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Lemma 3. Let R be any list over [K]. Let

�(R) =
K�1X

k=1

1{↵(R(k + 1))� ↵(R(k)) > 0}⇥ (↵(R(k + 1))� ↵(R(k))) (8)

be the attraction gap of list R. Then the expected regret of R is bounded as

KX

k=1

(�(R⇤
, k)↵(k)� �(R, k)↵(R(k)))  K�max�(R) .

Proof. Fix position k 2 [K]. Then

�(R⇤
, k)↵(k)� �(R, k)↵(R(k))  �(R⇤

, k)(↵(k)� ↵(R(k)))

 �max(↵(k)� ↵(R(k))) ,

where the first inequality follows from the fact that the examination probability of any position is the lowest in the
optimal list (Assumption A5) and the second inequality follows from the definition of �max. In the rest of the proof, we
bound ↵(k)� ↵(R(k)). We consider three cases. First, let ↵(R(k)) � ↵(k). Then ↵(k)� ↵(R(k))  0 and can be
trivially bounded by �(R). Second, let ↵(R(k)) < ↵(k) and ⇡(k) > k, where ⇡(k) is the position of item k in list R.
Then

↵(k)� ↵(R(k)) = ↵(R(⇡(k)))� ↵(R(k))


⇡(k)�1X

i=k

1{↵(R(i+ 1))� ↵(R(i)) > 0}↵(R(i+ 1))� ↵(R(i))).

From the definition of �(R), this quantity is bounded from above by �(R). Finally, let ↵(R(k)) < ↵(k) and ⇡(k) < k.
This implies that there exists an item at a lower position than k, j > k, such that ↵(R(j)) � ↵(k). Then

↵(k)� ↵(R(k))  ↵(R(j))� ↵(R(k))


j�1X

i=k

1{↵(R(i+ 1))� ↵(R(i)) > 0} (↵(R(i+ 1))� ↵(R(i))) .

From the definition of �(R), this quantity is bounded from above by �(R). This concludes the proof.

Lemma 4. Let

Pt =
�
(i, j) 2 [K]2 : i < j,

���R̄�1
t (i)� R̄�1

t (j)
��� = 1, st�1(i, j)  2

p
nt�1(i, j) log(1/�)

 

be the set of potentially randomized item pairs at time t and �t = maxRt �(Rt) be the maximum attraction gap of
any list Rt, where �(Rt) is defined in (8). Then on event E in Lemma 9,

�t  3
KX

i=1

KX

j=i+1

1{(i, j) 2 Pt} (↵(i)� ↵(j))

holds at any time t 2 [n].

Proof. Fix list Rt and position k 2 [K � 1]. Let i0, i, j, j0 be items at positions k � 1, k, k + 1, k + 2 in R̄t. If k = 1,
let i0 = i; and if k = K � 1, let j0 = j. We consider two cases.

First, suppose that the permutation at time t is such that i and j could be exchanged. Then

↵(R�1
t (k + 1))� ↵(R�1

t (k))  1{(min {i, j} ,max {i, j}) 2 Pt} (↵(min {i, j})� ↵(max {i, j}))



holds on event E by the design of BubbleRank. More specifically, (min {i, j} ,max {i, j}) /2 Pt implies that
↵(R�1

t (k + 1))� ↵(R�1
t (k))  0.

Second, suppose that the permutation at time t is such that i and i
0 could be exchanged, j and j

0 could be exchanged, or
both. Then

↵(R�1
t (k + 1))� ↵(R�1

t (k))  1{(min {i, i0} ,max {i, i0}) 2 Pt} (↵(min {i, i0})� ↵(max {i, i0})) +
↵(j)� ↵(i) +

1{(min {j, j0} ,max {j, j0}) 2 Pt} (↵(min {j, j0})� ↵(max {j, j0}))

holds by the same argument as in the first case. Also note that

↵(j)� ↵(i)  1{(min {i, j} ,max {i, j}) 2 Pt} (↵(min {i, j})� ↵(max {i, j}))

holds on event E by the design of BubbleRank. Therefore, for any position k 2 [K � 1] in both above cases,
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Now we sum over all positions and note that each pair of R̄�1
t (`) and R̄�1

t (`+ 1) appears on the right-hand side at
most three times, in any list Rt. This concludes our proof.

Lemma 5. Let Pt be defined as in Lemma 4. Then on event E in Lemma 9,

KX

k=1

(�(R⇤
, k)↵(k)� �(Rt, k)↵(Rt(k)))  3K�max

KX

i=1

KX

j=i+1

1{(i, j) 2 Pt} (↵(i)� ↵(j))

holds at any time t 2 [n].

Proof. A direct consequence of Lemmas 3 and 4.

Lemma 6. Let Pt be defined as in Lemma 4, P =
Sn

t=1 Pt, and V0 be defined as in (6). Then on event E in Lemma 9,

|P |  K � 1 + 2 |V0| .

Proof. From the design of BubbleRank, |P1| = K � 1. The set of randomized item pairs grows only if the base list in
BubbleRank changes. When this happens, the number of incorrectly-ordered item pairs decreases by one, on event
E , and the set of randomized item pairs increases by at most two pairs. This event occurs at most |V0| times. This
concludes our proof.

Lemma 7. For any items i and j such that i < j,

sn(i, j)  15
↵(i) + ↵(j)

↵(i)� ↵(j)
log(1/�)

on event E in Lemma 9.

Proof. To simplify notation, let st = st(i, j) and nt = nt(i, j). The proof has two parts. First, suppose that
st  2

p
nt log(1/�) holds at all times t 2 [n]. Then from this assumption and on event E in Lemma 9,
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This implies that

nt 

4
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↵(i)� ↵(j)

�2
log(1/�)

at any time t, and in turn that

st  2
p
nt log(1/�)  8

↵(i) + ↵(j)

↵(i)� ↵(j)
log(1/�)

at any time t. Our claim follows from setting t = n.

Now suppose that st  2
p
nt log(1/�) does not hold at all times t 2 [n]. Let ⌧ be the first time when s⌧ >

2
p
n⌧ log(1/�). Then from the definition of ⌧ and on event E in Lemma 9,
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 3
p
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where the last inequality holds for any �  1/e. This implies that
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
5
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and in turn that
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p
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Now note that st = s⌧ for any t > ⌧ , from the design of BubbleRank. This concludes our proof.

For some Ft = �(R1, c1, . . . ,Rt, ct)-measurable event A, let Pt(A) = P(A | Ft) be the conditional probability of A
given history R1, c1, . . . ,Rt, ct. Let the corresponding conditional expectation operator be Et [·]. Note that R̄t is
Ft�1-measurable.

Lemma 8. Let i, j 2 [K] be any items at consecutive positions in R̄t and

z = ct(R�1
t (i))� ct(R�1

t (j)) .

Then, on the event that i and j are subject to randomization at time t,

Et�1 [z | z 6= 0] � ↵(i)� ↵(j)

↵(i) + ↵(j)

when ↵(i) > ↵(j), and Et�1 [�z | z 6= 0]  0 when ↵(i) < ↵(j).

Proof. The first claim is proved as follows. From the definition of expectation and z 2 {�1, 0, 1},

Et�1 [z | z 6= 0] =
Pt�1(z = 1, z 6= 0)� Pt�1(z = �1, z 6= 0)

Pt�1(z 6= 0)

=
Pt�1(z = 1)� Pt�1(z = �1)

Pt�1(z 6= 0)

=
Et�1 [z]

Pt�1(z 6= 0)
,

where the last equality is a consequence of z = 1 =) z 6= 0 and that z = �1 =) z 6= 0.



Let �i = Et�1

⇥
�(Rt,R�1

t (i))
⇤

and �j = Et�1

⇥
�(Rt,R�1

t (j))
⇤

denote the average examination probabilities of
the positions with items i and j, respectively, in Rt; and consider the event that i and j are subject to randomization at
time t. By Assumption A2, the values of �i and �j do not depend on the randomization of other parts of R̄t, only on
the positions of i and j. Then �i � �j ; from ↵(i) > ↵(j) and Assumption A4. Based on this fact, Et�1 [z] is bounded
from below as

Et�1 [z] = �i↵(i)� �j↵(j) � �i(↵(i)� ↵(j)) ,

where the inequality is from �i � �j . Moreover, Pt�1(z 6= 0) is bounded from above as

Pt�1(z 6= 0) = Pt�1(z = 1) + Pt�1(z = �1)

 �i↵(i) + �j↵(j)

 �i(↵(i) + ↵(j)) ,

where the first inequality is from inequalities Pt�1(z = 1)  �i↵(i) and Pt�1(z = �1)  �j↵(j), and the last
inequality is from �i � �j .

Finally, we chain all above inequalities and get our first claim. The second claim follows from the observation that
Et�1 [�z | z 6= 0] = �Et�1 [z | z 6= 0].

Lemma 9. Let S1 =
�
(i, j) 2 [K]2 : i < j
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�
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o
.

Let E =
T

t2[n](Et,1 \ Et,2) and E be the complement of E . Then P(E)  �
1
2K

2
n.

Proof. First, we bound P(Et,1). Fix (i, j) 2 S1, t 2 [n], and (n`(i, j))t`=1. Let ⌧(m) be the time of observing item pair
(i, j) for the m-th time, ⌧(m) = min {` 2 [t] : n`(i, j) = m} for m 2 [nt(i, j)]. Let z` = c`(R�1

` (i))�c`(R�1
` (j)).

Since (n`(i, j))t`=1 is fixed, note that z` 6= 0 if ` = ⌧(m) for some m 2 [nt(i, j)]. Let X0 = 0 and
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⇥
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⇤
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⇤
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where the last equality follows from the definition of s⌧(`)(i, j)� s⌧(`�1)(i, j). Now we apply the Azuma-Hoeffding
inequality and get that
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Moreover, from the definitions of X0 and Xnt(i,j), and by Lemma 8, we have that
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The above inequality holds for any (n`(i, j))t`=1, and therefore also in expectation over (n`(i, j))t`=1. From the
definition of Et,1 and the union bound, we have P(Et,1)  1

2�
1
2K(K � 1).

The claim that P(Et,2)  1
2�

1
2K(K � 1) is proved similarly, except that we use E⌧(`)�1

⇥
z⌧(`)

�� z⌧(`) 6= 0
⇤
 0. From

the definition of E and the union bound,

P(E) 
nX

t=1

P(Et,1) +
nX

t=1

P(Et,2)  �
1
2K

2
n .

This completes our proof.

B RESULTS WITH NDCG

In this section, we report the NDCG of compared algorithms, which measures the quality of displayed lists.
Since CascadeKL-UCB fails in the PBM and we focus on learning from all types of click feedback, we leave out
CascadeKL-UCB from this section.

In the first two experiments, we evaluate algorithms by their regret in (4) and safety constraint violation in (7). Neither
of these metrics measure the quality of ranked lists directly. In this experiment, we report the per-step NDCG@5 of
BubbleRank, BatchRank, TopRank, and Baseline (Figure 4), which directly measures the quality of ranked lists
and is widely used in the LTR literature [12, 2]. Since the Yandex dataset does not contain relevance scores for all
query-item pairs, we take the attraction probability of the item in its learned click model as a proxy to its relevance score.
This substitution is natural since our goal is to rank items in the descending order of their attraction probabilities [6].
We compute the NDCG@5 of a ranked list R as

NDCG@5(R) =
DCG@5(R)

DCG@5(R⇤)
, DCG@5(R) =

5X

k=1

↵(R(k))

log2(k + 1)
,

where R⇤ is the optimal list and ↵(R(k) is the attraction probability of the k-th item in list R. This is a standard
evaluation metric, and is used in TREC evaluation benchmarks [2], for instance. It measures the discounted gain over
the attraction probabilities of the 5 highest ranked items in list R, which is normalized by the DCG@5 of R⇤.

In Figure 4, we observe that Baseline has good NDCG@5 scores in all click models. Yet there is still room for
improvement. BubbleRank, BatchRank, and TopRank have similar NDCG@5 scores after 5 million steps. But
BubbleRank starts with NDCG@5 close to that of Baseline, while BatchRank and TopRank start with lists with
very low NDCG@5.

These results validate our earlier findings. As in Section 5.2, we observe that BubbleRank converges to the optimal
list in hindsight, since its NDCG@5 approaches 1. As in Section 5.3, we observe that BubbleRank is safe, since its
NDCG@5 is never much worse than that of Baseline.
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Figure 4: The per-step NDCG@5 of BubbleRank (red), BatchRank (blue), TopRank (orange), and Baseline (grey)
in the CM, DCM, and PBM in up to 5 million steps. Higher is better. The shaded regions represent standard errors of
our estimates.


