathbf{V}_{f} \mathbf{\Sigma}_{f}^{\mathsf{T}} \mathbf{U}_{f}^{\mathsf{T}} + \lambda \mathbf{U}_{f} \mathbf{U}_{f}^{\mathsf{T}})^{-1} \mathbf{L}^{(j)} \\
= \mathbf{V}_{f} \mathbf{\Sigma}_{f}^{\mathsf{T}} (\mathbf{\Sigma}_{f} \mathbf{V}_{f}^{\mathsf{T}} \mathbf{S} \mathbf{S}^{\mathsf{T}} \mathbf{V}_{f} \mathbf{\Sigma}_{f}^{\mathsf{T}} + \lambda \mathbf{I}_{n})^{-1} \mathbf{U}_{f}^{\mathsf{T}} \mathbf{L}^{(j)} \\
= (\mathbf{V} \quad \mathbf{V}_{\perp}) \begin{pmatrix} \mathbf{\Sigma} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{bmatrix} (\mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} \mathbf{S} \mathbf{S}^{\mathsf{T}} \mathbf{V} \mathbf{\Sigma} + \lambda \mathbf{I}_{\rho} & \mathbf{0} \\ \mathbf{0} & \lambda \mathbf{I}_{n-\rho} \end{pmatrix} \end{bmatrix}^{-1} \begin{pmatrix} \mathbf{U}^{\mathsf{T}} \\ \mathbf{U}_{\perp}^{\mathsf{T}} \end{pmatrix} \mathbf{L}^{(j)} \\
= (\mathbf{V} \quad \mathbf{V}_{\perp}) \begin{pmatrix} \mathbf{\Sigma} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} (\mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} \mathbf{S} \mathbf{S}^{\mathsf{T}} \mathbf{V} \mathbf{\Sigma} + \lambda \mathbf{I}_{\rho} - \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \frac{1}{\lambda} \mathbf{I}_{n-\rho} \end{pmatrix} \begin{pmatrix} \mathbf{U}^{\mathsf{T}} \\ \mathbf{U}_{\perp}^{\mathsf{T}} \end{pmatrix} \mathbf{L}^{(j)} \\
= (\mathbf{V} \quad \mathbf{V}_{\perp}) \begin{pmatrix} \mathbf{\Sigma} (\mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} \mathbf{S} \mathbf{S}^{\mathsf{T}} \mathbf{V} \mathbf{\Sigma} + \lambda \mathbf{I}_{\rho})^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{U}^{\mathsf{T}} \\ \mathbf{U}_{\perp}^{\mathsf{T}} \end{pmatrix} \mathbf{L}^{(j)} \\
= (\mathbf{V} \quad \mathbf{V}_{\perp}) \begin{pmatrix} \mathbf{\Sigma} (\mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} \mathbf{S} \mathbf{S}^{\mathsf{T}} \mathbf{V} \mathbf{\Sigma} + \lambda \mathbf{I}_{\rho})^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{U}^{\mathsf{T}} \\ \mathbf{U}_{\perp}^{\mathsf{T}} \end{pmatrix} \mathbf{L}^{(j)} \end{pmatrix} \\
= \mathbf{V} \mathbf{\Sigma} (\mathbf{\Sigma} \mathbf{\Sigma}_{\lambda}^{-1} (\mathbf{\Sigma}_{\lambda} \mathbf{V}^{\mathsf{T}} \mathbf{S} \mathbf{S}^{\mathsf{T}} \mathbf{V} \mathbf{\Sigma}_{\lambda}) \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{\Sigma} + \lambda \mathbf{I}_{\rho} \end{pmatrix}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)} \\
= \mathbf{V} \mathbf{\Sigma} (\mathbf{\Sigma} \mathbf{\Sigma}_{\lambda}^{-1} (\mathbf{\Sigma}_{\lambda}^{2} + \mathbf{E}) \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{\Sigma} + \lambda \mathbf{\Sigma} \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-2} \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{\Sigma}_{\lambda} \end{pmatrix}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)} \\
= \mathbf{V} \mathbf{\Sigma} (\mathbf{\Sigma} \mathbf{\Sigma}_{\lambda}^{-1} (\mathbf{\Sigma}_{\lambda}^{2} + \mathbf{E}) \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{\Sigma} + \lambda \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-2} \mathbf{\Sigma}_{\lambda}) \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{\Sigma}_{\lambda} \end{pmatrix}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)} \\
= \mathbf{V} \mathbf{\Sigma} (\mathbf{\Sigma} \mathbf{\Sigma}_{\lambda}^{-1} (\mathbf{\Sigma}_{\lambda}^{2} + \mathbf{E}) \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-2} \mathbf{\Sigma}_{\lambda}) \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{\Sigma}_{\lambda} \end{pmatrix}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)} \\
= \mathbf{V} \mathbf{\Sigma} (\mathbf{\Sigma} \mathbf{\Sigma}_{\lambda}^{-1} (\mathbf{I}_{\rho} + \mathbf{E}) \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-1} \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-1} \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-1} \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)} \\
= \mathbf{V} \mathbf{\Sigma} (\mathbf{\Sigma} \mathbf{\Sigma}_{\lambda}^{-1} (\mathbf{I}_{\rho} + \mathbf{E}) \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{\Sigma}_{\lambda}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{$$

Eqn. (31) used the fact that $\Sigma_{\lambda} \mathbf{V}^{\mathsf{T}} \mathbf{S} \mathbf{S}^{\mathsf{T}} \mathbf{V} \Sigma_{\lambda} = \Sigma_{\lambda}^{2} + \mathbf{E}$. Eqn. (32) follows from the fact that $\Sigma_{\lambda}^{2} + \lambda \Sigma_{\lambda} \Sigma^{-2} \Sigma_{\lambda} \in \mathbb{R}^{n \times n}$ is a diagonal matrix with *i*-th diagonal element

$$\left(\Sigma_{\lambda}^{2} + \lambda \Sigma_{\lambda} \Sigma^{-2} \Sigma_{\lambda}\right)_{ii} = \frac{\sigma_{i}^{2}}{\sigma_{i}^{2} + \lambda} + \frac{\lambda}{\sigma_{i}^{2} + \lambda} = 1,$$

for any $i = 1 \dots \rho$. Thus, we have $(\Sigma_{\lambda}^2 + \lambda \Sigma_{\lambda} \Sigma^{-2} \Sigma_{\lambda}) = \mathbf{I}_{\rho}$. Since $\|\mathbf{E}\|_2 < 1$, Proposition 7 implies that $(\mathbf{I}_{\rho} + \mathbf{E})^{-1}$ exists and

$$(\mathbf{I}_{\rho} + \mathbf{E})^{-1} = \mathbf{I}_{\rho} + \sum_{\ell=1}^{\infty} (-1)^{\ell} \mathbf{E}^{\ell} = \mathbf{I}_{\rho} + \mathbf{Q}.$$

Thus, eqn. (32) can further be expressed as

$$\widetilde{\mathbf{G}}^{(j)} = \mathbf{V} \mathbf{\Sigma} \mathbf{\Sigma}^{-1} \mathbf{\Sigma}_{\lambda} (\mathbf{I}_{\rho} + \mathbf{E})^{-1} \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}
= \mathbf{V} \mathbf{\Sigma}_{\lambda} (\mathbf{I}_{\rho} + \mathbf{Q}) \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}
= \mathbf{V} \mathbf{\Sigma}_{\lambda}^{2} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)} + \mathbf{V} \mathbf{\Sigma}_{\lambda} \mathbf{Q} \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}
= \mathbf{G}^{(j)} + \mathbf{V} \mathbf{\Sigma}_{\lambda} \mathbf{Q} \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)},$$
(33)

where the last line follows from Lemma 3. Further, we have

$$\|\mathbf{Q}\|_{2} = \|\sum_{\ell=1}^{\infty} (-1)^{\ell} \mathbf{E}^{\ell}\|_{2} \le \sum_{\ell=1}^{\infty} \|\mathbf{E}^{\ell}\|_{2} \le \sum_{\ell=1}^{\infty} \|\mathbf{E}\|_{2}^{\ell} \le \sum_{\ell=1}^{\infty} \left(\frac{\varepsilon}{2}\right)^{\ell} = \frac{\varepsilon/2}{1 - \varepsilon/2} \le \varepsilon, \tag{34}$$

where we used the triangle inequality, the sub-multiplicativity of the spectral norm, and the fact that $\varepsilon \leq 1$. Next, we combine eqns. (33) and (34) to get

$$\|(\mathbf{w} - \mathbf{m})^{\mathsf{T}} (\widetilde{\mathbf{G}}^{(j)} - \mathbf{G}^{(j)})\|_{2} = \|(\mathbf{w} - \mathbf{m})^{\mathsf{T}} \mathbf{V} \mathbf{\Sigma}_{\lambda} \mathbf{Q} \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}\|_{2}$$

$$\leq \|(\mathbf{w} - \mathbf{m})^{\mathsf{T}} \mathbf{V}\|_{2} \|\mathbf{\Sigma}_{\lambda}\|_{2} \|\mathbf{Q}\|_{2} \|\mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}\|_{2}$$

$$\leq \varepsilon \|(\mathbf{w} - \mathbf{m})^{\mathsf{T}} \mathbf{V}\|_{2} \|\mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}\|_{2}$$

$$= \varepsilon \|\mathbf{V} \mathbf{V}^{\mathsf{T}} (\mathbf{w} - \mathbf{m})\|_{2} \|\mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}\|_{2}, \tag{35}$$

which completes the proof.

The next bound provides a critical inequality that can be used recursively to establish Theorem 1.

Detailed proof of Lemma 6. From Algorithm 1, we have for $j = 1 \dots t - 1$

$$\mathbf{L}^{(j+1)} = \mathbf{L}^{(j)} - \lambda \mathbf{Y}^{(j)} - \mathbf{A}\widetilde{\mathbf{G}}^{(j)}$$

$$= \mathbf{L}^{(j)} - (\mathbf{A}\mathbf{A}^{\mathsf{T}} + \lambda \mathbf{I}_n)(\mathbf{A}\mathbf{S}\mathbf{S}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}} + \lambda \mathbf{I}_n)^{-1}\mathbf{L}^{(j)}.$$
(36)

Now, starting with the full SVD of A, we get

$$(\mathbf{A}\mathbf{A}^{\mathsf{T}} + \lambda \mathbf{I}_{n})(\mathbf{A}\mathbf{S}\mathbf{S}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}} + \lambda \mathbf{I}_{n})^{-1}\mathbf{L}^{(j)}$$

$$= (\mathbf{U}_{f}\boldsymbol{\Sigma}_{f}\boldsymbol{\Sigma}_{f}^{\mathsf{T}}\mathbf{U}_{f}^{\mathsf{T}} + \lambda \mathbf{U}_{f}\mathbf{U}_{f}^{\mathsf{T}}) (\mathbf{U}_{f}\boldsymbol{\Sigma}_{f}\mathbf{V}_{f}^{\mathsf{T}}\mathbf{S}\mathbf{S}^{\mathsf{T}}\mathbf{V}_{f}\boldsymbol{\Sigma}_{f}^{\mathsf{T}}\mathbf{U}_{f}^{\mathsf{T}} + \lambda \mathbf{U}_{f}\mathbf{U}_{f}^{\mathsf{T}})^{-1}\mathbf{L}^{(j)}$$

$$= \mathbf{U}_{f} (\boldsymbol{\Sigma}_{f}\boldsymbol{\Sigma}_{f}^{\mathsf{T}} + \lambda \mathbf{I}_{n}) \mathbf{U}_{f}^{\mathsf{T}}\mathbf{U}_{f} (\boldsymbol{\Sigma}_{f}\mathbf{V}_{f}^{\mathsf{T}}\mathbf{S}\mathbf{S}^{\mathsf{T}}\mathbf{V}_{f}\boldsymbol{\Sigma}_{f}^{\mathsf{T}} + \lambda \mathbf{I}_{n})^{-1}\mathbf{U}_{f}^{\mathsf{T}}\mathbf{L}^{(j)}$$

$$= \mathbf{U}_{f} (\boldsymbol{\Sigma}_{f}\boldsymbol{\Sigma}_{f}^{\mathsf{T}} + \lambda \mathbf{I}_{n}) (\boldsymbol{\Sigma}_{f}\mathbf{V}_{f}^{\mathsf{T}}\mathbf{S}\mathbf{S}^{\mathsf{T}}\mathbf{V}_{f}\boldsymbol{\Sigma}_{f}^{\mathsf{T}} + \lambda \mathbf{I}_{n})^{-1}\mathbf{U}_{f}^{\mathsf{T}}\mathbf{L}^{(j)}$$

$$= \mathbf{U}_{f} (\boldsymbol{\Sigma}_{f}\boldsymbol{\Sigma}_{f}^{\mathsf{T}} + \lambda \mathbf{I}_{h}) (\boldsymbol{\Sigma}_{f}\mathbf{V}_{f}^{\mathsf{T}}\mathbf{S}\mathbf{S}^{\mathsf{T}}\mathbf{V}\boldsymbol{\Sigma}_{f}^{\mathsf{T}} + \lambda \mathbf{I}_{h})^{-1}\mathbf{U}_{f}^{\mathsf{T}}\mathbf{L}^{(j)}$$

$$= \mathbf{U}_{f} (\boldsymbol{\Sigma}_{f}\boldsymbol{\Sigma}_{h}^{\mathsf{T}}\mathbf{V}_{h}$$

Here, eqn. (38) holds because $\Sigma_{\lambda} \mathbf{V}^{\mathsf{T}} \mathbf{S} \mathbf{S}^{\mathsf{T}} \mathbf{V} \Sigma_{\lambda} = \Sigma_{\lambda}^{2} + \mathbf{E}$ and the fact that $\Sigma_{\lambda}^{2} + \lambda \Sigma_{\lambda} \Sigma^{-2} \Sigma_{\lambda} \in \mathbb{R}^{n \times n}$ is a diagonal matrix whose ith diagonal element satisfies

$$\left(\Sigma_{\lambda}^{2} + \lambda \Sigma_{\lambda} \Sigma^{-2} \Sigma_{\lambda}\right)_{ii} = \frac{\sigma_{i}^{2}}{\sigma_{i}^{2} + \lambda} + \frac{\lambda}{\sigma_{i}^{2} + \lambda} = 1,$$

for any $i = 1 \dots \rho$. Thus, we have $(\Sigma_{\lambda}^2 + \lambda \Sigma_{\lambda} \Sigma^{-2} \Sigma_{\lambda}) = \mathbf{I}_{\rho}$. Since $\|\mathbf{E}\|_2 < 1$, Proposition 7 implies that $(\mathbf{I}_{\rho} + \mathbf{E})^{-1}$ exists and

$$(\mathbf{I}_{\rho} + \mathbf{E})^{-1} = \mathbf{I}_{\rho} + \sum_{\ell=1}^{\infty} (-1)^{\ell} \mathbf{E}^{\ell} = \mathbf{I}_{\rho} + \mathbf{Q},$$

where $\mathbf{Q} = \sum_{\ell=1}^{\infty} (-1)^{\ell} \mathbf{E}^{\ell}$.

Thus, we rewrite eqn. (38) as

$$(\mathbf{A}\mathbf{A}^\mathsf{T} + \lambda \mathbf{I}_n)(\mathbf{A}\mathbf{S}\mathbf{S}^\mathsf{T}\mathbf{A}^\mathsf{T} + \lambda \mathbf{I}_n)^{-1}\mathbf{L}^{(j)}$$

$$= \mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\mathsf{T}} \mathbf{L}^{(j)} + \mathbf{U} (\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho}) \mathbf{\Sigma}^{-1} \mathbf{\Sigma}_{\lambda} (\mathbf{I}_{\rho} + \mathbf{E})^{-1} \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}$$

$$= \mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\mathsf{T}} \mathbf{L}^{(j)} + \mathbf{U} (\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho}) \mathbf{\Sigma}^{-1} \mathbf{\Sigma}_{\lambda} (\mathbf{I}_{\rho} + \mathbf{Q}) \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}$$

$$= \mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\mathsf{T}} \mathbf{L}^{(j)} + \mathbf{U} (\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho}) \mathbf{\Sigma}^{-1} \mathbf{\Sigma}_{\lambda}^{2} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)} + \mathbf{U} (\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho}) \mathbf{\Sigma}^{-1} \mathbf{\Sigma}_{\lambda} \mathbf{Q} \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}$$

$$= \mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\mathsf{T}} \mathbf{L}^{(j)} + \mathbf{U} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)} + \mathbf{U} (\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho}) \mathbf{\Sigma}^{-1} \mathbf{\Sigma}_{\lambda} \mathbf{Q} \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}$$

$$= (\mathbf{U} \mathbf{U}^{\mathsf{T}} + \mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\mathsf{T}}) \mathbf{L}^{(j)} + \mathbf{U} (\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho}) \mathbf{\Sigma}^{-1} \mathbf{\Sigma}_{\lambda} \mathbf{Q} \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}$$

$$= \mathbf{U}_{f} \mathbf{U}_{f}^{\mathsf{T}} \mathbf{L}^{(j)} + \mathbf{U} (\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho}) \mathbf{\Sigma}^{-1} \mathbf{\Sigma}_{\lambda} \mathbf{Q} \mathbf{\Sigma}_{\lambda} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}.$$
(40)

Eqn. (39) holds as $(\Sigma^2 + \lambda \mathbf{I}_{\rho})\Sigma^{-1}\Sigma_{\lambda}^2\Sigma^{-1} = \mathbf{I}_{\rho}$. Further, using the fact that $\mathbf{U}_f\mathbf{U}_f^{\mathsf{T}} = \mathbf{I}_n$, we rewrite eqn. (40) as

$$(\mathbf{A}\mathbf{A}^{\mathsf{T}} + \lambda \mathbf{I}_n)(\mathbf{A}\mathbf{S}\mathbf{S}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}} + \lambda \mathbf{I}_n)^{-1}\mathbf{L}^{(j)} = \mathbf{L}^{(j)} + \mathbf{U}(\mathbf{\Sigma}^2 + \lambda \mathbf{I}_n)\mathbf{\Sigma}^{-1}\mathbf{\Sigma}_{\lambda}\mathbf{Q}\mathbf{\Sigma}_{\lambda}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}. \tag{41}$$

Thus, combining eqns. (36) and (41), we have

$$\mathbf{L}^{(j+1)} = -\mathbf{U}(\mathbf{\Sigma}^2 + \lambda \mathbf{I}_{\rho})\mathbf{\Sigma}^{-1}\mathbf{\Sigma}_{\lambda}\mathbf{Q}\mathbf{\Sigma}_{\lambda}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}.$$
 (42)

Finally, using eqn. (42), we obtain

$$\begin{split} \|\boldsymbol{\Sigma}_{\lambda}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j+1)}\|_{2} &= \|\boldsymbol{\Sigma}_{\lambda}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{U}(\boldsymbol{\Sigma}^{2} + \lambda\mathbf{I}_{\rho})\boldsymbol{\Sigma}^{-1}\boldsymbol{\Sigma}_{\lambda}\mathbf{Q}\boldsymbol{\Sigma}_{\lambda}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}\|_{2} \\ &= \|\boldsymbol{\Sigma}_{\lambda}\boldsymbol{\Sigma}^{-1}(\boldsymbol{\Sigma}^{2} + \lambda\mathbf{I}_{\rho})\boldsymbol{\Sigma}^{-1}\boldsymbol{\Sigma}_{\lambda}\mathbf{Q}\boldsymbol{\Sigma}_{\lambda}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}\|_{2} \\ &= \|\mathbf{Q}\boldsymbol{\Sigma}_{\lambda}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}\|_{2} \leq \|\mathbf{Q}\|_{2}\|\boldsymbol{\Sigma}_{\lambda}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}\|_{2} \\ &\leq \varepsilon \|\boldsymbol{\Sigma}_{\lambda}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}\|_{2} \,, \end{split}$$

where the third equality holds as $\Sigma_{\lambda} \Sigma^{-1} (\Sigma^2 + \lambda \mathbf{I}_{\rho}) \Sigma^{-1} \Sigma_{\lambda} = \mathbf{I}_{\rho}$ and the last two steps follow from sub-multiplicativity and eqn. (34) respectively. This concludes the proof.

Proof of Theorem 1. Applying Lemma 6 iteratively, we get

$$\|\mathbf{\Sigma}_{\lambda}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(t)}\|_{2} \leq \varepsilon \|\mathbf{\Sigma}_{\lambda}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(t-1)}\|_{2} \leq \ldots \leq \varepsilon^{t-1}\|\mathbf{\Sigma}_{\lambda}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(1)}\|_{2}. \tag{43}$$

Now, from eqn (43), we apply sub-multiplicativity to obtain

$$\|\mathbf{\Sigma}_{\lambda}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(1)}\|_{2} = \|\mathbf{\Sigma}_{\lambda}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{\Omega}\|_{2} \le \|\mathbf{\Sigma}_{\lambda}\mathbf{\Sigma}^{-1}\|_{2}\|\mathbf{U}^{\mathsf{T}}\|_{2}\|\mathbf{\Omega}\|_{2} = \max_{1 \le i \le \rho} (\sigma_{i}^{2} + \lambda)^{-\frac{1}{2}} \le \lambda^{-\frac{1}{2}}, \tag{44}$$

Notice that $\mathbf{L}^{(1)} = \mathbf{\Omega}$ by definition. Also, $\mathbf{\Omega}^\mathsf{T}\mathbf{\Omega} = \mathbf{I}_c$ and thus $\|\mathbf{\Omega}\|_2 = 1$. Furthermore, we know that $\|\mathbf{U}^\mathsf{T}\|_2 = 1$ and $\|\mathbf{\Sigma}_\lambda\mathbf{\Sigma}^{-1}\|_2 = \max_{1 \leq i \leq \rho} (\sigma_i^2 + \lambda)^{-\frac{1}{2}}$ and the last inequality holds since $(\sigma_i^2 + \lambda)^{-\frac{1}{2}} \leq \lambda^{-\frac{1}{2}}$ for all $i = 1 \dots \rho$.

Finally, combining eqns. (22), (43) and (44), we conclude

$$\|(\mathbf{w} - \mathbf{m})^{\mathsf{T}}(\widehat{\mathbf{G}} - \mathbf{G})\|_{2} \leq \frac{\varepsilon^{t}}{\sqrt{\lambda}} \|\mathbf{V}\mathbf{V}^{\mathsf{T}}(\mathbf{w} - \mathbf{m})\|_{2},$$

which completes the proof.

Appendix D PROOF OF THEOREM 2

Lemma 9. For $j=1\ldots t$, let $\mathbf{L}^{(j)}$ and $\widetilde{\mathbf{G}}^{(j)}$ be the intermediate matrices in Algorithm 1, $\mathbf{G}^{(j)}$ be the matrix defined in eqn. (12) and \mathbf{R} be defined as in Lemma 3. Further, let $\mathbf{S} \in \mathbb{R}^{d \times s}$ be the sketching matrix and define $\widehat{\mathbf{E}} = \mathbf{V}^\mathsf{T} \mathbf{S} \mathbf{S}^\mathsf{T} \mathbf{V} - \mathbf{I}_\rho$. If eqn. (8) is satisfied, i.e., $\|\widehat{\mathbf{E}}\|_2 \leq \frac{\varepsilon}{2}$, then for all $j=1,\ldots,t$, we have

$$\|(\mathbf{w} - \mathbf{m})^{\mathsf{T}} (\widetilde{\mathbf{G}}^{(j)} - \mathbf{G}^{(j)})\|_{2} \le \varepsilon \|\mathbf{V}\mathbf{V}^{\mathsf{T}} (\mathbf{w} - \mathbf{m})\|_{2} \|\mathbf{R}^{-1} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}\|_{2}, \tag{45}$$

where $\mathbf{R} = \mathbf{I}_{\rho} + \lambda \mathbf{\Sigma}^{-2}$.

Proof. Note that $\mathbf{\Sigma}_{\lambda}^2 = \mathbf{R}^{-1}$. Applying Lemma 3, we can express $\mathbf{G}^{(j)}$ as

$$\mathbf{G}^{(j)} = \mathbf{V}\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}.\tag{46}$$

Next, rewriting eqn. (30) gives

$$\widetilde{\mathbf{G}}^{(j)} = \mathbf{V} \mathbf{\Sigma} (\mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} \mathbf{S} \mathbf{S}^{\mathsf{T}} \mathbf{V} \mathbf{\Sigma} + \lambda \mathbf{I}_{\rho})^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}
= \mathbf{V} \mathbf{\Sigma} (\mathbf{\Sigma} (\mathbf{I}_{\rho} + \widehat{\mathbf{E}}) \mathbf{\Sigma} + \lambda \mathbf{I}_{\rho})^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)} = \mathbf{V} \mathbf{\Sigma} \mathbf{\Sigma}^{-1} (\mathbf{I}_{\rho} + \widehat{\mathbf{E}} + \lambda \mathbf{\Sigma}^{-2})^{-1} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}
= \mathbf{V} (\mathbf{R} + \widehat{\mathbf{E}})^{-1} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)} = \mathbf{V} (\mathbf{R} (\mathbf{I}_{\rho} + \mathbf{R}^{-1} \widehat{\mathbf{E}}))^{-1} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}.$$
(47)

Further, notice that

$$\|\mathbf{R}^{-1}\widehat{\mathbf{E}}\|_{2} \leq \|\mathbf{R}^{-1}\|_{2}\|\widehat{\mathbf{E}}\|_{2} \leq \|\mathbf{R}^{-1}\|_{2} \cdot \frac{\varepsilon}{2} = \left(\frac{\sigma_{1}^{2}}{\sigma_{1}^{2} + \lambda}\right) \frac{\varepsilon}{2} \leq \frac{\varepsilon}{2} < 1. \tag{49}$$

Now, Proposition 7 implies that $(\mathbf{I}_{\rho} + \mathbf{R}^{-1}\widehat{\mathbf{E}})^{-1}$ exists. Let $\widehat{\mathbf{Q}} = \sum_{\ell=1}^{\infty} (-1)^{\ell} (\mathbf{R}^{-1}\widehat{\mathbf{E}})^{\ell}$, we have

$$(\mathbf{I}_{\rho} + \mathbf{R}^{-1}\widehat{\mathbf{E}})^{-1} = \mathbf{I}_{\rho} + \sum_{\ell=1}^{\infty} (-1)^{\ell} (\mathbf{R}^{-1}\widehat{\mathbf{E}})^{\ell} = \mathbf{I}_{\rho} + \widehat{\mathbf{Q}}.$$

Thus, we can rewrite eqn. (48) as

$$\widetilde{\mathbf{G}}^{(j)} = \mathbf{V}(\mathbf{I}_{\rho} + \widehat{\mathbf{Q}})\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}
= \mathbf{V}\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)} + \mathbf{V}\widehat{\mathbf{Q}}\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}
= \mathbf{G}^{(j)} + \mathbf{V}\widehat{\mathbf{Q}}\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)},$$
(50)

where eqn. (50) follows eqn. (46). Further, using eqn. (49), we have

$$\|\widehat{\mathbf{Q}}\|_{2} = \|\sum_{\ell=1}^{\infty} (-1)^{\ell} (\mathbf{R}^{-1}\widehat{\mathbf{E}})^{\ell}\|_{2} \le \sum_{\ell=1}^{\infty} \|(\mathbf{R}^{-1}\widehat{\mathbf{E}})^{\ell}\|_{2} \le \sum_{\ell=1}^{\infty} \|\mathbf{R}^{-1}\widehat{\mathbf{E}}\|_{2}^{\ell} \le \sum_{\ell=1}^{\infty} \left(\frac{\varepsilon}{2}\right)^{\ell} = \frac{\varepsilon/2}{1 - \varepsilon/2} \le \varepsilon, \tag{51}$$

where we used the triangle inequality, sub-multiplicativity of the spectral norm, and the fact that $\varepsilon \leq 1$. Next, we combine eqns. (50) and (51) to get

$$\|(\mathbf{w} - \mathbf{m})^{\mathsf{T}} (\widetilde{\mathbf{G}}^{(j)} - \mathbf{G}^{(j)})\|_{2} = \|(\mathbf{w} - \mathbf{m})^{\mathsf{T}} \mathbf{V} \widehat{\mathbf{Q}} \mathbf{R}^{-1} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}\|_{2}$$

$$\leq \|(\mathbf{w} - \mathbf{m})^{\mathsf{T}} \mathbf{V}\|_{2} \|\widehat{\mathbf{Q}}\|_{2} \|\mathbf{R}^{-1} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}\|_{2}$$

$$\leq \varepsilon \|(\mathbf{w} - \mathbf{m})^{\mathsf{T}} \mathbf{V}\|_{2} \|\mathbf{R}^{-1} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}\|_{2}$$

$$= \varepsilon \|(\mathbf{w} - \mathbf{m})^{\mathsf{T}} \mathbf{V} \mathbf{V}^{\mathsf{T}}\|_{2} \|\mathbf{R}^{-1} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}\|_{2}$$

$$= \varepsilon \|\mathbf{V} \mathbf{V}^{\mathsf{T}} (\mathbf{w} - \mathbf{m})\|_{2} \|\mathbf{R}^{-1} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{L}^{(j)}\|_{2},$$
(52)

where the first inequality follows from sub-multiplicativity and the second last equality holds due to the unitary invariance of the spectral norm. This concludes the proof. \Box

Remark 10. Repeated application of Lemmas 5 and 9 yields:

$$\|(\mathbf{w} - \mathbf{m})^{\mathsf{T}}(\widehat{\mathbf{G}} - \mathbf{G})\|_{2} = \|(\mathbf{w} - \mathbf{m})^{\mathsf{T}}(\sum_{j=1}^{t} \widetilde{\mathbf{G}}^{(j)} - \mathbf{G})\|_{2} = \|(\mathbf{w} - \mathbf{m})^{\mathsf{T}}(\widetilde{\mathbf{G}}^{(t)} - (\mathbf{G} - \sum_{j=1}^{t-1} \widetilde{\mathbf{G}}^{(j)}))\|_{2}$$

$$= \|(\mathbf{w} - \mathbf{m})^{\mathsf{T}}(\widetilde{\mathbf{G}}^{(t)} - \mathbf{G}^{(t)})\|_{2} \le \varepsilon \|\mathbf{V}\mathbf{V}^{\mathsf{T}}(\mathbf{w} - \mathbf{m})\|_{2} \|\mathbf{R}^{-1}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(t)}\|_{2}. \tag{53}$$

The next bound provides a critical inequality that can be used recursively in order to establish Theorem 2.

Lemma 11. Let $\mathbf{L}^{(j)}$, $j=1,\ldots,t$, be the matrices of Algorithm 1 and \mathbf{R} is as defined in Lemma 3. For any $j=1,\ldots,t-1$, define $\widehat{\mathbf{E}}=\mathbf{V}^\mathsf{T}\mathbf{S}\mathbf{S}^\mathsf{T}\mathbf{V}-\mathbf{I}_\rho$. If eqn. (8) is satisfied i.e. $\|\widehat{\mathbf{E}}\|_2 \leq \frac{\varepsilon}{2}$, then

$$\|\mathbf{R}^{-1}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j+1)}\|_{2} \leq \varepsilon \|\mathbf{R}^{-1}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}\|_{2}.$$
 (54)

Proof. From Algorithm 1, we have for j = 1, ..., t - 1,

$$\mathbf{L}^{(j+1)} = \mathbf{L}^{(j)} - \lambda \mathbf{Y}^{(j)} - \mathbf{A}\widetilde{\mathbf{G}}^{(j)} = \mathbf{L}^{(j)} - (\mathbf{A}\mathbf{A}^{\mathsf{T}} + \lambda \mathbf{I}_n)(\mathbf{A}\mathbf{S}\mathbf{S}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}} + \lambda \mathbf{I}_n)^{-1}\mathbf{L}^{(j)}.$$
(55)

Rewriting eqn. (37), we have

$$(\mathbf{A}\mathbf{A}^{\mathsf{T}} + \lambda \mathbf{I}_{n})(\mathbf{A}\mathbf{S}\mathbf{S}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}} + \lambda \mathbf{I}_{n})^{-1}\mathbf{L}^{(j)}$$

$$= \mathbf{U}_{\perp}\mathbf{U}_{\perp}^{\mathsf{T}}\mathbf{L}^{(j)} + \mathbf{U}(\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho})(\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}}\mathbf{S}\mathbf{S}^{\mathsf{T}}\mathbf{V}\mathbf{\Sigma} + \lambda \mathbf{I}_{\rho})^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}$$

$$= \mathbf{U}_{\perp}\mathbf{U}_{\perp}^{\mathsf{T}}\mathbf{L}^{(j)} + \mathbf{U}(\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho})(\mathbf{\Sigma}(\mathbf{I}_{\rho} + \hat{\mathbf{E}})\mathbf{\Sigma} + \lambda \mathbf{I}_{\rho})^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}$$

$$= \mathbf{U}_{\perp}\mathbf{U}_{\perp}^{\mathsf{T}}\mathbf{L}^{(j)} + \mathbf{U}(\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho})\mathbf{\Sigma}^{-1}(\mathbf{I}_{\rho} + \hat{\mathbf{E}} + \lambda \mathbf{\Sigma}^{-2})^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}. \tag{56}$$

Here, eqn. (56) holds because $(\mathbf{I}_{\rho} + \widehat{\mathbf{E}} + \lambda \Sigma^{-2})$ is invertible since it is a positive definite matrix. In addition, using the fact that $\mathbf{R} = (\mathbf{I}_{\rho} + \lambda \Sigma^{-2})$, we rewrite eqn. (56) as

$$(\mathbf{A}\mathbf{A}^{\mathsf{T}} + \lambda \mathbf{I}_{n})(\mathbf{A}\mathbf{S}\mathbf{S}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}} + \lambda \mathbf{I}_{n})^{-1}\mathbf{L}^{(j)}$$

$$= \mathbf{U}_{\perp}\mathbf{U}_{\perp}^{\mathsf{T}}\mathbf{L}^{(j)} + \mathbf{U}(\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho})\mathbf{\Sigma}^{-1}(\mathbf{R} + \hat{\mathbf{E}})^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}$$

$$= \mathbf{U}_{\perp}\mathbf{U}_{\perp}^{\mathsf{T}}\mathbf{L}^{(j)} + \mathbf{U}(\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho})\mathbf{\Sigma}^{-1}\left(\mathbf{R}(\mathbf{I}_{\rho} + \mathbf{R}^{-1}\hat{\mathbf{E}})\right)^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}$$

$$= \mathbf{U}_{\perp}\mathbf{U}_{\perp}^{\mathsf{T}}\mathbf{L}^{(j)} + \mathbf{U}(\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho})\mathbf{\Sigma}^{-1}(\mathbf{I}_{\rho} + \mathbf{R}^{-1}\hat{\mathbf{E}})^{-1}\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}$$

$$= \mathbf{U}_{\perp}\mathbf{U}_{\perp}^{\mathsf{T}}\mathbf{L}^{(j)} + \mathbf{U}(\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho})\mathbf{\Sigma}^{-1}(\mathbf{I}_{\rho} + \hat{\mathbf{Q}})\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}$$

$$= \mathbf{U}_{\perp}\mathbf{U}_{\perp}^{\mathsf{T}}\mathbf{L}^{(j)} + \mathbf{U}(\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho})\mathbf{\Sigma}^{-1}\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)} + \mathbf{U}(\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho})\mathbf{\Sigma}^{-1}\hat{\mathbf{Q}}\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}$$

$$= (\mathbf{U}\mathbf{U}^{\mathsf{T}} + \mathbf{U}_{\perp}\mathbf{U}_{\perp}^{\mathsf{T}})\mathbf{L}^{(j)} + \mathbf{U}(\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho})\mathbf{\Sigma}^{-1}\hat{\mathbf{Q}}\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}$$

$$= \mathbf{U}_{f}\mathbf{U}_{f}^{\mathsf{T}}\mathbf{L}^{(j)} + \mathbf{U}(\mathbf{\Sigma}^{2} + \lambda \mathbf{I}_{\rho})\mathbf{\Sigma}^{-1}\hat{\mathbf{Q}}\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}.$$
(57)

The second and third equalities follow from Proposition 7 (using eqn. (49)) and the fact that \mathbf{R}^{-1} exists. Further, $\widehat{\mathbf{Q}}$ is as defined as in Lemma 9. Moreover, the second last equality holds as $(\mathbf{\Sigma}^2 + \lambda \mathbf{I}_{\rho})\mathbf{\Sigma}^{-1}\mathbf{R}^{-1}\mathbf{\Sigma}^{-1} = \mathbf{I}_{\rho}$. Now, using the fact that $\mathbf{U}_f \mathbf{U}_f^\mathsf{T} = \mathbf{I}_n$, we rewrite eqn. (57) as

$$(\mathbf{A}\mathbf{A}^{\mathsf{T}} + \lambda \mathbf{I}_n)(\mathbf{A}\mathbf{S}\mathbf{S}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}} + \lambda \mathbf{I}_n)^{-1}\mathbf{L}^{(j)} = \mathbf{L}^{(j)} + \mathbf{U}(\mathbf{\Sigma}^2 + \lambda \mathbf{I}_\rho)\mathbf{\Sigma}^{-1}\widehat{\mathbf{Q}}\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}.$$
(58)

Thus, combining, eqns. (55) and (58), we have

$$\mathbf{L}^{(j+1)} = -\mathbf{U}(\mathbf{\Sigma}^2 + \lambda \mathbf{I}_{\rho})\mathbf{\Sigma}^{-1}\widehat{\mathbf{Q}}\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}.$$
 (59)

Finally, from eqn. (59), we obtain

$$\|\mathbf{R}^{-1}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j+1)}\|_{2} = \|\mathbf{R}^{-1}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{U}(\boldsymbol{\Sigma}^{2} + \lambda\mathbf{I}_{\rho})\boldsymbol{\Sigma}^{-1}\widehat{\mathbf{Q}}\mathbf{R}^{-1}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}\|_{2}$$

$$= \|\mathbf{R}^{-1}\boldsymbol{\Sigma}^{-1}(\boldsymbol{\Sigma}^{2} + \lambda\mathbf{I}_{\rho})\boldsymbol{\Sigma}^{-1}\widehat{\mathbf{Q}}\mathbf{R}^{-1}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}\|_{2}$$

$$= \|\widehat{\mathbf{Q}}\mathbf{R}^{-1}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}\|_{2} \leq \|\widehat{\mathbf{Q}}\|_{2}\|\mathbf{R}^{-1}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}\|_{2}$$

$$\leq \varepsilon \|\mathbf{R}^{-1}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(j)}\|_{2}, \tag{60}$$

where the third equality holds as $\mathbf{R}^{-1}\Sigma^{-1}(\Sigma^2 + \lambda \mathbf{I}_{\rho})\Sigma^{-1} = \mathbf{I}_{\rho}$ and the last two steps follow from sub-multiplicativity and eqn. (51) respectively. This concludes the proof.

Proof of Theorem 2. Applying Lemma 11 iteratively, we have

$$\|\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(t)}\|_{2} \le \varepsilon \|\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(t-1)}\|_{2} \le \ldots \le \varepsilon^{t-1} \|\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(1)}\|_{2}. \tag{61}$$

Now, from eqn (61) and noticing that $\mathbf{L}^{(1)} = \mathbf{\Omega}$ by definition, we have

$$\|\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{L}^{(1)}\|_{2} \leq \|\mathbf{R}^{-1}\mathbf{\Sigma}^{-1}\|_{2}\|\mathbf{U}^{\mathsf{T}}\|_{2}\|\mathbf{\Omega}\|_{2} = \max_{1 \leq i \leq \rho} \left\{ \frac{\sigma_{i}}{\sigma_{i}^{2} + \lambda} \right\} \leq \frac{1}{2\sqrt{\lambda}},$$
 (62)

where we used sub-multiplicativity and the facts that $\|\mathbf{U}^{\mathsf{T}}\|_2 = 1$, $\mathbf{\Omega}^{\mathsf{T}}\mathbf{\Omega} = \mathbf{I}_c$, and $\|\mathbf{\Omega}\|_2 = 1$. The last step in eqn. (62) holds since for all $i = 1 \dots \rho$,

$$(\sigma_i - \sqrt{\lambda})^2 \ge 0 \quad \Rightarrow \quad \sigma_i^2 + \lambda \ge 2\sigma_i\sqrt{\lambda} \quad \Rightarrow \quad \frac{\sigma_i}{\sigma_i^2 + \lambda} \le \frac{1}{2\sqrt{\lambda}}.$$
 (63)

Finally, combining eqns. (53), (61) and (62), we obtain

$$\|(\mathbf{w} - \mathbf{m})^{\mathsf{T}}(\widehat{\mathbf{G}} - \mathbf{G})\|_2 \le \frac{\varepsilon^t}{2\sqrt{\lambda}} \|\mathbf{V}\mathbf{V}^{\mathsf{T}}(\mathbf{w} - \mathbf{m})\|_2,$$

which concludes the proof.

Appendix E SAMPLING-BASED CONSTRUCTIONS

We now discuss how to satisfy the conditions of eqns. (5) or (8) by *sampling*, *i.e.*, selecting a small number of features. Towards that end, consider Algorithm 3 for the construction of the sampling-and-rescaling matrix \mathbf{S} . Finally, the next result appeared in [6] as Theorem 3 and is a strengthening of Theorem 4.2 of [20], since the sampling complexity s is improved to depend only on $\|\mathbf{Z}\|_F^2$ instead of the stable rank of \mathbf{Z} when $\|\mathbf{Z}\|_2 \le 1$. We also note that Lemma 12 is implicit in [8].

Algorithm 3 Sampling-and-rescaling matrix

Input: Sampling probabilities p_i , $i=1,\ldots,d;$ number of sampled columns $s\ll d;$

 $\mathbf{S} \leftarrow \mathbf{0}_{d \times s};$

for t = 1 to s do

Pick $i_t \in \{1, \dots, d\}$ with $\mathbb{P}(i_t = i) = p_i$; $\mathbf{S}_{i_t t} = 1/\sqrt{s \, p_{i_t}}$;

end for

Output: Return S;

Lemma 12. Let $\mathbf{Z} \in \mathbb{R}^{d \times n}$ with $\|\mathbf{Z}\|_2 \leq 1$ and let \mathbf{S} be constructed by Algorithm 3 with

$$s \ge \frac{8\|\mathbf{Z}\|_F^2}{3\,\varepsilon^2} \ln\left(\frac{4\,(1+\|\mathbf{Z}\|_F^2)}{\delta}\right),\,$$

then, with probability at least $1 - \delta$,

$$\|\mathbf{Z}^\mathsf{T}\mathbf{S}\mathbf{S}^\mathsf{T}\mathbf{Z} - \mathbf{Z}^\mathsf{T}\mathbf{Z}\|_2 \le \varepsilon.$$

Applying Lemma 12 with $\mathbf{Z} = \mathbf{V}\boldsymbol{\Sigma}_{\lambda}$, we can satisfy the condition of eqn. (5) using the sampling probabilities $p_i = \|(\mathbf{V}\boldsymbol{\Sigma}_{\lambda})_{i*}\|_2^2/d_{\lambda}$ (recall that $\|\mathbf{V}\boldsymbol{\Sigma}_{\lambda}\|_F^2 = d_{\lambda}$ and $\|\mathbf{V}\boldsymbol{\Sigma}_{\lambda}\|_2 \le 1$). It is easy to see that these probabilities are exactly proportional to the column ridge leverage scores of the design matrix \mathbf{A} . Setting $s = \mathcal{O}(\varepsilon^{-2}d_{\lambda}\ln d_{\lambda})$ suffices to satisfy the condition of eqn. (5). We note that approximate ridge leverage scores also suffice and that their computation can be done efficiently without computing \mathbf{V} [8]. Finally, applying Lemma 12 with $\mathbf{Z} = \mathbf{V}$ we can satisfy the condition of eqn. (8) by simply using the sampling probabilities $p_i = \|\mathbf{V}_{i*}\|_2^2/\rho$ (recall that $\|\mathbf{V}\|_F^2 = \rho$ and $\|\mathbf{V}\|_2 = 1$), which correspond to the column leverage scores of the design matrix \mathbf{A} . Setting $s = \mathcal{O}(\varepsilon^{-2}\rho\ln\rho)$ suffices to satisfy the condition of eqn. (8). We note that approximate leverage scores also suffice and that their computation can be done efficiently without computing \mathbf{V} [13].

Appendix F SKETCH-SIZE REQUIREMENTS FOR STRUCTURAL CONDITIONS

We provide details on the sketch-size requirements for satisfying the structual conditions of eqns. (5) or (8) when various constructions of the sketching matrix ${\bf S}$ are used. It was shown in [9] that eqn. (11) can be achieved using a count-sketch matrix ${\bf S}$ with $s=\mathcal{O}(\frac{r}{\delta\varepsilon^2})$ columns or an SRHT matrix ${\bf S}$ with $s=\mathcal{O}(\varepsilon^{-2}(r+\log(1/\varepsilon\delta))\log\frac{r}{\delta})$ columns (here, δ is the failure probability). As discussed in Section 2.2, setting $r=d_\lambda$ or $r=\rho$ in eqn. (11) for eqns. (5) or (8), respectively, we obtain the sketch-size requirements summarized in Table 1.

Appendix G ADDITIONAL EXPERIMENT RESULTS

Table 2 shows the CPU wall-clock times for running RFDA (on a single-core Intel Xeon E5-2660 CPU at 2.6GHz) by either computing G exactly in eqn. (3) or via our iterative algorithm. For both datasets, we report the per-iteration runtime of our algorithm with various sketching-matrix constructions using a sketch size of s = 5,000.

	Count-sketch	SRHT	Sampling (Appendix E)
Eqn. (5)	$s = \mathcal{O}\left(\frac{d_{\lambda}}{\delta \varepsilon^2}\right)$	$s = \mathcal{O}\left(\frac{d_{\lambda} + \log(1/\epsilon\delta)}{\epsilon^2}\log\frac{d_{\lambda}}{\delta}\right)$	$s = \mathcal{O}\left(\frac{d_{\lambda}\log(d_{\lambda}/\delta)}{\varepsilon^2}\right)$
Eqn. (8)	$s = \mathcal{O}\left(\frac{\rho}{\delta \varepsilon^2}\right)$	$s = \mathcal{O}\left(\frac{\rho + \log(1/\epsilon\delta)}{\epsilon^2}\log\frac{\rho}{\delta}\right)$	$s = \mathcal{O}\left(\frac{\rho \log(\rho/\delta)}{\varepsilon^2}\right)$

Table 1: Sketch-size requirements for satisfying eqns. (5) or (8) with probability at least $1 - \delta$.

Dataset	SVD	Exact	Uniform	Leverage	Ridge leverage	Count-sketch
ORL	1.335	0.232	0.101	0.101	0.101	0.103
PEMS	35.781	3.770	0.917	0.892	0.899	0.970

Table 2: CPU wall-clock times (in seconds) for RFDA on ORL and PEMS.

As noted in Section 5, we conjecture that using independent sampling matrices in each iteration of Algorithm 1 (i.e., introducing new "randomness" in each iteration) could lead to improved bounds for our main theorems. We evaluate this conjecture empirically by comparing the performance of Algorithm 1 using either a single sketching matrix S (the setup in the main paper) or sampling (independently) a new sketching matrix at every iteration j.

Figure 3 shows the relative approximation error vs. number of iterations on the PEMS dataset for increasing sketch sizes. Figure 4 plots the relative approximation error vs. sketch size after 10 iterations of Algorithm 1 were run. We observe that using a newly sampled sketching matrix at every iteration enables faster convergence as the iterations progress, and also reduces the sketch size s necessary for Algorithm 1 to converge.

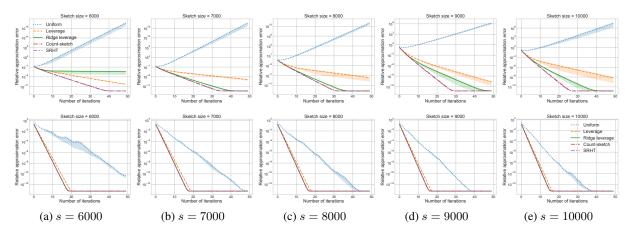


Figure 3: Relative approximation error (on log-scale) vs. number of iterations on PEMS dataset for increasing sketch size s. Top row: using a single sketching matrix S throughout. Bottom row: sample a new S_j at every iteration j.

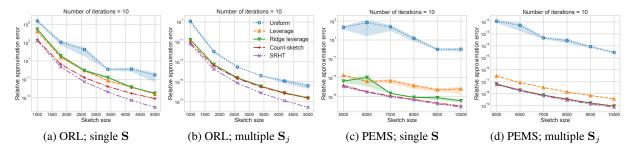


Figure 4: Relative approximation error vs. sketch size on ORL and PEMS after 10 iterations. Single S: using a single sketching matrix S throughout the iterations. Multiple S_j : sample a new S_j at every iteration j. Errors are on log-scale; note the difference in magnitude of the approximation errors across plots.