
Supplementary Material

A Review: Non-linear ICA via time contrastive learning

Here we provide a more detailed review of the theory of TCL. For further details we refer readers to Hyvärinen
and Morioka (2016) and we note that the results presented in this section are adapted from Hyvärinen and Morioka
(2016). We begin by showing that an optimally discriminative feature extractor combined with a linear multinomial
classification layer learns to model the non-stationary probability density of observations within each experimental
condition.

Recall that we observe d-dimensional data, X(i) = f(S(i)), which is generated via a smooth and invertible non-linear
mixture, f, of d independent latent variables, S(i). As in linear ICA, the latent variables are assumed to be mutually
independent. However, we also assume they are non-stationary. In particular, we assume the distribution of latent
variables to be piece-wises stationary such that we may associate a label, Ci ∈ E , with each S(i) indicating the piece-
wise stationary segment from which it was generated. In this manner, it is assumed that the distribution of latent
variables varies across segments, as shown in Figure S.1. As such, we write Ci ∈ E to denote the segment of the ith
observation where E = {1, . . . , E} is the set of all distinct segments. For example, each segment may correspond to a
distinct experimental condition. As the function f is smooth and invertible, it follows that the distribution of each X(i)
will also vary across segments.

We may therefore consider the task of classifying observed data into the various segments as a multinomial classifica-
tion task consisting of features, X(i), and categorical labels, Ci. For any observation, X(i), associated with true label
Ci ∈ E , we have:

p(Ci = τ |X(i), θ,W,b) =
exp

(
wTτ h(X(i); θ) + bτ

)
1 +

∑E
e=2 exp (wTe h(X(i); θ) + be)

, (S.1)

where θ are parameters for the neural network feature extractor and the weight matrix, W = [w1, . . . ,wE ], and bias
vector, b = [b1, . . . , bE ], parameterize the final multinomial layer. We note that the sum in the denominator goes from
e = 2, . . . , E. This is because we fix w1 = 0 and b1 = 0 in order to avoid indeterminancy in the softmax function.

Conversely, we can derive the true posterior distribution over the label Ci as:

p(Ci = τ |X(i)) =
p(X(i)|Ci = τ) p(Ci = τ)∑E
e=1 p(X(i)|Ci = e) p(Ci = e)

. (S.2)

If we assume that the feature extractor has a universal function approximation capacity and that we have infinite data
then the multinomial logistic classifier based on features h(X; θ) will converge to the optimal classifier, implying that
equation (S.1) will equal equation (S.2) for all τ ∈ E . We may then consider the following ratio:

p(Ci = τ |X(i), θ,W, b)

p(Ci = 1|X(i), θ,W, b)
=
p(Ci = τ |X(i))

p(Ci = 1|X(i))
, (S.3)

which after expanding and taking logarithms yields:

wTτ h(X(i); θ) + bτ = log p(X(i)|Ci = τ)− log p(X(i)|Ci = 1) + log
p(Ci = τ)

p(Ci = 1)
, (S.4)

indicating that the optimal feature extractor computes the log probability density function of the data within each
experimental condition (relative to some pivot segment, in this case the first condition). We note that this condition
holds for all τ ∈ E .

If we further assume the data were generated according to a non-stationary ICA model as described in equation (3),
then equation (S.4) yields:

WT
τ h(X; θ)− k1(X(i)) =

d∑
j=1

λj(τ) q(Sj)− k2(τ), (S.5)

where the sum is taken over each independent source, S1, . . . , Sd. Equation (S.5) follows from the change of variable
from S to X, noting that the Jacobians required by such a transformation cancel out because of the subtraction in the



right hand side of equation (S.4). As a result, by modeling the log probability densities with respect to some pivot
segment (in this case segment 1), we do not need explicity compute the Jacobians. We note that k1 is a function which
does not depend on τ and k2 is a function which does not depend on either X or S. As a result, it follows that both
h(X; θ) and q(S) must span the same linear space, implying that we may compute latent sources up to some non-
linearity, q(S), by first learning a feature extractor based on TCL and subsequently applying linear ICA on estimated
features, h(X; θ). Figure S.1 summarizes the relationship between the generative model and TCL.
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Figure S.1: A cartoon visualization which highlights the relationship between features learnt using TCL and a non-
linear ICA model. The non-linear ICA model assumes observations, X, are generated based on non-stationary latent
sources whose distribution varies according the distinct experimental conditions, e ∈ E .

B Relationship between ICA and SEM

In this section we formally outline the relationship between a bivariate non-linear ICA model and a non-linear SEM, as
first discussed in Section 3.1. Recall, under a non-linear ICA model we observe data, X, which is generated according
to a non-linear mixture of independent latent variables, S, such that:

X = f(S). (S.6)

Conversely, a SEM is defined as a collection of structural equations which explicitly define the generative mechanisms
for each observed variable as a function of its parents in the causal graph and its latent disturbance. In the context of
bivariate data, and assuming that X1 → X2, the structural equations may be written as:

X1 = f1(N1), (S.7)
X2 = f2(X1, N2). (S.8)

The correspondence between ICA and SEMs was first noted in the linear case by Shimizu et al. (2006). In such a
setting we have that:

X = AS, (S.9)

where A ∈ R2×2 denotes the ICA mixing matrix. In the linear setting, there is an exact correspondence between the
structural equations, f1 and f2, and the linear mapping from sources to observations parameterized by A. Formally,
each structural equation will correspond to a row in the ICA mixing matrix. This can be seen by expanding equation
(S.9) to yield:

X1 = a1,1S1 + a1,2S2, (S.10)
X2 = a2,1S1 + a2,2S2, (S.11)



where al,k denotes the (l, k) entry of A. Note that under the assumption that X1 → X2 we have that a1,2 = 0 and we
may re-write equation (S.11) as:

X2 =
a2,1
a1,1

X1 + a2,2S2. (S.12)

This serves to highlight the correspondence between equation (S.6) and equations (S.7-S.8). Equation (S.12) also
serves to demonstrate the fact that while there is a correspondence between the ICA model and the structural equations,
these will not necessarily be equal, as some transformations have been applied to coefficients in equation (S.12). This
effect will occur to a larger extent in the context of non-linear ICA and non-linear SEMs as instead of transformation
by a scalar there will be an arbitrary non-linear transformation. Finally, each latent disturbance, Nj , will correspond
to a latent source, Sπ(j).

C A linear ICA method for piece-wise stationary sources

Formally, assumptions 1-3 of Theorem 1 guarantee that TCL, as presented in Section 2.2, will recover a linear mixture
of latent independent sources up to point-wise transformation. This implies that the hidden representations obtained
satisfy:

h(X; θ) = Aq(N), (S.13)

for some linear mixing matrix, A. Equation (S.13) suggests that applying ordinary linear ICA to hidden representa-
tions, h(X; θ), will allow us to recover q(N). However, the use of linear ICA is premised on the assumption that latent
variables are independent. This is not necessarily guaranteed under the generative model presented in equation (3) in
the context of a fixed number of segments. While it is certainly true that N1 and N2 are conditionally independent
given segment labels, it may be the case that they are not marginally independent over all segments; for example it is
possible that their variances are somehow related (e.g., they may be monotonically increasing). We note that this is
not an issue when the number of segments grows asymptotically and we assume exponential family parameters, λj(e),
are randomly generated, as stated in Corollary 1 of Hyvärinen and Morioka (2016).

Here we seek to address this issue by proposing an alternative linear ICA algorithm which explicitly models the piece-
wise stationary nature of the data. In particular, the proposed linear ICA algorithm explicitly incorporates equation (3)
as the generative model for latent sources. As such, it can be used to accurately unmix sources in the final stage of
TCL, especially when the number of segments in small.

To set notation, we assume we observe data which corresponds to a linear mixture of sources:

Z = AS

where Z,S ∈ Rd and A ∈ Rd×d is a square mixing matrix. Popular ICA algorithms, such as FastICA, estimate the
unmixing matrix W = A−1 by maximizing the log-likelihood under the assumptions that sources are independent and
non-Gaussian. The objective function for FastICA is therefore of the form:

log p(Z) =
d∑
j=1

q(wTj Z)− Z(W ), (S.14)

where Z(W ) = log |detW | is the normalization constant and we write wk to denote the kth row of W. Typically a
parametric form is assumed for q(·), popular examples being exponential or log-cosh. In the context of the generative
model for sources specified in equation (3), the FastICA algorithm therefore proceeds under the assumption that λj(e)
is constant across all segments e ∈ E .

In order to address this issue we consider an alternative model for the density of latent sources. In particular, we
seek to directly employ the piece-wise stationary log-density described in equation (3). As such, we log-density of an
observation within segment e ∈ E is defined as:

log pe(Z) =
d∑
j=1

λj(e)qj(wTj Z)− Z(W,λ(e)). (S.15)

In contrast to equation (S.14), the log-density of each observation depends on both the segment, e, the exponential
family parameters, λ = {λj(e) : e ∈ E , j = 1, . . . , d}, as well as the unmixing matrix, W.



In order to recover latent sources we propose to estimate parameters, corresponding to unmixing matrix as well as
exponential family parameters, via score matching (Hyvärinen, 2005). This avoids the need to estimate the normal-
ization parameter, which may not be available analytically when sources follow unnormalized distributions. The score
matching objective for the ICA model defined in equation (S.15) is defined as:

J̃ =
∑
e∈E

d∑
j=1

λj(e)
1

ne

∑
i,Ci=e

q′′j (w
T
j Z(i))

+
1

2

∑
e∈E

d∑
j,k=1

λk(e)λj(e)wTk wj
1

ne

∑
i,Ci=e

q′k(w
T
k Z(i))q′j(w

T
j Z(i)),

(S.16)

where we write q′j and q′′j to denote the first and second derivatives of qj with respect to observations, Z. We propose
to minimize equation (S.16) via block gradient descent, conditionally updating the mixing matrix W and exponential
family parameters λ. This has the important benefit that conditional on W, there is a closed form update for λ
(Hyvärinen, 2007).

Experimental results

In order to assess the performance of the proposed linear ICA algorithm, we generated bivariate data following
the piece-wise stationary distribution described in equation (3). We compare the performance of the proposal al-
gorithm against the following popular linear ICA algorithms: FastICA (Hyvärinen, 1999), Infomax ICA (Bell and
Sejnowski, 1995) and Joint Diagonalization method proposed by Pham and Cardoso (2001) which also accommodates
non-stationary sources.

In order to assess the performance of the proposed method we consider two scenarios:

• The exponential family parameters are deliberately generated such that there is a statistical dependence structure
across segments. In particular, we generate bivariate data where we explicitly enforce λj(e)to be monotonically
increasing in e. As a concrete example, when sources follow a Laplace distribution this implies that q(S) = |S|
and in turn λj(e) corresponds to the variance of the jth source in segment e. In such a setting, we generate
piece-wise stationary Laplace sources with where the variances are correlated across segments.

• As a baseline, we also generate data where the exponential family parameters are generated at random. This
removes any systematic, higher-order dependence between latent sources.

Figure S.2: Performance of various linear ICA algorithms for piece-wise stationary Laplace sources. The left panel
shows performance when the variance of latent sources are positive correlated, introducing second order dependence
in the data. As expected, FastICA and Infomax ICA perform poorly in this context. The right panel shows similar data
were variances are no longer correlated, resulting in good performance for all algorithms.

We begin by generating bivariate data were sources follow a piece-wise stationary Laplace distribution. This implies
that sources follow the log-density specified in equation (3) where qj(Sj) = |Sj | and each term λj(e) denotes the



variance of the jth source in segment e. Results when data is generated over five segments are provided in Figure S.2.
The left panel shows the case were the variances of each latent source are correlated across segments. We note that
when this is the case, methods such FastICA and Infomax ICA perform poorly. This is in contrast to the proposed
method and the joint diagonalization approach of Pham and Cardoso (2001), who explicitly model the non-stationary
nature of the data. The right panel of Figure S.2 shows equivalent results when variances are randomly generated,
thereby removing second order dependence between latent variables. As expected, in this setting all methods perform
well.

Figure S.3: Performance of various linear ICA algorithms when latent sources follow the log-density detailed in
equation (S.17). The left panel shows performance when exponential family parameters, λi(e), are positive correlated,
introducing higher order dependence in the data. The right panel shows similar data were parameters, λi(e) are
randomly generated.

In order to further probe the differences between the proposed method and the approach of Pham and Cardoso (2001),
we consider latent sources with an unnormalized distribution. In particular, we generate sources such that the log-
density within a particular segment is as follows:

log pe(Sj) =

{
−3λj(e)|Sj | − 1

2S
2
j , if Sj ≥ 0

−λj(e)|Sj | − 1
2S

2
j , otherwise.

(S.17)

Such a density is both unnormalized but also skewed. As such, we expect the joint diagonalization algorithm of
Pham and Cardoso (2001) to perform poorly in this setting as it exclusively studies covariance structure and therefore
cannot model skewed distributions. Figure S.3 visualizes the results for these experiments. As expected, the Joint
Diagonalization algorithm of Pham and Cardoso (2001) suffers a drop in performance. However, it continues to
outperform FastICA and Infomax ICA, especially when there are dependencies over the exponential family parameters.
We note that the proposed model, where parameters are estimated using score matching, is shown to be more robust.

D Proof of Theorem 2

The proof of Theorem 2 follows from a combination of the presented assumptions together with Property 1. For-
mally, assumptions 1–3 guarantee that the TCL, as presented in Section 2.2, will recover a linear mixture of latent
independent sources up to point-wise transformation. This, combined with the novel linear ICA algorithm described
in Section 3.2, imply that, in the limit of infinite data (as stipulated in Theorem 1 of Hyvärinen and Morioka (2016)),
latent disturbances can be recovered. In particular, we note Assumption 2 states that segments must have distinct
distributions, thus implying that the matrix L with elements Le,j = λj(e)− λj(1) for e = 1, . . . , E and j = 1, . . . , d
will have full rank.

We note that in practice we recover the latent disturbances up to element-wise transformation, q(N), as opposed to
N. This is not a problem when a general test of statistical independence, such as HSIC which can capture arbitrary
(i.e., non-linear) dependencies, is employed. Finally, Assumption 1 further states there is no latent confounder is
present, implying that running all possible pairwise tests using a sufficiently flexible independence test, as required by
assumption 4, will allow us to determine causal structure.



E Relationship between likelihood ratio and measures of independence

In this section we derive the result presented in equation (8), for some permutation π of latent disturbances. We begin
by considering the mutual information between X1 and Nπ(2):

I(X1, Nπ(2)) = H(X1) +H(Nπ(2)−H(X1, Nπ(2))

= H(X1) +H(Nπ(2)−H(X1, X2)− E
[
log

∣∣∣∣∂gπ(2)
∂X2

∣∣∣∣]
where we employ the same change of variable, whose Jacobian can be easily evaluated, as in Section 3.4. In particular,
we have used the property that:

H(X1, Nπ(2)) = H(X1, X2) + log |det Jg̃|

and noted that the particular choice of g̃ allows us to directly compute the Jacobian as
∂gπ(2)

∂X2
. We may therefore

compute the difference in mutual information between each observed variable and the relevant latent disturbance,
yielding:

I(X1, Nπ(2))− I(X2, Nπ(1)) = H(X1) +H(Nπ(2)− E
[
log

∣∣∣∣∂gπ(2)
∂X2

∣∣∣∣]
−H(X2)−H(Nπ(1) + E

[
log

∣∣∣∣∂gπ(1)
∂X1

∣∣∣∣]
which is precisely the negative of likelihood ratio presented in Section 3.4.



F Baseline methods

In this section we briefly overview and provide pseudo-code for alternative methods which are presented as baselines
in the manuscript.

• DirectLiNGAM: The DirectLiNGAM method of Shimizu et al. (2011) is based on the property that within a
linear non-Gaussian acyclic model (LiNGAM), if we regress out the parents of any variable, then the residuals
also follow a LiNGAM. Based on this property, the authors propose an iterative algorithm through which to
iteratively uncover exogenous variables. oFurther, if variables follow a LiNGAM, then due to the additive nature
of noise in such models, the residuals will be independent when we regress the parent on its children. As a result,
we may infer the causal structure by studying the statistical independences between variables and residuals.
Pseudo-code for the bivariate DirectLiNGAM method is provided in Algorithm 1.

Algorithm 1: Bivariate causal discovery using DirectLiNGAM (Shimizu et al., 2011)
Input : Bivariate data, X, and significance level α.

1 for i ∈ {1, 2} do
2 Linearly regress Xi on X{1,2}\i and compute the residual N̂i.
3 Evaluate the test:

HXi,N̂i,0
: PXi,N̂j = PXiPN̂j against HXi,N̂j ,1

: PXi,Nj 6= PXiPN̂j at the α
2 level.

4 end
5 if we fail to reject the null hypothesis only once then
6 Variable i′ such that we fail to reject HXi′ ,N̂j ,0

is the cause variable
7 else
8 The causal dependence structure is inconclusive
9 end

• RESIT: The RESIT method, first proposed by Hoyer et al. (2009) and subsequently extended by Peters et al.
(2014), can be seen as a non-linear extension of the DirectLiNGAM algorithm. The RESIT algorithm is premised
on the assumption of an additive noise model (ANM), which implies that each structural equation are of the form
Xj = fj(PAj) + Nj . Given the ANM assumption, RESIT is able to recover the causal structure by testing for
dependence between variables and residuals. Gaussian process regression is employed in order to accommodate
for non-linear additive causal relations.

Algorithm 2: Bivariate causal discovery using RESIT (Hoyer et al., 2009; Peters et al., 2014)
Input : Bivariate data, X, and significance level α.

1 for i ∈ {1, 2} do
2 Regress Xi on X{1,2}\i and compute the residual N̂i. // Gaussian process regression is

employed
3 Evaluate the test:

HXi,N̂i,0
: PXi,N̂j = PXiPN̂j against HXi,N̂j ,1

: PXi,Nj 6= PXiPN̂j at the α
2 level.

4 end
5 if We fail to reject the null hypothesis only once then
6 Variable i′ such that we fail to reject HXi′ ,N̂j ,0

is the cause variable
7 else
8 The causal dependence structure is inconclusive
9 end



• Non-linear ICP: The ICP method proposed by Peters et al. (2016) proposes a fundamentally different approach
to causal discovery. The underlying principle of the ICP algorithm is that the direct causal predictors of a given
variable must remain invariant across distribution shifts induced by various experimental conditions. In the
context of bivariate data, the non-linear ICP algorithm, as described in Section 6.1 of Peters et al. (2016) therefore
corresponds to fitting a non-linear regression model on the data across all experimental conditions and testing
whether the distribution of residuals is the same within each condition. We note that such an approach assumes
an additive noise model, as this greatly simplifies testing for invariance.

Algorithm 3: Bivariate causal discovery via non-linear ICP (Peters et al., 2016)
Input : Bivariate data, X(i), labels Ci ∈ {1, . . . , E} and significance level α.

1 for i ∈ {1, 2} do
2 Regress Xi on X{1,2}\i and compute the residual, N̂i

// Note that Gaussian process regression is employed and we aggregate data
across all experimental conditions

3 Evaluate the test:

HN̂i,0
: PN̂i,e = PN for all e ∈ E against HN̂i,1

: PN̂i,e 6= PN for some e ∈ E

where PN is some arbitrary distribution. // The Kolmogorov-Smirnov test is employed
4 end
5 if We fail to reject the null hyp. only once then
6 Variable i such that we fail to reject HN̂i,0

is the cause variable
7 else
8 The causal dependence structure is inconclusive
9 end

• RECI: Blöbaum et al. (2018) propose a method for inferring the causal relation between two variables by com-
paring the regression errors in each possible causal direction. Under some mild assumptions, they are able to
prove that the magnitude of residual errors should be smaller in the causal direction. This suggests a straightfor-
ward causal discovery algorithm, which we outline below. We note that while any non-linear regression method
may be employed, our implementation used Gaussian process regression.

Algorithm 4: Bivariate causal discovery using RECI (Blöbaum et al., 2018)
Input : Bivariate data, X.

1 Standardize data such that Xt is zero mean and unit variance.
2 for i ∈ {1, 2} do
3 Regress Xi on X{1,2}\i and evaluate the mean-squared error, MSEi // Gaussian process

regression is employed
4 end
5 if MSE1 < MSE2 then
6 Variable 1 is the cause variable
7 else
8 Variable 2 is the cause variable
9 end

• CD-NOD: Zhang et al. (2017) propose a causal discovery algorithm which explicitly accounts for non-stationarity
or heterogeneity over observed variables. The CD-NOD algorithm accounts for non-stationarity, which may
manifest itself as changes in the causal modules, by introducing an additional variable representing the time or
domain index into the causal DAG. Conditional independence testing is then employed to recover the skeleton
over the augmented DAG. Their method can find causal direction by making use of not only invariance, but also
independent changes of causal models, as an extended notion of invariance. We also note that CD-NOD is a
non-parametric method, implying it is able to accommodate non-linear causal dependencies.



Algorithm 5: Bivariate causal discovery using CD-NOD (Zhang et al., 2017)
Input : Bivariate data, X.

1 Build an augmented dataset consisting of X and C, the observed variable representing time or domain index.
// Detection of changing modules

2 for i ∈ {1, 2} do
3 Test for marginal and conditional dependence between Xi and C
4 If they are conditionally independent given X{1,2}\i then we remove the edge between Xi and C in the

augmented DAG
5 end
// Recover causal skeleton

6 if X1 ⊥⊥ X2 | C then
7 Remove the edge between X1 and X2⇒ no causal relation between X1 and X2

8 else
9 if Only one of X1 and X2 is marginally or conditionally dependent on C then

10 Dependent variable is reported as the cause
11 else
12 Determine cause variable by comparing mutual information
13 end
14 end

G Pseudo-code for NonSENS

In this supplementary we provide pseudo-code for the proposed NonSENS method, as described in Section 3.3.

Algorithm 6: Bivariate causal discovery via NonSENS
Input : Bivariate time-series data, X(i), labels Ci ∈ E and significance level α.

1 Estimate (N̂1(i), N̂2(i)) via TCL where the final linear unmixing is performed using the ICA algorithm presented in
Section 3.2.

2 for i ∈ {1, 2} and j ∈ {1, 2} do
3 Evaluate the test:

HXi,N̂j ,0
: PXi,N̂j = PXiPN̂j against HXi,N̂j ,1

: PXi,Nj 6= PXiPN̂j at the α
4 level.

4 end
5 if We fail to reject the null hyp. only once then
6 Variable i′ such that we fail to reject HXi′ ,N̂j ,0

for some j ∈ {1, 2} is the causal variable
7 else
8 The causal dependence structure is inconclusive
9 end



H Further experimental results

In this section of the supplementary material we present further experimental results. In particular, in Section H.1 we
present results for bivariate causal discovery in the context of a fixed number of experimental conditions, |E| = 10,
and increasing observations per segment. In Section H.2 we provide addition results in the context of multivariate
causal discovery. In particular, we report the Hamming distance between true and estimated DAGs.

H.1 Additional bivariate causal discovery experiments

We consider the performance of all algorithms in the context of a fixed number of experimental conditions, |E| = 10,
and an increasing number of observations per condition, ne. The results are presented in Figure S.4, where we repeat
each experiment 100 times. We note that all algorithms are able to accurately identify causal structure in the presence
of LiNGAMs (corresponding to a 1 layer mixing-DNN). However, as the causal structure becomes increasingly non-
linear, the performance of all methods declines. In particular, we note that the proposed method has comparable
performance with alternative methods such as RESIT and CD-NOD when the number of samples is small. However,
as the number of observations increases the proposed method is able to out-perform alternative algorithms.

Figure S.4: Experimental results indicating performance as we increase the number of observations, ne conditions,
within each experimental condition for a fixed number of experimental conditions, |E| = 10. Each horizontal plane
plots results for varying depths of the mixing-DNN, ranging from l = 1, . . . , 5. The top panel plots the proportion
of times the correct cause variable is identified when a causal effect exists. The bottom panel considers data where
no acyclic causal structure exists (A(l) is not lower-triangular) and reports the proportion of times no causal effect is
correctly reported. The dashed, horizontal red line indicates the theoretical (1−α)% true negative rate. For clarity we
omit the standard errors, but we note that they were small in magnitude (approximately 2− 5%).

H.2 Multivariate causal discovery results

In this section we provide additional performance metrics in the context of multivariate causal discovery. While Figure
4 reported the F1 score, we further provide results for the Hamming distance between true and estimated DAGs in
Figure S.5.

.
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Figure S.5: Hamming distance results for multivariate causal discovery with 6-dimensional data. For each algorithm,
we plot the structural Hamming distance as we vary the depth of the mixing-DNN from l = 1, . . . , 5. Lower scores
indicate better performance.

.

I Hippocampal functional MRI data

In this section we provide further details of the Hippocampal fMRI data employed in Section 4.2. The data
was collected as part of the MyConnectome project, presented in Poldrack et al. (2015), which involved daily
fMRI scans for a single individual (Caucasian male, aged 45). The data may be freely downloaded from
https://openneuro.org/datasets/ds000031/.

We focus only on the resting-state fMRI data taken from this project, noting that future work may also wish to study
the other modalities of data collected.

Data was collected from the same subject over a series of 84 successive days, allowing us to consider data collected on
distinct days as a distinct experimental condition. Full details of the data acquisition pipelines are provided in Poldrack
et al. (2015). For each day, we observe 518 BOLD measurements. After preprocessing, data was collected from the
following brain regions: perirhinal cortex (PRC), parahippocampal cortex (PHC), entorhinal cortex (ERC), subiculum
(Sub), CA1, and CA3/Dentate Gyrus (DG). This resulted in d = 6 dimensional data. As such, data employed consists
of ne = 518 observations per experimental condition and |E| = 84 distinct conditions.


