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Figure 1: Edge colored exclusivity graph representation
of the Bonet inequality. Exclusivity constraints for the
party A and B are represented by red lines and blue lines
respectively.

Building the exclusivity graph from DAG

In the following we describe in more details how to get
from the DAG (Directed Acyclic Graph) representation
of a causal model to the one for exclusivity graph. Start-
ing from a generic causal model described by a DAG D,
with N random variables OD = {A1, . . . , AN} and M
instruments ID = {X1, . . . , XM}, the exclusivity graph
G = (V,E) can be constructed, for example, using a
simple breadth-first graph exploring algorithm. The pro-
cedure, described in algorithm 1, requires the DAG D
and the list V of vertices to be explored, since we can
be interested in building the graph only for a subset of
events.

Edge colored multigraph technique for
approximating the quantum bound

The Lovász theta of a graph, despite being efficiently
computable, only gives an upper bound to the maxi-
mal quantum bound, since it ignores the additional con-
straints arising from the presence of different random
variables Ai. Indeed the quantum bound is influenced
not only by the exclusivity relations between the possi-
ble events in our scenario, but also on how those relations
are derived from the variables A1, . . . , AN .

To obtain a better approximation for the quantum bound
we can follow the technique presented in [1]. This
method consists in introducing an edge coloring in the
exclusivity graph. This edge coloring encodes the infor-
mation of which of the Ais is involved in the exclusivity
constraints under consideration. In practice this corre-
sponds to constructing an exclusivity graph Gi for each
Ai. The resulting object is called a multigraph. Hav-
ing defined a multigraph G = G1, . . . , GN for a given
scenario the quantum bound is defined by the quantity:

ϑ(G) = max
v

∑
i∈V

|v · a1i ⊗ · · · ⊗ ani |2 (1)

where {aji} is an orthonormal labelling for Gj and V is
the set of vertices of G. This quantity, which can be seen
as a generalization of the Lovász theta, is in general not
efficiently computable, but, as described in [1], can be
arbitrarily approximated by a hierarchy of semi-definite
programs[2].

For example, in the case of the pentagon in the instru-
mental scenario we have two colors, and thus two graph
GA and GB , corresponding to variables A and B respec-
tively, as shown in Fig. 1. Applying the technique de-
scribed above to this scenario yields a quantum bound
of 2.2071, reproducing the known value for the quantum
bound of the Bonet inequality given by (3 +

√
2)/2.



Algorithm 1 Breadth-first graph exploration
1: function BUILD GRAPH(V,D)
2: E ← ∅
3: while V 6= ∅ do
4: INSERT(Q,V1) . Initialize the queue with the first element of V
5: DELETE(V, V1)
6: while Q 6= ∅ do
7: v ← Q1

8: DELETE(Q,Q1)
9: for u ∈ V do

10: if EXCLUSIVE(u, v) then
11: INSERT(E, (v, u))
12: INSERT(Q, u)
13: DELETE(V, u) . Visited nodes are removed from V
14: end if
15: end for
16: end while
17: end while
18: return E
19: end function

As in the main text, here a, a′ stand for the value of the outcome of the variable A in the events v, v′, while pa, pa′

stand for the values of the parent nodes of A in D, PA(A).
1: function EXCLUSIVE(v, v′, D)
2: n← true
3: for A ∈ OD do
4: n← n ∧ (pa 6= pa′ ∨ (pa = pa′ ∧ a = a′))
5: end for
6: return ¬n
7: end function



Figure 2: Exclusivity graph for the instrumental scenario
233, showing the impossibility of having cycles with
more than 5 vertices. To simplify the figure cliques are
represented by bold lines between vertices.

There are no quantum violation for
instrumental scenarios with l = 2 settings.

It is easy to see that no quantum violation is possible for
instrumental scenario with l = 2 possible settings for the
instrumental variable X . This reduces to proving that
there are no odd n-cycles nor n-anticycles as induced
subgraphs in the corresponding exclusivity graph, with
n ≥ 5. To see this we can notice that any such graph is
composed by two cliques (see for example Fig. 2), cor-
responding to the events with x = 0 and x = 1. Any
n-cycle with at least 5 vertices must then have at least
3 mutually connected vertices belonging to the same x,
so they can never form a cycle-graph. Similarly we can
show that there cannot be any induced odd anticycle with
5 or more vertices.

There are no cycles Cn with n ≥ 7 in the l22
instrumental scenario.

In the following we prove that there cannot be a odd an-
ticycle with more than 5 vertices in the exclusivity graph
associated to an instrumental scenario of the type l22.

Two different events ab|x and a′b′|x′, are exclusive if one
of these two conditions is true:

1. x = x′.

2. a = a′ and b 6= b′.

Suppose we have a cycle Cn with n ≥ 7, as in fig. 3,
and consider that node 2 in this graph corresponds to an
event which we can arbitrarily identify as 00|0. Among
its neighbors 1 and 3, one will necessarily need to satisfy
rule 2 (they cannot both satisfy rule 1 or the three nodes
would be a clique. So without loss of generality we can
assign the event 01|1 to 3. Since nodes 5, 6, 7 must not
satisfy rule 2 with both 2 and 3, then they must have

Figure 3: Proof of the impossibility of having cycles with
7 nodes or more in the d22 scenario.

a = 1. Moreover 7 and 5 must have the same b, different
from 6. In the same way 1 must not satisfy rule 2 with
6, 5 and 3, so it needs to have a = 0 and b = 1. At this
point, since we only have values {0, 1} for a, we cannot
avoid node 4 to be linked to one of the nodes 1, 2, 6, 7.
Thus, the corresponding graph cannot be a cycle.
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