Supplementary Document for Fast Proximal Gradient Descent for A Class of Non-convex and Non-smooth Sparse Learning Problems

Yingzhen Yang
School of Computing, Informatics, and Decision Systems Engineering
Arizona State University
yingzhen.yang@asu.edu

Jiahui Yu
Beckman Institute
University of Illinois at Urbana-Champaign
jyu79@illinois.edu

1 ALGORITHMS IN THE PAPER

1.1 Proximal Gradient Descent

The optimization problem studied in this paper is

\[\min_{x \in \mathbb{R}^n} F(x) = g(x) + h(x), \]

where \(h(x) \triangleq \lambda \|x\|_0, \lambda > 0 \) is a weighting parameter.

\[
x^{(k+1)} = \text{prox}_{sh}(x^{(k)} - s\nabla g(x^{(k)}))
\]

\[
= \arg \min_{v \in \mathbb{R}^n} \frac{1}{2s} \|v - (x^{(k)} - s\nabla g(x^{(k)}))\|^2 + \lambda \|v\|_0
\]

\[
= T_{\frac{1}{2s}}(x^{(k)} - s\nabla g(x^{(k)})),
\]

(2)

Algorithm 1 Proximal Gradient Descent for the \(\ell^0 \) Regularization Problem (1)

\textbf{Input:} The weighting parameter \(\lambda \), the initialization \(x^{(0)} \).

\begin{enumerate}
 \item for \(k = 0, \ldots, \) do
 \item Update \(x^{(k+1)} \) according to (2)
 \item end for
\end{enumerate}

\textbf{Output:} Obtain the sparse solution \(\hat{x} \) upon the termination of the iterations.

1.2 Nonmonotone Accelerated Proximal Gradient Descent with Support Projection

\[
u^{(k)} = x^{(k)} + \frac{t_{k-1}}{t_k}(x^{(k)} - x^{(k-1)}),
\]

(3)

\[
w^{(k)} = P_{\text{supp}(x^{(k)})}(u^{(k)}),
\]

(4)

\[
x^{(k+1)} = \text{prox}_{sh}(w^{(k)} - s\nabla g(w^{(k)})),
\]

(5)

\[
t_{k+1} = \frac{\sqrt{1 + 4t_k^2} + 1}{2},
\]

(6)

Algorithm 2 Nonmonotone Accelerated Proximal Gradient Descent with Support Projection for the \(\ell^0 \) Regularization Problem (1)

\textbf{Input:}

The weighting parameter \(\lambda \), the initialization \(x^{(0)} \),
\(z^{(0)} = x^{(0)}, t_0 = 0. \)

\begin{enumerate}
 \item for \(k = 1, \ldots, \) do
 \item Update \(u^{(k)}, w^{(k)}, x^{(k+1)}, t_{k+1} \) according to (3), (4), (5), (6) respectively.
 \item end for
\end{enumerate}

\textbf{Output:} Obtain the sparse solution \(\hat{x} \) upon the termination of the iterations.

1.3 Monotone Accelerated Proximal Gradient Descent with Support Projection

\[
u^{(k)} = x^{(k)} + \frac{t_{k-1}}{t_k}(z^{(k)} - x^{(k)}),
\]

(7)

\[
w^{(k)} = P_{\text{supp}(z^{(k)})}(u^{(k)}),
\]

(8)

\[
z^{(k+1)} = \text{prox}_{sh}(w^{(k)} - s\nabla g(w^{(k)})),
\]

(9)

\[
t_{k+1} = \frac{\sqrt{1 + 4t_k^2} + 1}{2},
\]

(10)

\[
x^{(k+1)} = \begin{cases} z^{(k+1)} & \text{if } F(z^{(k+1)}) \leq F(x^{(k)}) \\
x^{(k)} & \text{otherwise} \end{cases}
\]

(11)

2 PROOFS

\textbf{Lemma 1.} (Support shrinkage for proximal gradient descent in Algorithm 1 and sufficient decrease of the objective function) If \(s \leq \min \left(\frac{2\lambda}{L}, \frac{1}{L} \right) \), then

\[
\text{supp}(x^{(k+1)}) \subseteq \text{supp}(x^{(k)}), \quad k \geq 0,
\]

(12)

namely the support of the sequence \(\{x^{(k)}\}_k \) shrinks.
Moreover, the sequence of the objective \(\{F(x^{(k)})\}_k \) is
Algorithm 3 Monotone Accelerated Proximal Gradient Descent with Support Projection for the f^0 Regularization Problem (1)

Input:
- The weighting parameter λ, the initialization $x^{(0)}$, $z^{(1)} = x^{(1)} = x^{(0)}$, $t_0 = 0$.

1: **for** $k = 1, \ldots$ **do**
2: \hspace{1em} Update $u^{(k)}$, $w^{(k)}$, $z^{(k+1)}$, t_{k+1}, $x^{(k+1)}$ according to (7), (8), (9), (10), and (11) respectively.
3: **end for**

Output: Obtain the sparse solution \hat{x} upon the termination of the iterations.

nonincreasing, and the following inequality holds for $k \geq 0$:

$$F(x^{(k+1)}) \leq F(x^{(k)}) - \left(\frac{1}{2s} - \frac{L}{2}\right)\|x^{(k+1)} - x^{(k)}\|_2^2.$$ \hfill (13)

Proof of Lemma 1. We prove this Lemma by mathematical induction.

With $k \geq 0$, we first show that $\text{supp}(x^{(k+1)}) \subseteq \text{supp}(x^{(k)})$, i.e. the support of the sequence shrinks. To see this, let $\hat{x}^{(k+1)} = x^{(k)} - s \nabla g(x^{(k)})$. Since $\|y - Dx^{(k)}\|_2^2 = x_0$, let $q^{(k)} = -s \nabla g(x^{(k)}) = -2s(D^T Dx^{(k)} - D^T y)$, then

$$|x_j^{(k+1)}| \leq |q_j^{(k)}|_\infty \leq sG,$$

where j is the index for any zero element of $x^{(k)}$, namely $1 \leq j \leq d, j \notin \text{supp}(x^{(k)})$. Now $|x_j^{(k+1)}| < \sqrt{2} \lambda s$, and it follows that $x_j^{(k+1)} = 0$ due to the update rule (2). Therefore, the zero elements of $x^{(k)}$ remain unchanged in $x^{(k+1)}$, and $\text{supp}(x^{(k+1)}) \subseteq \text{supp}(x^{(k)})$ for $k \geq 0$.

Since

$$x^{(k+1)} = \arg\min_{v \in R^d} \frac{1}{2s} \|v - \hat{x}^{(k+1)}\|_2^2 + h(v),$$

let $v = x^{(k)}$, we have

$$\frac{1}{2s} \|x^{(k+1)} - \hat{x}^{(k+1)}\|_2^2 + h(x^{(k+1)})$$

$$\leq \frac{1}{2s} \|s \nabla g(x^{(k)})\|_2^2 + h(x^{(k)}),$$

which is equivalent to

$$\langle \nabla g(x^{(k)}), x^{(k+1)} - x^{(k)} \rangle + \frac{1}{2s} \|x^{(k+1)} - x^{(k)}\|_2^2 + h(x^{(k+1)})$$

$$\leq h(x^{(k)}).$$ \hfill (14)

In addition, since L is the Lipschitz constant for ∇g,

$$g(x^{(k+1)}) \leq g(x^{(k)}) + \langle \nabla g(x^{(k)}), x^{(k+1)} - x^{(k)} \rangle + \frac{L}{2s} \|x^{(k+1)} - x^{(k)}\|_2^2.$$

Combining (15) and (16), we have

$$g(x^{(k+1)}) + h(x^{(k+1)}) \leq g(x^{(k)}) + h(x^{(k)})$$

$$- \left(\frac{1}{2s} - \frac{L}{2}\right)\|x^{(k+1)} - x^{(k)}\|_2^2.$$ \hfill (17)

Now (12) and (13) hold for $k \geq 0$. Since the sequence $\{F(x^{(k)})\}_k$ is decreasing with lower bound 0, it must converge. \hfill \Box

Lemma A. (Lemma 1 in Laurent and Massart (2000)) Let $Y_1, Y_2, \ldots Y_D$ be i.i.d. Gaussian random variables with 0 mean and unit variance, and $a_1, a_2, \ldots a_D$ be D positive numbers. Define $Z = \sum_{i=1}^D a_i(Y_i^2 - 1)$ and $a = [a_1, a_2, \ldots a_D]^T$, then for any $t > 0$,

$$\Pr[Z \geq 2\|a\|_2 \sqrt{t} + 2\|a\|_\infty t] \leq e^{-t}. \hfill (18)$$

Lemma B. (Spectrum bound for Gaussian random matrix, Theorem I.I.13 in Davidson and Szarek (2001)) Suppose $A \in R^{m \times n}$ ($m \geq n$) is a random matrix whose entries are i.i.d. samples generated from the standard Gaussian distribution $\mathcal{N}(0, \frac{1}{m})$. Then

$$1 - \sqrt{\frac{n}{m}} \leq \mathbb{E}[\sigma_n(A)] \leq \mathbb{E}[\sigma_1(A)] \leq 1 + \sqrt{\frac{n}{m}}. \hfill (19)$$

Also, for any $t > 0$,

$$\Pr[\sigma_n(A) \leq 1 - \sqrt{\frac{n}{m}} - t] < e^{-\frac{nt^2}{2}},$$

$$\Pr[\sigma_1(A) \geq 1 + \sqrt{\frac{n}{m}} + t] < e^{-\frac{nt^2}{2}}. \hfill (20)$$

Theorem 1. Suppose $D \in R^{d \times n}$ ($n \geq d$) is a random matrix whose elements are i.i.d. samples from the standard Gaussian distribution $\mathcal{N}(0, 1)$. Then with probability at least $1 - e^{-\frac{nt^2}{2}} - ne^{-t}$,

$$2\lambda \geq \frac{1}{L} \hfill (21)$$

if

$$n \geq \left(\sqrt{d} + t + \sqrt{(d + 2\sqrt{dt} + 2t)(x_0 + \lambda|S|)}\right)^2, \hfill (22)$$

and t can be chosen as $t_0 \log n$ for $t_0 > 0$ to ensure that (22) holds and (21) holds with high probability.

Proof of Theorem 1. According to Lemma B, for any $t > 0$, with probability at least $1 - e^{-\frac{nt^2}{2}}$,

$$\sigma_{\max}(D) > \sqrt{n} - \sqrt{d} - t. \hfill (23)$$
Also, by Lemma A, for any $1 \leq i \leq n$ and $t > 0$, with probability at least $1 - e^{-t}$,
\[
\|D\|_2 \leq \sqrt{d + 2\sqrt{dt} + 2t}.
\] (24)
It then can be verified by union bound that with probability at least $1 - e^{-\frac{n^2\|S\|^2}{\lambda}} - ne^{-t}$,
\[
2D(x_0 + \lambda|S|) \leq 2\sigma_{max}^2(D) \tag{25}
\]
if
\[
n \geq \left(\sqrt{d + t} + \sqrt{\frac{(d + 2\sqrt{dt} + 2t)(x_0 + \lambda|S|)}{\lambda}}\right)^2,
\]
according to (23) and (24).

\[\square\]

Lemma 2. (Properties of the subsequences with shrinking support)

(i) All the elements of each subsequence \mathcal{X}_t ($t = 1, \ldots, T$) in the subsequences with shrinking support have the same support. In addition, for any $1 \leq t_1 < t_2 \leq T$ and any $x^{(k_1)} \in \mathcal{X}_{t_1}$ and $x^{(k_2)} \in \mathcal{X}_{t_2}$, we have $k_1 < k_2$, $\text{supp}(x^{(k_2)}) \subset \text{supp}(x^{(k_1)})$.

(ii) All the subsequence except for the last one, namely \mathcal{X}_t ($t = 1, \ldots, T - 1$), have finite size. Moreover, \mathcal{X}_T has infinite number of elements, and there exists $k_0 \geq 0$ such that $\{x^{(k)}\}_{k=k_0}^{\infty} \subseteq \mathcal{X}_T$.

\[\square\]

Proof of Lemma 2. (i) For any $1 \leq t \leq T$, let $x^{(k_1)}, x^{(k_2)} \in \mathcal{X}_t$ and $k_1 \neq k_2$. If $k_1 < k_2$, then $\text{supp}(x^{(k_2)}) \subset \text{supp}(x^{(k_1)})$ according to the support shrinkage property (12). If $\text{supp}(x^{(k_2)}) \subset \text{supp}(x^{(k_1)})$, then $|\text{supp}(x^{(k_2)})| < |\text{supp}(x^{(k_1)})|$ which contradicts with the definition of \mathcal{X}_t whose elements has the same support size. Similar argument holds if $k_1 > k_2$. Therefore, all the elements of each subsequence \mathcal{X}_t ($t = 1, \ldots, T$) have the same support.

For any $1 \leq t_1 < t_2 \leq T$ and any $x^{(k_1)} \in \mathcal{X}_{t_1}$ and $x^{(k_2)} \in \mathcal{X}_{t_2}$, note that $k_1 \neq k_2$ and $\text{supp}(x^{(k_2)}) \neq \text{supp}(x^{(k_1)})$ since \mathcal{X}_{t_1} and \mathcal{X}_{t_2} have different support size. Suppose $k_1 > k_2$. According to the support shrinkage property (12), we must have $\text{supp}(x^{(k_1)}) \subset \text{supp}(x^{(k_2)})$ and it follows that $|\text{supp}(x^{(k_1)})| < |\text{supp}(x^{(k_2)})|$, which contradicts with the definition of subsequences with shrinking support. Therefore, we must have $k_1 < k_2$, and it follows that $\text{supp}(x^{(k_2)}) \subset \text{supp}(x^{(k_1)})$.

(ii) Suppose \mathcal{X}_t is an infinite sequence for some $1 \leq t \leq T - 1$. We can then obtain an infinite sequence from \mathcal{X}_t in the way described as follows. We first have some $x^{(k_0)} \in \mathcal{X}_t$ for some $k_0 \geq 0$ as \mathcal{X}_t is nonempty.

Suppose we obtain $\{x^{(k_j)}\}_{j=0}^{\infty}$ in the first $j \geq 0$ steps with increasing indices $\{k_j\}$, i.e. $k_j' < k_j''$ if $j' < j''$. Since \mathcal{X}_t is an infinite sequence, $\mathcal{X}_t \setminus \{x^{(k_j')}\}_{j=0}^{\infty}$ is still an infinite sequence. At the $(j + 1)$-th step, we can find $x^{(k_{j+1})} \in \mathcal{X}_t \setminus \{x^{(k_j')}\}_{j=0}^{\infty}$ with $k_{j+1} > k_j$. Therefore, we obtain an infinite sequence $\{x^{(k_j)}\}_{j=0}^{\infty} \subseteq \mathcal{X}_t$ with increasing indices $\{k_j\}$. The fact that $\{k_j\}$ is increasing, i.e. $k_j' < k_j''$ if $j' < j''$, indicates that $\lim_{j \to \infty} k_j = \infty$. Now we consider an arbitrary element $x^{(k)} \in \mathcal{X}_{t+1}$. Because there must exists some $j \geq 0$ such that $k \leq k_j$, according to the support shrinkage property (12), we must have $\text{supp}(x^{(k_j)}) \subseteq \text{supp}(x^{(k)})$ which indicates that $|\text{supp}(x^{(k_j)})| \leq |\text{supp}(x^{(k)})|$. On the other hand, as $x^{(k_j)} \in \mathcal{X}_t$, the definition of the subsequences with shrinking support indicates that $|\text{supp}(x^{(k_j)})| < |\text{supp}(x^{(k)})|$. This contradiction shows that each \mathcal{X}_t must have finite size for $t = 1, \ldots, T - 1$. As $\{x^{(k_j)}\}_{j=0}^{\infty}$ is an infinite sequence and $\{x^{(k_j)}\}_{j=1}^{T} \cup \{x^{(k_j)}\}_{j=0}^{\infty}$ form a disjoint union of $\{x^{(k_j)}\}$, \mathcal{X}_T has infinite number of elements.

According to (i), \mathcal{X}_T is an infinite sequence. By the argument in the proof of (i), there exists an infinite sequence $\{x^{(k_j)}\}_{j=0}^{\infty} \subseteq \mathcal{X}_T$, $\{k_j\}$ is increasing, and $\lim_{j \to \infty} k_j = \infty$.

For any $k > k_0$, there must exist k_j with $j' \geq 1$ such that $k_{j'-1} < k \leq k_j$. According to the support shrinkage property (12),
\[
\text{supp}(x^{(k_j)}) = S^* \subseteq \text{supp}(x^{(k)}) \subseteq \text{supp}(x^{(k_j-1)}) = S^*
\]
Therefore, $|\text{supp}(x^{(k)})| = |S^*|$ and it follows that $x^{(k)} \in \mathcal{X}_T$ for any $k \geq k_0$, namely $\{x^{(k)}\}_{k=k_0}^{\infty} \subseteq \mathcal{X}_T$.

\[\square\]

Denote by S^* the support of any element in \mathcal{X}_T. If $\{x^{(k)}\}_{k=k_0}^{\infty}$ generated by Algorithm 1 has a limit point x^*, then the following theorem shows that the sequence $\{x^{(k)}\}_{k=k_0}^{\infty}$ converges to x^*, and x^* is a critical point of $F(\cdot)$ whose support is S^*.

Theorem 2. (Convergence of PGD for the ℓ^0 regularizer problem (1)) Suppose $s \leq \min\left\{\frac{2}{m}, \frac{2}{3}\right\}$, and x^* is a limit point of $\{x^{(k)}\}_{k=k_0}^{\infty}$. Then the sequence $\{x^{(k)}\}_{k=k_0}^{\infty}$ generated by Algorithm 1 converges to x^*, and x^* is a critical point of $F(\cdot)$. Moreover, there exists $k_0 \geq 0$ such that for all $m \geq k_0$,
\[
F(x^{(m+1)}) - F(x^*) \leq \frac{1}{2s(m - k_0 + 1)}\|x^{(k_0)} - x^*\|^2_2. \tag{26}
\]

Proof of Theorem 2. Because x^* is a limit point of $\{x^{(k)}\}_{k=k_0}^{\infty}$, there must have a subsequence $\{x^{(k_j)}\}$ such that $x^{(k_j)} \to x^*$ as $j \to \infty$. In addition, x^* is a limit point of $\{x^{(k)}\}_{k=k_0}$ and $F(x^*) = \inf_{k \geq 0} \{F(x^{(k)})\}$. We now show that $\text{supp}(x^*) = S^*$. To see this, we
first have \(\text{supp}(x^*) \subseteq \mathbf{S}^* \). Otherwise, pick arbitrary \(i \in \text{supp}(x^*) \setminus \mathbf{S}^* \), then \(\|x_i^{(k_j)} - x^*\|_2 \geq \|x_i^*\|_2 \), contradicting with fact that \(x_i^{(k_j)} \to x^* \).

Moreover, suppose \(\text{supp}(x^*) \subseteq \mathbf{S}^* \), we then pick arbitrary \(i \in \mathbf{S}^* \setminus \text{supp}(x^*) \). It can be shown that \(x_i^{(k_j)} \to 0 \). Otherwise, there exists \(\varepsilon > 0 \), for any \(j \), there exists \(j' \geq j \) such that \(|x_i^{(k_{j'})}| \geq \varepsilon \). It follows that \(\|x_i^{(k_{j'})} - x_i^*\|_2 \geq |x_i^{(k_{j'})}| \geq \varepsilon \), contradicting with the fact that \(x_i^{(k_j)} \to x_i^* \).

Let \(\varepsilon > 0 \) be a sufficiently small positive number such that \(sG + \varepsilon < \sqrt{2\lambda s} \). Since \(x_i^{(k_j)} \to 0 \), there exists sufficiently large \(j \) such that \(|x_i^{(k_j)}| < \varepsilon \). Let \(x_i^{(k_j+1)} = x_i^{(k_j)} - s\nabla g(x_i^{(k_j)}) \), then

\[
|x_i^{(k_j+1)}| \leq |x_i^{(k_j)}| + sG < \varepsilon + sG \leq \sqrt{2\lambda s}.
\]

It follows that \(x_i^{(k_j+1)} = 0 \) according to the update rule (2), so that \(\text{supp}(x^{(k_j+1)}) \subseteq \text{supp}(x^{(k_j)}) \setminus \{i\} \). On the other hand, note that \(x_i^{(k_j+1)} \in \mathcal{X}_i \), so we have \(\text{supp}(x^{(k_j+1)}) = \text{supp}(x^{(k_j)}) \) by Lemma 2. This contradiction shows that \(\text{supp}(x^*) \subseteq \mathbf{S}^* \) cannot hold. Therefore, \(\text{supp}(x^*) = \mathbf{S}^* \).

According to Lemma 2, there exists \(k_0 \geq 0 \) such that \(\{x_i^{(k_j)}\}_{k=k_0}^{\infty} \subseteq \mathcal{X}_i \). We will prove that \(\{x_i^{(k_j)}\}_{k=k_0}^{\infty} \) converges to \(x_i^* \) in the sequel.

It follows that for any \(u, v \),

\[
g(v) \leq g(u) + \langle \nabla g(u), v - u \rangle + \frac{L}{2} \|v - u\|^2_2. \tag{27}
\]

Due to the convexity of \(g \), for any \(v \in \mathbb{R}^n \) and \(k \geq 0 \),

\[
g(x^{(k+1)}) + \langle \nabla g(x^{(k+1)}), v - x^{(k+1)} \rangle \leq g(v). \tag{28}
\]

In addition, we have

\[
x^{(k+1)} = \text{prox}_{s\lambda}(x^{(k)} - s\nabla g(x^{(k)})) = \arg\min_{x \in \mathbb{R}^d} \frac{1}{2s} \|v - (x^{(k)} - s\nabla g(x^{(k)}))\|^2_2 + h(v). \tag{29}
\]

It follows from (29) that

\[
\frac{1}{s} (x^{(k+1)} - (x^{(k)} - s\nabla g(x^{(k)}))) + \partial h(x^{(k+1)}) = 0,
\]

\[
\Rightarrow -\nabla g(x^{(k)}) - \frac{1}{s} (x^{(k+1)} - x^{(k)}) \in \partial h(x^{(k+1)}). \tag{30}
\]

Since \(x^{(k+1)} = T_{y \leq \infty}(x^{(k)} - s\nabla g(x^{(k)})) \), we have \(\partial h(x^{(k+1)}) = \partial h(x^{(k)}) \) for any \(j \in \text{supp}(x^{(k+1)}) \). It follows that for any vector \(v \in \mathbb{R}^d \) such that \(\text{supp}(v) = \text{supp}(x^{(k+1)}) \), the following equality holds:

\[
h(v) = h(x^{(k+1)}) + \langle -\nabla g(x^{(k)}) - \frac{1}{s} (x^{(k+1)} - x^{(k)}) , v - x^{(k+1)} \rangle. \tag{31}
\]

Based on (27) and (28), for any \(k \geq k_0 \) and arbitrary \(v \in \mathbb{R}^d \) we have

\[
F(x^{(k+1)}) = g(x^{(k+1)}) + h(x^{(k+1)}) \leq g(x^{(k)}) + \langle \nabla g(x^{(k)}), x^{(k+1)} - x^{(k)} \rangle + \frac{L}{2} \|x^{(k+1)} - x^{(k)}\|^2 + h(x^{(k+1)})
\]

\[
= g(v) + \langle \nabla g(x^{(k)}), x^{(k+1)} - v \rangle + \langle \nabla g(x^{(k)}), x^{(k+1)} - x^{(k)} \rangle + \frac{L}{2} \|x^{(k+1)} - v\|^2 + h(x^{(k+1)})
\]

\[
= g(v) + \langle \nabla g(x^{(k)}), x^{(k+1)} - v \rangle + \frac{L}{2} \|x^{(k+1)} - x^{(k)}\|^2 + h(x^{(k+1)}).
\]

When \(\text{supp}(v) = \text{supp}(x^{(k+1)}) \), according to (31) and (32),

\[
F(x^{(k+1)}) \leq g(v) + \langle \nabla g(x^{(k)}), x^{(k+1)} - v \rangle + \frac{L}{2} \|x^{(k+1)} - v\|^2 + h(x^{(k+1)})
\]

\[
= g(v) + \langle \nabla g(x^{(k)}), x^{(k+1)} - x^{(k)} \rangle + \frac{L}{2} \|x^{(k+1)} - x^{(k)}\|^2 + h(x^{(k+1)})
\]

\[
= F(v) + \frac{1}{s} \langle x^{(k+1)} - x^{(k)}, v - x^{(k+1)} \rangle + \frac{L}{2} \|x^{(k+1)} - x^{(k)}\|^2
\]

\[
\leq F(v) + \frac{1}{s} \langle x^{(k+1)} - x^{(k)}, v - x^{(k+1)} \rangle + \frac{1}{s} \|x^{(k+1)} - x^{(k)}\|^2 + \frac{L}{2} \|x^{(k+1)} - x^{(k)}\|^2
\]

\[
= F(v) + \frac{1}{s} \langle x^{(k+1)} - x^{(k)}, v - x^{(k)} \rangle + \frac{1}{s} \|x^{(k+1)} - x^{(k)}\|^2
\]

\[
\leq F(v) + \frac{1}{s} \langle x^{(k+1)} - x^{(k)}, v - x^{(k)} \rangle + \frac{1}{s} \|x^{(k+1)} - x^{(k)}\|^2
\]

\[
= F(v) + \frac{1}{s} \langle x^{(k+1)} - x^{(k)}, v - x^{(k)} \rangle + \frac{1}{s} \|x^{(k+1)} - x^{(k)}\|^2
\]

\[
\leq F(v) + \frac{1}{s} \langle x^{(k+1)} - x^{(k)}, v - x^{(k)} \rangle + \frac{1}{s} \|x^{(k+1)} - x^{(k)}\|^2
\]

Now \(\text{supp}(x^*) = \text{supp}(x^{(k+1)}) = \mathbf{S}^* \), we can let \(v = x^* \) in (33), leading to

\[
F(x^{(k+1)}) - F(x^*) \leq \frac{1}{s} \langle x^{(k+1)} - x^*, x^* - x^{(k)} \rangle + \frac{1}{2s} \|x^{(k+1)} - x^*\|^2
\]

\[
\leq \frac{1}{2s} \|x^* - x^*\|^2 - \|x^{(k+1)} - x^*\|^2. \tag{34}
\]

Summing (34) over \(k = k_0, \ldots, m \) with \(m \geq k_0 \),

\[
\sum_{k=k_0}^{m} F(x^{(k+1)}) - F(x^*)
\]
\[
\sum_{k=k_0}^{m} \frac{1}{2s} \left(\|x^{(k)} - x^*\|_2^2 - \|x^{(k+1)} - x^*\|_2^2 \right) \\
= \frac{1}{2s} \left(\|x^{(k_0)} - x^*\|_2^2 - \|x^{(m+1)} - x^*\|_2^2 \right). \tag{35}
\]

Since \(\{F(x^{(k)})\}_k \) is non-increasing, we have
\[
\sum_{k=k_0}^{m} F(x^{(k+1)}) - F(x^*) > (m-k_0+1) F(x^{(m+1)}) - F(x^*). \]

It follows from (35) that
\[
F(x^{(m+1)}) - F(x^*) \\
\leq \frac{1}{2s(m-k_0+1)} \left(\|x^{(k_0)} - x^*\|_2^2 - \|x^{(m+1)} - x^*\|_2^2 \right) \\
\leq \frac{1}{2s(m-k_0+1)} \|x^{(k_0)} - x^*\|_2^2. \tag{36}
\]

Now we show that \(x^* \) is a critical point of \(F(\cdot) \). It follows from (30) that
\[
-\nabla g(x^{(k_j-1)}) + \frac{1}{s} (x^{(k_j)} - x^{(k_j-1)}) \in \partial h(x^{(k_j)}), \quad j \geq 1.
\]

In addition, since \(\partial F(x^{(k_j)}) = \nabla g(x^{(k_j)}) + \partial h(x^{(k_j)}) \), we have
\[
\nabla g(x^{(k_j)}) - \nabla g(x^{(k_j-1)}) - \frac{1}{s} (x^{(k_j)} - x^{(k_j-1)}) \in \partial F(x^{(k_j)}). \tag{37}
\]

Due to the fact that \(\|x^{(k_j)} - x^{(k_j-1)}\|_2 \to 0 \) as \(k \to \infty \), when \(j \to \infty \) we have
\[
\|\nabla g(x^{(k_j)}) - \nabla g(x^{(k_j-1)}) - \frac{1}{s} (x^{(k_j)} - x^{(k_j-1)})\|_2 \\
\leq L \|x^{(k_j)} - x^{(k_j-1)}\|_2 + \frac{1}{s} \|x^{(k_j)} - x^{(k_j-1)}\|_2 \\
\to 0. \tag{38}
\]

Also, as \(j \to \infty \),
\[
F(x^{(k_j)}) = g(x^{(k_j)}) + h(x^{(k_j)}) = g(x^{(k_j)}) + \lambda |S^*| \\
g(x^*) + \lambda |S^*| = F(x^*). \tag{39}
\]

Based on (37), (38) and (39), \(0 \in \partial F(x^*) \) and \(x^* \) is a critical point of \(F(\cdot) \).

In addition, \(k_0 \) is upper bounded. Note that the sequence experiences only a finite number (at most \(|S|\)) of strict support shrinkages. The iterations of PGD between two consecutive strict support shrinkages are equivalent to those of regular gradient descent on \(g \). Suppose the last support shrinkage happens in \(k_1 \)-th iteration with \(k_1 \geq 0 \), and let \(S_1 = \text{supp}(x^{(k_1)}) \). Let \(x^* \) be the solution to the problem \(\min_{x \in S_1} g(x) \). Let the \(q \)-th \((q \in S_1)\) element of the variable incurs support shrinkage, and \(\{x^{(k)}\} \) be the sequence generated by performing gradient descent on \(g \) starting with \(x^{(k_1)} \). We can always choose \(s \) such that \(\sqrt{2\lambda s} \neq |x_q^*| \). Because \(\{x^{(k)}\} \)
converges to \(x^* \), the support shrinkage at the \(q \)-th element of the variable must happen within finite iterations. To see this, since \(\sqrt{2\lambda s} \neq |x_q^*| \), there exists a small \(\delta > 0 \) such that \((x_q^* - \delta, x_q^* + \delta) \subset (\sqrt{2\lambda s}, \sqrt{2\lambda s}) \) or \((x_q^* - \delta, x_q^* + \delta) \subset [-\sqrt{2\lambda s}, \sqrt{2\lambda s}] \), where \(A^c \) is the complement set of \(A \). Since \(\{x^{(k)}\} \) converges to \(x^* \), after \(T \) iterations \(\{x^{(k)}\}_{k=T} \) must fall in \((x_q^* - \delta, x_q^* + \delta) \). If \((x_q^* - \delta, x_q^* + \delta) \subset (\sqrt{2\lambda s}, \sqrt{2\lambda s}) \), then support shrinkage happens after \(T \) iterations. If \((x_q^* - \delta, x_q^* + \delta) \subset [-\sqrt{2\lambda s}, \sqrt{2\lambda s}] \), support shrinkage must happen within \(T \) iterations, otherwise \(|x^{(k)}| > \sqrt{2\lambda s} \) for \(t > T \) and support shrinkage never happens at the \(q \)-th element of the variable, contradicting with the given fact. Therefore, each support shrinkage happens with finite iterations. Because shrinkage can happen at most \(|S|\) times, \(k_0 \) is upper bounded by a finite number.

\[\Box\]

Lemma C. For any two vectors \(u, v \in \mathbb{R}^d \), \(\|u - P_R(v)\|_2 \leq \|u - v\|_2 \) where \(\text{supp}(u) \subseteq R \).

Proof. We have
\[
\|u - v\|_2^2 \\
= \|P_R(u - v)\|_2^2 + \|P_{\{1, \ldots, d\}^c}(u - v)\|_2^2 \\
\geq \|P_R(u - v)\|_2^2 = \|u - P_R(v)\|_2^2. \tag{40}
\]

It follows that \(\|u - P_R(v)\|_2 \leq \|u - v\|_2 \). \[\Box\]

Lemma 3. (Support shrinkage for nonmonotone accelerated proximal gradient descent with support projection in Algorithm 2) The sequence \(\{x^{(k)}\}_k \) generated by Algorithm 2 satisfies
\[
\text{supp}(x^{(k+1)}) \subseteq \text{supp}(x^{(k)}), \quad k \geq 1, \tag{41}
\]

namely the support of the sequence \(\{x^{(k)}\}_{k=1}^\infty \) shrinks.

Proof of Lemma 3. We prove this Lemma by mathematical induction, and we will prove that
\[
\text{supp}(x^{(k+1)}) \subseteq \text{supp}(x^{(k)}), \quad k \geq 1. \tag{42}
\]

When \(k = 1 \), using argument similar to the proof of Lemma 1 we can show that \(\text{supp}(x^{(2)}) \subseteq \text{supp}(x^{(1)}) \), i.e. the support of \(x \) shrinks after the first iteration.

Now (42) are verified for \(k = 1 \). Suppose (42) holds for all \(k \leq k' \) with \(k' \geq 1 \). We now consider the case that \(k = k' + 1 \). Note the support projection operation in the update rule (4) for \(w^{(k)} \), and \(\text{supp}(w^{(k+1)}) \subseteq \text{supp}(x^{(k+1)}) \). Let \(q^{(k+1)} = -s \nabla g(w^{(k')}) \) and \(x^{(k'+2)} = w^{(k'+1)} - s \nabla g(w^{(k')}) \).
\(s \nabla g(w^{(k'+2)}) \). Then \(x_j^{(k'+2)} = 0 \) due to the update rule (5) for any \(j \notin \text{supp}(w^{(k+1)}) \) and
\[
|\hat{x}_j^{(k'+2)}| \leq \|q^{(k'+1)}\|_\infty \leq sG \leq \sqrt{2} sG. \quad (43)
\]
Because \(s \leq \frac{2A}{\lambda} \), the zero elements of \(w^{(k'+1)} \) remain unchanged in \(x^{(k'+2)} \), and it follows that \(\text{supp}(x^{(k'+2)}) \subseteq \text{supp}(w^{(k'+1)}) \subseteq \text{supp}(x^{(k+1)}) \). Therefore, (42) holds for \(k = k' + 1 \). It follows that (42) holds for all \(k \geq 1 \).

\[\square\]

Theorem 3. (Convergence of Nonmonotone Accelerated Proximal Gradient Descent for the \(\ell^0 \) regularization problem (1)) Suppose \(s \leq \min \{ \frac{2A}{\lambda}, \frac{1}{\sqrt{2}} \} \), and \(x^* \) is a limit point of \(\{x^{(k)}\}_{k=0}^{\infty} \) generated by Algorithm 2. There exists \(k_0 \geq 1 \) such that
\[F(x^{(m+1)}) - F(x^*) \leq \frac{4}{(m+1)^2} V^{(k_0)} \quad (44) \]
for all \(m \geq k_0 \), where
\[
V^{(k_0)} \triangleq \left(\frac{1}{2s} \| (t_{k_0-1}) x^{(k_0-1)} - t_{k_0-1} x^{(k_0)} + x^* \|_2^2 + t_{k_0-1}^2 F(x^{(k_0)}) - F(x^*) \right). \quad (45)
\]

Proof of Theorem 3. According to Lemma 3, there exists \(k_0 \geq 0 \) such that \(\{x^{(k)}\}_{k=k_0}^{\infty} \subseteq \mathcal{X}^t \). It follows that \(\text{supp}(x^*) = S^* \).

When \(\text{supp}(v) = \text{supp}(x^{(k+1)}) \) for \(k \geq k_0 \), we have
\[
\frac{1}{2s} F(x^{(k+1)}) \leq g(v) + \langle \nabla g(w^{(k)}), x^{(k+1)} - v \rangle + \frac{L}{2} \| x^{(k+1)} - w^{(k)} \|_2^2 + h(x^{(k+1)})
\]
\[
= g(v) + \langle \nabla g(w^{(k)}), x^{(k+1)} - v \rangle + \frac{L}{2} \| x^{(k+1)} - w^{(k)} \|_2^2 + h(v)
\]
\[
+ \langle \nabla g(w^{(k)}), 1_s (x^{(k+1)} - w^{(k)}), v - x^{(k+1)} \rangle
\]
\[
= F(v) + \frac{1}{s} \langle x^{(k+1)} - w^{(k)}, v - x^{(k+1)} \rangle + \frac{L}{2} \| x^{(k+1)} - w^{(k)} \|_2^2
\]
\[
\leq F(v) + \frac{1}{s} \langle x^{(k+1)} - w^{(k)}, v - w^{(k)} \rangle - \frac{1}{8} \| x^{(k+1)} - w^{(k)} \|_2^2 + \frac{L}{2} \| x^{(k+1)} - w^{(k)} \|_2^2
\]
\[
\leq F(v) + \frac{1}{s} \langle x^{(k+1)} - w^{(k)}, v - w^{(k)} \rangle - \frac{1}{8} \| x^{(k+1)} - w^{(k)} \|_2^2
\]
\[
\leq F(v) - \frac{L}{2} \| x^{(k+1)} - w^{(k)} \|_2^2. \quad (46)
\]

Now using similar arguments in the proof of Lemma 3, let \(v = x^{(k)} \) and \(v = x^* \) in (46), we have
\[F(x^{(k+1)}) \leq F(x^{(k)}) + \frac{1}{s} \langle x^{(k+1)} - w^{(k)} \rangle, \]
\[x^{(k)} - w^{(k)} \]
\[
\leq (\frac{1}{s} - \frac{L}{2}) \| x^{(k+1)} - w^{(k)} \|_2^2, \quad (47)
\]
and
\[F(x^{(k+1)}) \leq F(x^*) + \frac{1}{s} || x^{(k+1)} - w^{(k)} ||_2^2, \]
\[x^* - w^{(k)} \]
\[
\leq (\frac{1}{s} - \frac{L}{2}) || x^{(k+1)} - w^{(k)} ||_2^2. \quad (48)
\]

(47)(\(t_k - 1\))+(48), we have
\[t_k F(x^{(k+1)}) - (t_k - 1) F(x^*) \]
\[
\leq \frac{1}{s} || x^{(k+1)} - w^{(k)} ||_2^2, \]
\[(t_k - 1)(x^{(k)} - w^{(k)}) + x^* - w^{(k)} \]
\[
- t_k \left(\frac{1}{s} - \frac{L}{2} \right) || x^{(k+1)} - w^{(k)} ||_2^2. \quad (49)
\]

Multiplying both sides of (49) by \(t_k \), since \(t_k^2 - t_k = t_{k-1}^2 \), we have
\[t_k^2 \left(F(x^{(k+1)}) - F(x^*) \right) - t_{k-1}^2 \left(F(x^{(k)}) - F(x^*) \right) \]
\[
\leq \frac{1}{s} \langle t_k (x^{(k+1)} - w^{(k)}), (t_k - 1)(x^{(k)} - w^{(k)}) \rangle + x^* - w^{(k)} \]
\[
- t_{k-1} \left(\frac{1}{s} - \frac{L}{2} \right) || x^{(k+1)} - w^{(k)} ||_2^2 \]
\[
+ x^* - w^{(k)} \]
\[
- \frac{1}{2s} \langle t_k (x^{(k+1)} - w^{(k)}), (t_k - 1)(x^{(k)} - w^{(k)}) \rangle
\]
\[
= \frac{1}{2s} \left(|| x^{(k)} - t_k x^{(k+1)} + x^* ||_2^2
\]
\[
- || x^{(k)} - t_{k-1} x^{(k+1)} + x^* ||_2^2 \right). \quad (50)
\]

Since \(w^{(k)} = P_{\text{supp}(x^{(k)})} u^{(k)} \), it follows that \(t_k - 1)x^{(k)} - t_k P_{\text{supp}(x^{(k)})} u^{(k)} + x^* = (t_k - 1)x^{(k)} - t_k w^{(k)} + x^* \). By Lemma C and (50), we have
\[t_k^2 \left(F(x^{(k+1)}) - F(x^*) \right) - t_{k-1}^2 \left(F(x^{(k)}) - F(x^*) \right) \]
\[
\leq \frac{1}{2s} \left(|| x^{(k)} - t_k x^{(k+1)} + x^* ||_2^2
\]
\[
- || x^{(k)} - t_{k-1} x^{(k+1)} + x^* ||_2^2 \right). \quad (51)
\]

Define \(U^{(k+1)} = (t_k - 1)x^{(k)} - t_k x^{(k+1)} + x^* \), then \(U^{(k)} = (t_k - 1)x^{(k-1)} - t_{k-1} x^{(k)} + x^* \). It can be verified that \(U^{(k)} = (t_k - 1)x^{(k)} - t_k u^{(k)} + x^* \) according to the update rule (3) for \(u^{(k)} \). Then according to (51), we have
\[t_k^2 \left(F(x^{(k+1)}) - F(x^*) \right) - t_{k-1}^2 \left(F(x^{(k)}) - F(x^*) \right) \]
\[
\leq \frac{1}{2s} \left(|| U^{(k)} ||_2^2 - || U^{(k+1)} ||_2^2 \right). \quad (52)
\]

Summing (52) over \(k = k_0, k_0 + 1, \ldots, m \) for \(m \geq k_0 \), we have
\[t_m^2 \left(F(x^{(m+1)}) - F(x^*) \right) - t_{k_0-1}^2 \left(F(x^{(k_0)}) - F(x^*) \right) \]
\[\leq \frac{1}{2s} \left(\| U^{(k_0)} \|^2_2 - \| U^{(m+1)} \|^2_2 \right) \]
\[\leq \frac{1}{2s} \left(\| U^{(k_0)} \|^2_2 \right) \]
\[= \frac{1}{2s} \left\| (t_{k-1} - 1)x^{(k_0-1)} - t_{k-1}x^{(k_0)} + x^* \right\|^2_2. \]
(53)

It follows from (53) that
\[F(x^{(m+1)}) - F(x^*) \]
\[\leq \frac{1}{2s \max_t} \left(\| (t_{k-1} - 1)x^{(k_0-1)} - t_{k-1}x^{(k_0)} + x^* \right\|^2_2 \]
\[+ \frac{t_{k-1} - 1}{t_{k_0} - 1} \left(F(x^{(k_0)}) - F(x^*) \right) \]
\[< \frac{1}{2s \max_t} \left(\| (t_{k-1} - 1)x^{(k_0-1)} - t_{k-1}x^{(k_0)} + x^* \right\|^2_2 \]
\[+ \frac{t_{k-1}^2}{t_{k_0}^2} \left(F(x^{(k_0)}) - F(x^*) \right) \]
\[\leq \frac{4}{(m+1)^2} \left(\| (t_{k-1} - 1)x^{(k_0-1)} - t_{k-1}x^{(k_0)} + x^* \right\|^2_2 \]
\[+ \frac{4}{(m+1)^2} V^{(k_0)}, \]
(54)

where the last inequality is due to the fact that \(t_k \geq \frac{k+1}{2} \) for \(k \geq 1 \).

Lemma 4. (Support shrinkage for accelerated proximal gradient descent with support projection in Algorithm 3) The sequence \(\{z^{(k)}\}_{k=1}^\infty \) and \(\{x^{(k)}\}_{k=1}^\infty \) generated by Algorithm 3 satisfy
\[\text{supp}(z^{(k+1)}) \subseteq \text{supp}(z^{(k)}), \]
(55)
\[\text{supp}(x^{(k+1)}) \subseteq \text{supp}(x^{(k)}), \]
(56)

namely the support of both sequences shrinks.

Proof of Lemma 4. We prove this Lemma by mathematical induction, and we will prove that for all \(k \geq 1 \),
\[\text{supp}(z^{(k+1)}) \subseteq \text{supp}(z^{(k)}). \]
(57)

When \(k = 1 \), we first show that \(\text{supp}(z^{(2)}) \subseteq \text{supp}(z^{(1)}) \), i.e. the support of \(z^{(k)} \) shrinks after the first iteration.

It is now verified that (57) hold for \(k = 1 \). Suppose (57) holds for all \(k \leq k' \) with \(k' \geq 1 \). We now consider the case that \(k = k' + 1 \).

Let \(q^{(k'+1)} = - s \nabla g(w^{(k'+1)}) \) and \(x^{(k'+2)} = w^{(k'+1)} - s \nabla g(w^{(k'+1)}) \). Then \(x^{(k'+2)} = 0 \) due to the update rule (9) for any \(j \notin \text{supp}(w^{(k'+1)}) \) and \[|x^{(k'+2)}_j| \leq s G \leq \sqrt{2 \lambda s}. \]
(58)

Because \(s \leq \frac{2L}{\lambda s} \), the zero elements of \(w^{(k'+1)} \) remain unchanged in \(z^{(k'+2)} \). According to the support projection operation in (8), \(\text{supp}(w^{(k'+1)}) \subseteq \text{supp}(z^{(k'+1)}) = S' \). It follows that \(\text{supp}(z^{(k'+2)}) \subseteq \text{supp}(w^{(k'+1)}) \subseteq \text{supp}(z^{(k'+1)}) \). Therefore, (57) holds for \(k = k' + 1 \). It follows that (57) holds for all \(k \geq 1 \).

Now we prove (56), i.e. that for all \(k \geq 1 \), \(\text{supp}(x^{(k+1)}) \subseteq \text{supp}(x^{(k)}) \).

We have already shown that for all \(k \geq 1 \), \(\text{supp}(x^{(k)}) = \text{supp}(z^{(k)}) \) for some \(k \leq k' \). Note that \(x^{(k+1)} = z^{(k)} \) or \(x^{(k+1)} = x^{(k)} \). In the latter case, we trivially have \(\text{supp}(x^{(k+1)}) = \text{supp}(x^{(k)}) \). In the former case, \(\text{supp}(x^{(k+1)}) \subseteq \text{supp}(z^{(k)}) \subseteq \text{supp}(x^{(k)}) \) because \(k \leq k < k + 1 \). Therefore, (56) holds for all \(k \geq 1 \).

Theorem 4. (Convergence of Monotone Accelerated Proximal Gradient Descent for the \(\ell^1 \) regularization problem (1)) Suppose \(s \leq \min \left(\frac{2L}{\lambda s}, \frac{1}{2} \right) \), and \(x^* \) is a limit point of \(\{x^{(k)}\}_{k=0}^\infty \) generated by Algorithm 3. There exists \(k_0 \geq 1 \) such that
\[F(x^{(m+1)}) - F(x^*) \leq \frac{4}{(m+1)^2} W^{(k_0)} \]
(59)
for all \(m \geq k_0 \), where
\[W^{(k_0)} \triangleq \frac{1}{2s \max_t} \left(\| (t_{k-1} - 1)x^{(k_0-1)} - t_{k-1}x^{(k_0)} + x^* \right\|^2_2 \]
\[+ \frac{4}{(m+1)^2} V^{(k_0)}. \]
(60)

Proof of Theorem 4. According to Lemma 4, it can be verified that \(\{x^{(k)}\}^\infty_{k=0} \) forms at most \(T_1 \leq |S| + 1 \) subsequences with shrinking support \(\{X^{(k)}_{T_{1,1}}\}_{k=1}^{T_{1,1}} \), \(\{z^{(k)}\}^\infty_{k=0} \) also forms at most \(T_2 \leq |S| + 1 \) subsequences with shrinking support, denoted by \(\{Z^{(k)}_{T_{2,1}}\}_{k=1}^{T_{2,1}} \).

Based on Lemma 2, there exists \(k_1 \geq 0 \) such that \(\{x^{(k)}\}^\infty_{k=k_1} \subseteq X^{(k)}_{T_{1,1}} \). Similarly, there exists \(k_2 \geq 0 \) such that \(\{z^{(k)}\}^\infty_{k=k_2} \subseteq Z^{(k)}_{T_{2,1}} \). According to Lemma 2, Let all the elements of \(X^{(k)}_{T_{1,1}} \) have support \(S_1 \), and all the elements of \(Z^{(k)}_{T_{2,1}} \) have support \(S_2 \). We will show that \(S_1 = S_2 \). To see this, let \(k_0 = \max \{k_1, k_2\} \), then there exists \(k_0 \geq k_0 \) such that \(x^{(k_0)} = z^{(k_0)} \). Due to the fact that \(\{x^{(k)}\}^\infty_{k=k_1} \subseteq X^{(k)}_{T_{1,1}} \) and \(\{z^{(k)}\}^\infty_{k=k_2} \subseteq Z^{(k)}_{T_{2,1}} \), \(S_1 = \text{supp}(x^{(k_0)}) = \text{supp}(z^{(k_0)}) = S_2 \).

Let \(S_1 = S_2 = S^* \), then all the elements of \(\{x^{(k)}\}^\infty_{k=k_0} \) and \(\{z^{(k)}\}^\infty_{k=k_0} \) have the same support \(S^* \). It follows that \(\text{supp}(x^*) = S^* \).

When \(\text{supp}(v) = \text{supp}(z^{(k+1)}) \) with \(k \geq k_0 \), we have
\[F(z^{(k+1)}) \leq g(v) + \langle \nabla g(w^{(k)}), z^{(k+1)} - v \rangle + \frac{Lg}{2} \| z^{(k+1)} - w^{(k+1)} \|^2_2 + h(z^{(k+1)}) \]
\[g(v) + \nabla g(w^{(k)}) \cdot z^{(k+1)} - v \]
\[+ \frac{L g'}{2} ||z^{(k+1)} - w^{(k)}||^2 + h(v) \]
\[+ \langle \nabla g(w^{(k)}) + \frac{1}{s}(z^{(k+1)} - w^{(k)}), v - z^{(k+1)} \rangle \]
\[= F(v) + \frac{1}{s}(z^{(k+1)} - w^{(k)}, v - z^{(k+1)}) \]
\[+ \frac{L g'}{2} ||z^{(k+1)} - w^{(k)}||^2 \]
\[\leq F(v) + \frac{1}{s}(z^{(k+1)} - w^{(k)}, v - w^{(k)}) \]
\[- \frac{1}{s} ||z^{(k+1)} - w^{(k)}||^2 + \frac{L g'}{2} ||z^{(k+1)} - w^{(k)}||^2 \]
\[= F(v) + \frac{1}{s}(z^{(k+1)} - w^{(k)}, v - w^{(k)}) \]
\[- \left(\frac{1}{s} - \frac{L g'}{2} \right) ||z^{(k+1)} - w^{(k)}||^2. \]
\[(62) \times (t_k - 1) + (63), \text{ we have} \]
\[t_k F(z^{(k+1)}) - (t_k - 1)F(x^{(k)}) - F(x^*) \]
\[\leq \frac{1}{s}(z^{(k+1)} - w^{(k)}), (t_k - 1)(x^{(k)} - w^{(k)}) + x^* - w^{(k)}) \]
\[- t_k \left(\frac{1}{s} - \frac{L g'}{2} \right) ||z^{(k+1)} - w^{(k)}||^2. \]
\[(64) \]

It follows that
\[t_k F(z^{(k+1)}) - (t_k - 1)F(x^{(k)}) - F(x^*) \]
\[\leq \frac{1}{s}(z^{(k+1)} - w^{(k)}), (t_k - 1)(x^{(k)} - w^{(k)}) + x^* - w^{(k)}) \]
\[- t_k \left(\frac{1}{s} - \frac{L g'}{2} \right) ||z^{(k+1)} - w^{(k)}||^2. \]
\[(65) \]

Multiplying both sides of (65) by \(t_k \), since \(t_k^2 - t_k = t_{k-1}^2 \), we have
\[t_k^2 (F(z^{(k+1)}) - F(x^*)) - t_{k-1}^2 (F(x^{(k)}) - F(x^*)) \]
\[\leq \frac{1}{s}(t_k(z^{(k+1)} - w^{(k)}), (t_k - 1)(x^{(k)} - w^{(k)}) + x^* - w^{(k)}) \]
\[- \left(\frac{1}{s} - \frac{L g'}{2} \right) ||t_k(z^{(k+1)} - w^{(k)})||^2 \]
\[\leq \frac{1}{s}(t_k(z^{(k+1)} - w^{(k)}), (t_k - 1)(x^{(k)} - w^{(k)}) + x^* - w^{(k)}) \]
\[- \frac{1}{2s} ||t_k(z^{(k+1)} - w^{(k)})||^2 \]
\[= \frac{1}{2s} (||t_k - 1||x^{(k)} - t_k w^{(k)} + x^*||^2 \]
\[- ||(t_k - 1)x^{(k)} - t_k z^{(k+1)} + x^*||^2. \]
\[(66) \]

Note that \(\text{supp}((t_k - 1)x^{(k)} + x^*) \subseteq S^* \) and \((w^{(k)}) = F_{S^*}(u^{(k)}) \), according to Lemma C and (66), we have
\[t_k^2 (F(z^{(k+1)}) - F(x^*)) - t_{k-1}^2 (F(x^{(k)}) - F(x^*)) \]
\[\leq \frac{1}{2s} (||t_k - 1||x^{(k)} - t_k u^{(k)} + x^*||^2 \]
\[- ||(t_k - 1)x^{(k)} - t_k z^{(k+1)} + x^*||^2. \]
\[(67) \]

Define \(A^{(k+1)} = (t_k - 1)x^{(k)} - t_k z^{(k+1)} + x^* \), then \(A^{(k)} = (t_{k-1} - 1)x^{(k-1)} - t_{k-1} z^{(k)} + x^* \). It can be verified that \(A^{(k)} = (t_k - 1)x^{(k)} - t_k u^{(k)} + x^* \). Therefore,
\[t_k^2 (F(z^{(k+1)}) - F(x^*)) - t_{k-1}^2 (F(x^{(k)}) - F(x^*)) \]
\[\leq \frac{1}{2s} (||A^{(k)}||^2 - ||A^{(k+1)}||^2). \]
\[(68) \]

Summing (68) over \(k = k_0, \ldots, m \) for \(m \geq k_0 \), we have
\[t_n^2 (F(z^{(m+1)}) - F(x^*)) - t_{k_0-1}^2 (F(x^{(k_0)}) - F(x^*)) \]
\[\leq \frac{1}{2s} (||A^{(k_0)}||^2 - ||A^{(m+1)}||^2) \leq \frac{1}{2s} ||A^{(k_0)}||^2 \]
\[= \frac{1}{2s} (||(t_{k_0-1} - 1)x^{(k_0-1)} - t_{k_0-1} z^{(k_0)} + x^*||^2. \]
\[(69) \]

Since \(t_k \geq \frac{k+1}{2} \) for \(k \geq 1 \), it follows from (69) that
\[F(z^{(m+1)}) - F(x^*) \]
\[\leq \frac{4}{(m+1)^2} \left(\frac{1}{2s} (||(t_{k_0-1} - 1)x^{(k_0-1)} - t_{k_0-1} z^{(k_0)} + x^*||^2 \]
\[+ t_{k_0-1}^2 (F(x^{(k_0)}) - F(x^*)) \right) \]
\[\triangleq \frac{4}{(m+1)^2} W_{k_0}, \]
\[(70) \]

References
