
A OBJECTIVE FOR DENSITY ESTIMATION

When performing density estimation for a random variable X , we only have access to samples from the unknown
target distribution X ⇠ p? (i.e., the unknown data distribution) but we do not have access to p? directly (Papamakarios
et al., 2017). Using Equation 1, we can use a normalizing flow to transform a complex parametric model pX|✓ of
the target distribution into a simpler distribution pY (i.e., a uniform or a Normal distribution), which can be easily
evaluated. In this case, we will learn the parameters ✓ of the model by minimizing KL(p?kpX|✓):
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where pX|✓(x) = pY (y)
��detJf✓(x)

�� and y = f✓(t). Notice that minimizing the KL is equivalent of doing maximum
likelihood estimation (MLE).

B OBJECTIVE FOR DENSITY MATCHING

We can learn how to sample from a complex target distribution p? (or, more generally, an energy function) for which
we have access to its analytical form but we do not have an available sampling procedure. Using Equation 1, we can
use a normalizing flow to transform samples from a simple distribution pX , which we can easily evaluate and sample
from, to a complex one (the target). In this case, we estimate ✓ by minimizing KL(pY |✓kp?):
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where pY |✓(y) = pX(x)
��detJf✓(x)

���1 and y = f✓(x). Notice that in general, with normalizing flows, it is possible to
learn a flexible distribution from which we can sample and evaluate the density of its samples. These two proprieties
are particularly useful in the context of variational inference (Rezende and Mohamed, 2015).

C WEIGHT INITIALIZATION AND NORMALIZATION

Since the weight matrix W has some strictly positive and some zero entries, we need to take care of a proper initializa-
tion. Indeed, it is well known that careful parameter initialization benefits not only training but also the generalization
of neural networks (Glorot and Bengio, 2010). For instance, Xavier initialization is commonly used and it takes into
account the size of the input and output spaces in the affine transformations. However, since we have some zero entries,
we cannot benefit from it. We choose instead to initialize all blocks with a simple distribution and to apply weight
normalization (Salimans and Kingma, 2016) to better regulate the effect of such initialization. Weight normalization
decomposes each row w 2 R

b·d of W in terms of the new parameters using w = exp(s) · v/kvk where v has the same
dimensionality of w and s is a scalar. We initialize v with a simple Normal distribution of zero mean and unit variance
and s = log(u) with u ⇠ U(0, 1). Such reparametrization disentangles the direction and magnitude of w and it is
known to improve and speed up optimization.



D LOGARITHMIC MATRIX MULTIPLICATION

For two arbitrary matrices A 2 R
m⇥n and B 2 R

n⇥p, their matrix product C = AB 2 R
m⇥p is defined such that
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nX

k=1

Aik ·Bkj . (15a)

Notice the latter holds only for the real semiring. In general, we can define matrix multiplication in any semiring as
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In the logarithmic-semiring, the addition is defined as a�b = log
�
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�
and the product is defined as a⌦b = a+b.

Thus, the logarithmic-matrix multiplication C = A ?B operation is
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which can be implemented with a stable log-sum-exp that is
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where x⇤ = max{x1, · · · , xn} . (15e)
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