
APPENDIX

A ON THE UNIDENTIFIABILITY OF
NONLINEAR ICA

The purpose of this section is to briefly review the proof
of unidentifiablity of nonlinear ICA as [22]: In this sec-
tion we assume the most general conventional form of
nonlinear ICA where the generative model follows:

x = f(s) (22)

where s are the independent sources and x are mixed
signals. In the following, we show how to construct a
function g : Rn → Rn so that the components y = g(x)
are independent. More importantly, we show that this
construction is by no means unique.

A.1 EXISTENCE

The proposed method in [22] is a generalization of the
famous Gram-Schmidt orthogonalization. Given m in-
dependent variables, y1, . . . , ym and a variable x, one
constructs a new variable ym+1 = g(y1, . . . , ym, x)
so that the set y1s, . . . , ym+1 is mutually independent.
The construction process is defined recursively as fol-
lows. Assume we have m independent random variables
y1, . . . , ym with uniform distribution in [0, 1]m. x is any
random variable and a1, . . . , am, b are some nonrandom
scalars. Next, we define

g (a1, . . . , am, b; py,x) = p(x ≤ b|y1 = a1, . . . , ym = am)

=

∫ b
−∞ py,x (a1, . . . , am, ξ) dξ

py (a1, . . . , am)
(23)

Theorem 1 of [22] says that the random variable defined
as ym+1 = g(y1, . . . , ym, x) is independent from the
y1 . . . , ym and y1, . . . , ym+1 are uniformly distributed in
the unit cube [0, 1]m+1.

A.2 NON-UNIQUENESS

In the previous section, it was shown that there exists a
mapping g that transforms any random vector x into a
uniformly distributed random vector y = g(x). Here,
we show that the construction of g is not unique and this
non-Uniqueness can be caused by several factors.

• A linear transformation x′ can precede the nonlin-
ear map f and then compute the independent com-
ponents y′ = g′(x′) where g′ is computed as de-
scribe in the previous section. The new map g′ gives

Figure 4: The Rosetta Stone, a stele found in 1799, in-
scribed with three versions of a decree issued at Mem-
phis, Egypt in 196 BC. The top and middle texts are in
Ancient Egyptian using hieroglyphic script and Demotic
script, respectively, while the bottom is in Ancient Greek.
(Source: Wikipedia)

a new decomposition of x into independent compo-
nents y′ which can not be trivially reduced to y.

• An element-wise function h can apply on the inde-
pendent sources s first to give new sources s′ such
that s′i = hi(si). Constructing the solution g for
these new scaled version of sources gives a new de-
composition into independent components.

• Assume a class of measure-preserving automor-
phisms h : [0, 1]n → [0, 1]n. The mapping
h does not change the probability distribution
of a uniformly distributed random variable in n-
dimensional hypercube. The composition h ◦ g
gives another solution to nonlinear ICA. There-
fore, the class of measure-preserving automor-
phisms gives a parameterization of the solutions to
nonlinear ICA introducing a class of non-trivial in-
determinacies.

If only independence among the components matters, it
is possible to construct a mapping y = G(x) such that
yi is independent of yj for i 6= j and uniformely dis-
tributed in [0, 1]n. This shows that at least one solution
exists. The non-uniqueness of the solution can be shown
by parameterising a class of infinitely many solutions.
Once y is found with above conditions, any measure-
preserving automorphism f : [0, 1]n → [0, 1]n can be
used to parameterize G as f ◦ G, suggesting that there



are infinitely many solutions to nonlinear ICA whose re-
lations are nontrivial.

A.3 THE SCALAR INVERTIBLE FUNCTION
GAUGE

Another indeterminacy is element-wise functions fi ap-
plying on yi which suggets another dimension of ambi-
guity. Non-Gaussianity cannot help here since we can
construct any marginal distribution by combining the
CDF of the observed variable with the inverse CDF of
the target marginal distribution. This indeterminacy is
in some sense unavoidable and is related to the fact that
in linear ICA recovery of the sources is possible up to a
scalar multiplicative ambiguity.

B WHY DOES CLASSIFICATION
RESULT IN THE LOG RATIO?

Let us suppose that a variable X is drawn with equal
probability from two distributions P0 and P1 with den-
sities p0(x) and p1(x) respectively. We train a classifier
D : x 7→ [0, 1] to estimate the posterior probability that
a particular realization of X was drawn from P0 with the
cross entropy loss, i.e. the parameters of D are chosen to
minimize

L(D) = EX∼P0 [− logD(X)]+EX∼P1 [− log(1−D(X))] .

As shown in, for instance, [14], the global optimum of
this loss occurs when D(x) = p0(x)

p0(x)+p1(x)
, which can be

rewritten as

D(x) =
1

1 + p1(x)/p0(x)
(24)

=
1

1 + exp(− log(p0(x)/p1(x)))
(25)

(26)

Recall that in our setting, the function r(x1, x2) is trained
to classify between the two cases that (x1, x2) is drawn
from the joint distribution Px1,x2

(class 0) or the prod-
uct of marginals Px1

Px2
(class 1). r(x1, x2) is trained so

that 1
1+exp(−r(x1,x2))

estimates the posterior probability
of (x1, x2) belonging to class 0. By comparing to Equa-
tion 25, it can be seen that

r(x1, x2) = log (p(x1, x2)/p(x1)p(x2))

= log p(x1|x2)− log p(x1)

= log p(x2|x1)− log p(x2)

Note that in order for the classification trick of con-
trastive learning to be useful, the variables x1 and x2
cannot be deterministically related. If this is the case,
the log-ratio is everywhere either 0 or ∞ and hence the
learned features are not useful.

To see why this is the case, suppose that x1, and x2 are
each N -dimensional vectors. If they are deterministi-
cally related, p(x1, x2) puts mass on an N -dimensional
submanifold of a 2N -dimensional space. On the other
hand, p(x1)p(x2) will put mass on a 2N -dim manifold
since it is the product of two distributions each of which
are N-dimensional.

In this case, the distributions p(x1, x2) and p(x1)p(x2)
are therefore not absolutely continuous with respect
to one another and thus the log-ratio is ill-defined:
p(x1, x2)/p(x1)p(x2) = ∞ at any point (x1, x2) at
which p(x1, x2) puts mass and zero at points where
p(x1)p(x2) puts mass and p(x1, x2) does not.

C THE SUFFICIENTLY DISTINCT
VIEWS ASSUMPTION

We give the following two examples to provide intuition
about the Sufficiently Distinct Views (SDV) assumption
- one regarding a case in which it does not hold, and an-
other one in which it does.

A simple case in which the assumption does not hold is
when the conditional probability of z given s is Gaus-
sian, as in

p(z|s) =
1

Z
exp

[
−
∑
i

(zi − si)2/(2σ2
i )

]
, (27)

where Z is the normalization factor, Z = (2π)n/2
∏
i σi.

Since taking second derivatives of the log-probability
with respect to si results in constants, it can be eas-
ily shown that there is no way to find 2D vectors zj ,
j = 1, . . . , 2D, such that the corresponding w(s, zj)
(see Definition 1) are linearly independent.

The fact that the assumption breaks down in this case is
reminiscent of the breakdown in the case of Gaussianity
for linear ICA. Interestingly, in our work, the true latent



sources are allowed to be Gaussian. In fact, the distribu-
tion of s does not enter the expression above.

An example in which the SDV assumption does hold is a
conditional pdf given by

p(z|s) =
1

Z(s)
exp

[
−
∑
i

(z2i s
2
i + z4i s

4
i )

]
, (28)

where Z(s) is again a normalization function. Prov-
ing that this distribution satisfies the SDV assumption
requires a few lines of computation. The idea is that
w(s, z) can be written as the product of a matrix and
vector which are functions only of s and z respectively.
Once written in this form, it is straightforward to show
that the columns of the matrix are linearly independent
for almost all values of s and that 2D linearly indepen-
dent vectors can be realized by different choices of z.

D PROOF OF THEOREM 1 AND
COROLLARY 3

D.1 PROOF OF THEOREM 1

This proof is mainly inspired by the techniques employed
by [23].

Proof. We have to show that, upon convergence, hi(x1)
are s.t.

hi(x1) ⊥⊥ hj(x1),∀i 6= j

We start by writing the difference in log-densities of the
two classes:∑

i

ψi(hi(x1),x2) =
∑
i

αi(f
−1
1,i (x1),f−12,i (x2))+

−
∑
i

δi(f
−1
2,i (x2))

We now make the change of variables

y = h(x1)

v(y) = f−11 (h−1(y))

t = f−12 (x2))

and rewrite the first equation in the following form:∑
i

ψi(yi,x2) =
∑
i

αi(vi(y), ti) (29)

−
∑
i

δi(ti) (30)

We take derivatives with respect to yj , yj′ , j 6= j′, of the
LHS and RHS of equation 38. Adopting the conventions
in 9 and 10 and

vji (y) = ∂vi(y)/∂yj (31)

vjj
′

i (y) = ∂2vi(y)/∂yj∂yj′ , (32)

we have ∑
i

α′′i (vi(y), ti)v
j
i (y)vj

′

i (y)

+ α′i(vi(y), ti)v
jj′(y) = 0 ,

where taking derivative w.r.t. yj and y′j for j 6= j′

makes LHS equal to zero, since the LHS has functions
which depend only one yi each. If we now rearrange our
variables by defining vectors ai(y) collecting all entries
vji (y)vj

′

i (y), j = 1, . . . , n, j′ = 1, . . . , j − 1, and vec-
tors bi(y) with the variables vji (y)vj

′

i (y), j = 1, . . . , n,
j′ = 1, . . . , j − 1, the above equality can be rewritten as∑

i

α′′i (vi(y), ti)ai(y)

+ α′i(vi(y), ti))bi(y) = 0 .

The above expression can be recast in matrix form,

M(y)w(y, t) = 0 ,

where M(y) = (a1(y), . . . ,an(y), b1(y), . . . , bn(y))
and w(y, t) = (α′′1 , . . . , α

′′
n, α

′
1, . . . , α

′
n). M(y) is

therefore a n(n − 1)/2 × 2n matrix, and w(y, t) is a
2n dimensional vector.

To show thatM(y) is equal to zero, we invoke the SDV
assumption. This implies the existence of 2n linearly
independent w(y, tj). It follows that

M(y)[w(y, t1), . . . ,w(y, t2n)] = 0 ,

and hence M(y) is zero by elementary linear algebraic
results. It follows that vji (y) 6= 0 for at most one value
of j, since otherwise the product of two non-zero terms
would appear in one of the entries ofM(y), thus render-
ing it non-zero. Thus vi is a function only of one yj .

Observe that v(y) = s. We have just proven that
vi(yπ(i)) = si. Since vi is invertible, it follows that
hπ(i)(x1) = yπ(i) = v−1i (si) and hence the components
of h(x1) recover the components of s up to the invertible
component-wise ambiguity given by v, and the permuta-
tion ambiguity.



D.2 PROOF OF COROLLARY 3

Proof. This follows exactly by repeating the proof of
Theorem 1 where the roles of x1 and x2 are exchanged
and the regression function in the statement of the corol-
lary is used.

E PROOF OF THEOREMS 4 AND 5

Theorem 4 is a special case of Theorem 5 by considering
the case g1(s,n1) = s. We therefore prove only the
more general Theorem 5.

Proof. We have to show that, upon convergence, hi(x1)
and ki(x2) are such that

h1,i(x1) ⊥⊥ h1,j(x1),∀i 6= j (33)
h2,i(x2) ⊥⊥ h2,j(x2),∀i 6= j (34)
h1,i(x1) ⊥⊥ h2,j(x2),∀i 6= j. (35)

We start by exploiting Equations 14 and 15 to write the
difference in log-densities of the two classes∑

i

ψi(h1,i(x1), h2,i(x2))

=
∑
i

ηi(f
−1
1,i (x1),f−12,i (x2))−

∑
i

θi(f
−1
1,i (x1))

(36)

=
∑
i

λi(f
−1
2,i (x2),f−11,i (x1))−

∑
i

µi(f
−1
2,i (x2))

(37)

We now make the change of variables

y = h1(x1)

t = h2(x2)

v(y) = f−11 (h−11 (y))

u(t) = f−12 (h−12 (t))

and rewrite equation 36 in the following form:∑
i

ψi(yi, ti)

=
∑
i

ηi(vi(y), ui(t))−
∑
i

θi(vi(y)) (38)

We first want to prove the condition in Equation 33. We
will show this is true by proving that

vi(y) ≡ vi(yπ(i)) (39)

for some permutation of the indices π with respect to the
indexing of the sources s = (s1, . . . , sD).

We take derivatives with respect to yj , yj′ , j 6= j′, of the
LHS and RHS of equation 38, yielding∑

i

η′′i (vi(y), ui(t))v
j
i (y)vj

′

i (y)

+
∑
i

η′i(vi(y), ui(t))v
jj′(y) = 0

If we now rearrange our variables by defining vectors
ai(y) collecting all entries vji (y)vj

′

i (y), j = 1, . . . , n,
j′ = 1, . . . , j − 1, and vectors bi(y) with the variables
vji (y)vj

′

i (y), j = 1, . . . , n, j′ = 1, . . . , j − 1, the above
equality can be rewritten as

∑
i

η′′i (vi(y), ui(t))ai(y)

+ η′i(vi(y), ui(t))bi(y) = 0 .

Again following [23], we recast the above formula in ma-
trix form,

M(y)w(y, t) = 0 , (40)

where M(y) = (a1(y), . . . ,an(y), b1(y), . . . , bn(y))
andw(y, t) = (η′′1 , . . . , η

′′
n, η
′
1, . . . , η

′
n). M(y) is there-

fore a n(n − 1)/2 × 2n matrix, and w(y, t) is a 2n di-
mensional vector.

To show thatM(y) is equal to zero, we invoke the SDV
assumption on η. This implies the existence of 2n lin-
early independent w(y, tj). It follows that

M(y)[w(y, t1), . . . ,w(y, t2n)] = 0 ,

and hence M(y) is zero by elementary linear algebraic
results. It follows that vji (y) 6= 0 for at most one value
of j, since otherwise the product of two non-zero terms
would appear in one of the entries of M(y), thus ren-
dering it non-zero. Thus vi is a function only of one
yj = yπ(i).

Observe that v(y) = s. We have just proven that
vi(yπ(i)) = si. Since vi is invertible, it follows that
hπ(i)(x1) = yπ(i) = v−1i (si) and hence the components
of h(x1) recover the components of s up to the invertible
component-wise ambiguity given by v, and the permuta-
tion ambiguity.

For the condition in Equation 34, we need

ui(t) ≡ ui(tπ̃(i)) , (41)

where the permutation π̃ doesn’t need to be equal to
π. By symmetry, exactly the same argument as used



to prove the condition in Equation 39 holds, by replac-
ing (v,y,η,θ) with (u, t,λ,µ), noting that the SDV
assumption is also assumed for λ.

We have shown that y = h1(x1) and t = h2(x2) esti-
mate g1(s,n1) and g2(s,n2) up to two different gauges
of all possible scalar invertible functions.

A remaining ambiguity could be that the two repre-
sentations might be misaligned; that is, defining z1 =
g1(s,n1) and z2 = g2(s,n2), while

z1,i ⊥⊥ z2,j∀i 6= j (42)

we might have

yπ(i) ⊥⊥ tπ̃(j)∀i 6= j ,

where π(i), π̃(i) are two different permutations of the in-
dices i = 1, . . . , n. We want to show that this ambiguity
is also resolved; that means, our goal is to show that

yi ⊥⊥ tj , ∀i 6= j (43)

We recall that, by definition, we have vi(yπ(i)) = z1,i
and uj(tπ̃(j)) = z2,j . Then, due to equation 42,

vi(yπ(i)) ⊥⊥ uj(tπ̃(j)) ∀i 6= j (44)
=⇒ yπ(i) ⊥⊥ tπ̃(j) ∀i 6= j (45)

=⇒ yi ⊥⊥ tπ̃◦π−1(j) ∀i 6= j , (46)

where the implication 44-45 follows from invertibility
of vi and uj , and the implication 45-46 follows from
considering that, given that we know 45, we can define
l = π(j) and k = π(i) and have

yk ⊥⊥ tπ̃◦π−1(l) ∀k 6= l.

Define
τ = π̃ ◦ π−1

and note that it is a permutation. Then

yi ⊥⊥ tτ(j)∀i 6= j (47)

Fix any particular i. Our goal is to show that for any
j 6= i the independence relation in Equation 43 holds.
There are two possibilities:

i τ(i) = i

ii τ(i) 6= i

In the first case, τ restricted to the set {1, . . . , D} \ {i}
is still a permutation, and thus considering the indepen-
dences of Equation 47 for all j 6= i implies each of the
independences of Equation 43 and we are done.

Let us consider the second case. Then,

∃l ∈ {1, . . . , D} \ {i} s.t. l = τ(i) .

We then need to prove

yi ⊥⊥ tl , (48)

which is the only independence implied by Equation 43
which is not implied by Equation 47.

In order to do so, we rewrite equation 38, yielding∑
m

ψm(ym, tm)

=
∑
m

ηm(vm(yπ(m)), um(tπ̃(m)))−
∑
m

θi(vm(yπ(m)))

(49)

We now take derivative with respect to yi and tl in 48;
noting that π̃−1(l) = π−1(i), we get

0 =
∂2

∂vπ−1(i)∂uπ−1(i)
ηπ−1(i)(vπ−1(i)(yi), uπ−1(i)(tl))

× ∂

∂yi
vπ−1(i)(yi)

∂

∂tl
uπ−1(i)(tl) (50)

Since vπ−1(i)(yi) is a smooth and invertible function of
its argument, the set of yi such that ∂

∂yi
vπ−1(i)(yi) = 0

has measure zero. Similarly, ∂
∂tl
uπ−1(i)(tl) = 0 on a set

of measure zero.

It therefore follows that

∂

∂yi
vπ−1(i)(yi)

∂

∂tl
uπ−1(i)(tl) 6= 0

almost everywhere and hence that

∂2

∂vπ−1(i)∂uπ−1(i)
ηπ−1(i)(vπ−1(i)(yi), uπ−1(i)(tl)) = 0 .

(51)
almost everywhere. We can thus conclude that

ηπ−1(i)(vπ−1(i)(yi), uπ−1(i)(tl)) =

ηyπ−1(i)(vπ−1(i)(yi)) + ηtπ−1(i)(uπ−1(i)(tl))

This in turn implies that, for some functions A and B,
we can write

log p(z1,π−1(i)|z2,π−1(i))− log p(z1,π−1(i))

= A(vπ−1(i)(yi)) +B(uπ−1(i)(tl))

and therefore

log p(z1,π−1(i), z2,π−1(i)) = C(vπ−1(i)(yi)) +D(uπ−1(i)(tl))



for some functions C and D. This decomposition of the
log-pdf implies

z1,π−1(i) ⊥⊥ z2,π−1(i)

=⇒ z1,π−1(i) ⊥⊥ z2,π̃−1(l)

=⇒ vπ−1(i)(yi) ⊥⊥ uπ̃−1(l)(tl)

=⇒ yi ⊥⊥ tl ,

where the last implication holds due to invertibility of
vπ−1(i) and uπ̃−1(l).

We have thus concluded the proof.

F PROOF OF COROLLARY 6

Proof. Denoting by d(k)1 the component-wise invertible
ambiguity up to which g(s,n

(k)
1 ) is recovered, we have

that

inf
e∈E

Ex1

[∥∥∥s− e(h
(k)
1 (x1))

∥∥∥2
2

]
(52)

= inf
e∈E

E
(n

(k)
1 ,s)

[∥∥∥s− e ◦ d(k)1 ◦ g1(s,n
(k)
1 )
∥∥∥2
2

]
(53)

= inf
ẽ∈E

E
(n

(k)
1 ,s)

[∥∥∥s− ẽ ◦ g1(s,n
(k)
1 )
∥∥∥2
2

]
(54)

≤ E
(n

(k)
1 ,s)

[∥∥∥s− e∗ ◦ g1(s,n
(k)
1 )
∥∥∥2
2

]
(55)

The lower bound holds for any e∗ ∈ E by definition of
infimum and in particular for e∗ = g1|−1n=0, the existence
of which is guaranteed by the assumptions on g1. Taking
a Taylor expansion of e∗ ◦ g1(s,n

(k)
1 ) around n(k)

1 = 0
yields

E
(n

(k)
1 ,s)

[∥∥∥∥∥s− e∗ ◦ g1(s, 0)

+
∂e∗

∂g1

∂g1(s, 0)

∂n
(k)
1

· n(k)
1 +O(‖n(k)

1 ‖2)

∥∥∥∥∥
2

2


= E

(n
(k)
1 ,s)

∥∥∥∥∥∂e∗∂g1

∂g1(s, 0)

∂n
(k)
1

· n(k)
1 +O(‖n(k)

1 ‖2)

∥∥∥∥∥
2

2


−→ 0 as k −→∞

where the last equality follows from fact that e∗ =
g|−1n=0 and the convergence follows from the fact that
n

(k)
1 −→ 0 as k →∞.

G PROOF OF LEMMA 7

We will make crucial use of Kolmogorov’s strong law:

Theorem 9. Suppose that Xn is a sequence of indepen-
dent (but not necessarily identically distributed) random
variables with

∞∑
n=1

1

n2
Var[Xn] <∞

Then,

1

N

N∑
n=1

Xn − E[Xn]
a.s.−→ 0

Fix s and consider ΩNe (s,n) as a random variable with
randomness induced by n. We will show that for almost
all s this converges n-almost surely to a constant, and
hence ΩNe (s,n) converges almost surely to a function of
s.

The law of total expectation says that

Vars,ni [ei ◦ ki(s+ ni)]

= Es [Vi(s)] + Vars [Eni [ei ◦ ki(s+ ni)]]

≥ Es [Vi(s)] .

Since by assumption Vars,ni
[ei ◦ ki(s+ ni)] ≤ K, we

have that

Es

[ ∞∑
i=1

Vi(s)

i2

]
≤ Kπ2

6

and therefore
∑∞
i=1

Vi(s)
i2 < ∞ with probability 1 over

s, else the expectation above would be unbounded since
Vi(s) ≥ 0.

We have further that for almost all s,

Ωe(s) = lim
N→∞

1

N

N∑
i=1

Eei(s)

exists. Therefore, for almost all s the conditions of Kol-
mogorov’s strong law are met by ΩNe (s,n) and so

ΩNe (s,n)− En[ΩNe (s,n)]
n−a.s.−→ 0

Since En[ΩNe (s,n)]
n−a.s.−→ Ωe(s), it follows that

ΩNe (s,n)
n−a.s.−→ Ωe(s).

Since this holds with probability 1 over s, we have that

ΩNe (s,n)
n−a.s.−→ Ωe(s).

It follows that we can write

RNe,i(s,n) = ei ◦ ki(s+ ni)− ΩNe (s,n)
a.s.−→ Re,i(s,ni) := ei ◦ ki(s+ ni)− Ωe(s)



H PROOF OF THEOREM 8

We will begin by showing that if K ≥ Var(s) + C then
{k−1i } ∈ GK .

For ei = k−1i , we have that

ΩNe (s,n) =
1

N

N∑
i=1

s+ ni
a.s.−→ s = ΩNe (s)

RNi = s+ ni − Ωe(s,n)
a.s.−→ ni = Re,i(ni)

where the convergences follow from application of Kol-
mogorov’s strong law, using the fact that Var(ni) ≤ C
for all i. Satisfaction of condition 17 follows from the
fact that Vars,ni

(s + ni) ≤ C + Var(s) ≤ K. Since
s is a well-defined random variable, Ωe(s) < ∞ with
probability 1, satisfying condition 18. It follows from
the mutual independence ofni andnj thatRe,i andRe,j
satisfy condition 19. Condition 20 follows from the fact
that E[ni] = 0 Condition 21 follows from Re,i being
constant as a function of s.

It therefore follows that {k−1i } ∈ GK for K sufficiently
large.

We will next show that if {ei} ∈ GK then there exist a
matrix α and vector β such that ei = αk−1i + β for all
i. Since ei acts coordinate-wise, it moreover follows that
α is diagonal.

First, we will show that each ei ◦ ki is affine, i.e. there
exist potentially differentαi,βi such that ei = αik

−1
i +

βi for each i.

Then we will show that we must haveαi = αj and βi =
βj for all i, j.

To see that ei is affine, we make use of that fact that Re,i
is constant as a function of s. It follows that for any x
and y

ei ◦ ki(x+ y) = Re,i(x) + Ωe(y)

= Re,i(x) + Ωe(0) +Re,i(0) + Ωe(y)

− (Re,i(0) + Ωe(0))

= ei ◦ ki(x) + ei ◦ ki(y)− ei ◦ ki(0)

It therefore follows that ei◦ki is affine, since if we define

L(x+ y) = ei ◦ ki(x+ y)− ei ◦ ki(0)

= (ei ◦ ki(x)− ei ◦ ki(0))

+ (ei ◦ ki(y)− ei ◦ ki(0))

= L(x) + L(y)

then L is linear and we can write ei ◦ ki(x) as the sum
of a linear function and a constant:

ei ◦ ki(x) = L(x) + ei ◦ ki(0)

Thus ei◦ki is affine, and we have some (diagonal) matrix
αi and vector βi such that for any x

ei ◦ ki(x) = αix+ βi

=⇒ ei (x) = αik
−1
i x+ βi.

Next we show that for the set of {ei = αik
−1
i + βi}, it

must be the case that each αi = αj and βi = βj .

Observe that

ΩNe (s,n) =
1

N

N∑
i=1

αis+αini + βi

=

(
1

N

N∑
i=1

αi

)
s+

1

N

N∑
i=1

βi +
1

N

N∑
i=1

αini

En[ΩNe (s,n)] =

(
1

N

N∑
i=1

αi

)
s+

1

N

N∑
i=1

βi

Define

α = lim
N→∞

1

N

N∑
i=1

αi

β = lim
N→∞

1

N

N∑
i=1

βi

which exist by the assumption that ΩNe (s,n) converges
as N →∞. Thus

Ωe(s) = αs+ β

Re,i(s,ni) = (αi −α)s+αini + βi − β

Now, suppose that there exist i and j such that such that
αi 6= αj . It follows that

Re,i(s,ni) = (αi −α)s+αini + βi − β
Re,j(s,nj) = (αj −α)s+αjnj + βj − β

There are two cases. If αi 6= α, then Re,i(s,ni) is not a
constant function of s. But if αi = α, then αj 6= α and
so Re,j(s,nj) is not a constant function of s. This is a
contradiction, and so αi = αj for all i, j.

Suppose similarly that there exist βi 6= βj . If βi 6= β,
then E[Re,i(ni)] = βi−β which is non-zero. If βi = β,
then βj 6= β and so E[Re,j(nj)] = βj − β is non-zero.
This is a contradiction, and so βi = βj for all i, j.

We have thus proven that set {ei} ∈ GK is of the form
ei = αk−1i + β for all i.
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