
A ADDITIONAL DISCUSSION OF
SUBSPACE INFERENCE

A.1 LOSS OF MEASURE

When mapping into a lower-dimensional subspace of the
true parameter space, we lose the ability to invert the trans-
form and thus measure (i.e. volume of the distribution) is
lost. Consider the following simple example in R2. First,
form a spherical density, p(x, y) = N (0, I2), and then fix
x and y along a slice, such that x ≠ y = c. The support of
the resulting distribution has no area, since it represents
a line with no width). For this reason, it is more correct
to consider the subspace model (2) as a different model
that shares many of the same functional properties as the
fully parametrized model, rather than a re-parametrized
version of the same model. Indeed, we cannot construct a
Jacobian matrix to represent the density in the subspace.

A.2 POTENTIAL BENEFITS OF SUBSPACE
INFERENCE

Quicker Exploration of the Posterior Reducing the
dimensionality of parameter space enables significantly
faster mixing of MCMC chains. For example, the ex-
pected number of likelihood evaluations needed for an ac-
cepted sample drawn using Metropolis-Hastings or Hamil-
tonian Monte Carlo (HMC) respectively grow as d2 and
d5/4. If the dimensionality of the subspace grows as
K = log d, for example, then we would expect the run-
time of Metropolis-Hastings to produce independent sam-
ples to grow at a modest 2 log d. We also note that the
structure of the subspace may be much more amenable to
exploration than the original posterior, requiring less time
to effectively cover. For example, Maddox et al. (2019)
show that the loss in the subspace constructed from the
principal components of SGD iterates is approximately
locally quadratic. On the other hand, if the subspace has
a complicated structure, it can now be traversed using am-
bitious exploration methods which do not scale to higher
dimensional spaces, such as parallel tempering (Geyer
and Thompson, 1995).

Potential Lack of Degeneracies Given the restriction
of DNNs into a subspace, we may expect that the subspace
model concentrates to a single point in parameter space.
This is in contrast to most DNNs, as due to the singularity
of the Fisher information (e.g. Watanabe (2007)) and
the fact that interconnected paths between global minima
exist (Garipov et al., 2018), DNNs seem to concentrate in
parameter space to connected point masses and gorges of
global minima, where all solutions are exactly the same in
function space. We expect then that the subspace model
may be easier to theoretically analyze and could be more

interpretable as a result.

B APPROXIMATE INFERENCE
METHODS

We can use MCMC methods to approximately sample
from p(z|D), or we can perform a deterministic approxi-
mation q(z|D) ¥ p(z|D), for example using Laplace or
a variational approach, and then sample from q. We par-
ticularly consider the following methods, although there
are many other possibilities. The inference procedure is
an experimental design choice.

Slice Sampling As the dimensionality of the subspace
K is low, gradient-free methods such as slice sampling
(Neal et al., 2003) and elliptical slice sampling (ESS)
(Murray et al., 2010) can be used to sample from the pro-
jected posterior distribution. Elliptical slice sampling is
designed to have no tuning parameters, and only requires
a Gaussian prior in the subspace. 7 For networks that
cannot evaluate all of the training data in memory at a
single time, it is easily possible to sum the loss over mini-
batches computing a full log probability, without storing
gradients.

NUTS The No-U-Turn Sampler (NUTS) (Hoffman and
Gelman, 2014) is an HMC method (Neal et al., 2011)
that dynamically tunes the hyper-parameters (step-size
and leapfrog steps) of HMC. 8 NUTS has the advantage
of being nearly black-box: only a joint likelihood and
its gradients need to be defined. However, full gradient
calls are required, which can be difficult to cache and a
constant factor slower than a full likelihood calculation.

Simple Variational Inference One can perform varia-
tional inference in the subspace using the fully-factorized
Gaussian posterior approximation family for p(z|D),
from which we can sample to form a Bayesian model
average. Fully-factorized Gaussians are among the sim-
plest and the most common variational families. Unlike
ESS or NUTS, VI can be trained with mini-batches (Hoff-
man et al., 2013), but is often practically constrained in
the distributions it can represent.

RealNVP Normalizing flows, such as RealNVP (Dinh
et al., 2017), parametrize the variational distribution
family with invertible neural networks, for flexible non-
Gaussian posterior approximations.

7We use the Python implementation at https:
//github.com/jobovy/bovy_mcmc/blob/master/
bovy_mcmc/elliptical_slice.py.

8Implemented in Pyro (Bingham et al., 2018).
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Figure 6: Plot of 300 eigenvalues of the Fisher and Hes-
sian matrices for a PreResNet164 on CIFAR100. A clear
separation exists between the top 20 or so eigenvalues and
the rest, which are crowded together.
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Figure 7: Eigenvalues of trajectory covariance (explained
variance proportion) estimated from randomized SVD
across three architectures on CIFAR-10 and CIFAR-100
plotted on a log-scale. The trajectory decays extremely
quickly, decaying towards 0 around 10-20 setps.

C EIGEN-GAPS OF THE FISHER AND
HESSIAN MATRICES

We can see similar behavior within the eigenvalues of
both the Hessian and the empirical Fisher information ma-
trix, at the end of training in Figure 6. To compute these
eigenvalues, we used a GPU-enabled Lanczos method in
GPyTorch (Gardner et al., 2018) on a pre-trained PreRes-
Net164. We ran Lanczos for 100 steps, estimating 100
eigenvalues, before shifting by the maximum eigenvalue,
and running for 200 steps, estimating 200 eigenvalues.
Lanczos tends to converge from the “outside in” so to
speak, see Chaper 7 of Demmel (1997) for theoretical
guarantees, so that it ought to be possible to pick up eigen-
gaps. As such, we would expect the training dynamics
of SGD to primarily use these much larger eigenvalues, a
finding shown empirically by Li et al. (2018b); Gur-Ari
et al. (2019).

D ADDITIONAL REGRESSION
UNCERTAINTY VISUALIZATIONS

In Figure 8 we present the predictive disribution plots for
all the inference methods and subspaces. We additionally
visualize the samples over poterior density surfaces for
each of the methods in Figure 9.

E UCI REGRESSION EXPERIMENTAL
DETAILS

E.1 SETUP

In all experiments, we replicated over 20 trials reserving
90% of the data for training and the other 10% for testing,
following the set-up of Bui et al. (2016) and Wilson et al.
(2016).

E.1.1 Gaussian test likelihood

In Bayesian model averaging, we compute a Gaus-
sian estimator N (y|µ̂, ‡̂2) based on sample statis-
tics9, where µ̂(x) = 1

J

qJ
i=1 µ(x; wi), ‡̂2(x) =

1
J

qJ
i=1

!
‡2(x; wi) + µ(x; wi)2"

≠ µ̂(x)2, and wi are
samples from the approximate posterior (see Section 3.2).

E.1.2 Small Regression

For the small UCI regression datasets, we use the architec-
ture from Wu et al. (2019) with one hidden layer with 50
units. We manually tune learning rate and weight decay,
and use batch size of N/10 where N is the dataset size.
All models predict heteroscedastic uncertainty (i.e. output
a variance). In Table 2, we compare subspace inference
methods to deterministic VI (DVI, Wu et al. (2019)) and
deep Gaussian processes with expectation propagation
(DGP1-50 Bui et al. (2016)). ESS and VI in the PCA
subspace outperform DVI on two out of five datasets.

E.1.3 Large-Scale Regression

For the large-scale UCI regression tasks, we manually
tuned hyper-parameters (batch size, learning rate, and
epochs) to match the SGD DNN results in Table 1 of
Wilson et al. (2016). Here, there is one significant dif-
ference which is that our networks use heteroscedastic
uncertainty, while those networks use homoscedastic un-
certainty (a fixed variance). However, we found that the
results were similar in terms of RMSE, but fitting net-
works with heteroscedastic uncertainty allows for a prin-
cipled comparison of test log-likelihood and calibration.

9This is the same estimator used in Wu et al. (2019) and
Lakshminarayanan et al. (2017).
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Figure 8: Regression predictive distributions across inference methods and subspaces. Data is shown with red circles,
dark blue line shows predictive mean, lighter blue lines show sample predictive functions, and the shaded region
represents ±3 standard deviation of predictive distribution at each point.
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Figure 9: Posterior log-density surfaces and samples (magenta circles) for the synthetic regression problem across
different subspaces and sampling methods.
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Figure 10: Coverage of 95% prediction interval for models trained on UCI datasets. In most cases, subspace inference
produces closer to 95% coverage than models trained using SGD or SWAG.

Table 2: Unnormalized test log-likelihoods on small UCI datasets for Subspace Inference (SI), as well as direct
comparisons to the numbers reported in deterministic variational inference (DVI, Wu et al. (2019)) and Deep Gaussian
Processes with expectation propagation (DGP1-50, Bui et al. (2016)), and variational inference (VI) with the re-
parameterization trick (Kingma et al., 2015).

dataset N D SGD PCA+ESS (SI) PCA+VI (SI) SWAG DVI DGP1-50 VI

boston 506 13 -2.752 ± 0.132 -2.719 ± 0.132 -2.716 ± 0.133 -2.761 ± 0.132 -2.41 ± 0.02 -2.33 ± 0.06 -2.43 ±0.03
concrete 1030 8 -3.178 ± 0.198 -3.007 ± 0.086 -2.994 ± 0.095 -3.013 ± 0.086 -3.06 ± 0.01 -3.13 ± 0.03 -3.04 ±0.02
energy 768 8 -1.736 ± 1.613 -1.563 ± 1.243 -1.715 ± 1.588 -1.679 ± 1.488 -1.01 ± 0.06 -1.32 ± 0.03 -2.38 ±0.02
naval 11934 16 6.567 ± 0.185 6.541 ± 0.095 6.708 ± 0.105 6.708 ± 0.105 6.29 ± 0.04 3.60 ± 0.33 5.87 ±0.29
yacht 308 6 -0.418 ± 0.426 -0.225 ± 0.400 -0.396 ± 0.419 -0.404 ± 0.418 -0.47 ± 0.03 -1.39 ± 0.14 -1.68 ±0.04

Table 3: RMSE on small UCI datasets. Subspace Inference (SI) typically performs comparably to SGD and SWAG.

SGD PCA+ESS (SI) PCA+VI (SI) SWAG

boston 3.504 ± 0.975 3.453 ± 0.953 3.457 ± 0.951 3.517 ± 0.981
concrete 5.194 ± 0.446 5.194 ± 0.448 5.142 ± 0.418 5.233 ± 0.417
energy 1.602 ± 0.275 1.598 ± 0.274 1.587 ± 0.272 1.594 ± 0.273
naval 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000
yacht 0.973 ± 0.374 0.972 ± 0.375 0.973 ± 0.375 0.973 ± 0.375

We additionally tried fitting models without a global vari-
ance parameter, but found that they were typically more
over-confident than models with a global variance param-
eter.

Following Wilson et al. (2016), for the UCI regression
tasks with more than 6,000 data points, we used networks
with the following structure: [1000, 1000, 500, 50, 2],
while for skillcraft, we used a network with: [1000, 500,
50, 2]. We used a learning rate of 1e ≠ 3, doubling
the learning rate of bias parameters, a batch size of 400,
momentum of 0.9, and weight decay of 4e ≠ 3, training
for 200 epochs. For skillcraft and pol, we only trained for
100 epochs, while for skillcraft we used a learning rate of
5e ≠ 4 and for keggD, we used a learning rate of 1e ≠ 4.
We additionally used a subspace prior of 1.0.

In Table 5, we report RMSE results compared to two
types of approximate Gaussian processes (Salimbeni et al.,
2018; Yang et al., 2015); note that the results for OrthVGP
are reproduced from Appendix Table F of Salimbeni et al.
(2018) but scaled by the standard deviation of the respec-
tive dataset. For the comparisons using Bayesian final

layers (Riquelme et al., 2018), we trained SGD nets with
the same architecture and used the second-to-last layer
(ignoring the final 2 hidden unit layer as it performed
considerably worse) for the Bayesian approach and then
followed the same hyper-parameter setup as in the authors’
codebase 10 with a = b = 6 and ⁄ = 0.25.

We repeated each model over 10 random train/test splits;
each test set consisted of 10% of the full dataset. All data
was pre-processed to have mean zero and variance one.

F IMAGE CLASSIFICATION RESULTS

For the experiments on CIFAR datasets we are following
the framework of (Maddox et al., 2019). We report the
negative log-likelihood and accuracy for our method and
baselines in Tables 8 and 9.

10https://github.com/tensorflow/models/
tree/master/research/deep_contextual_
bandits



Table 4: Calibration on small-scale UCI datasets for Subspace Inference (SI). Bolded numbers are those closest to 95%
of the predicted coverage.

N D SGD PCA+ESS (SI) PCA+VI (SI) SWAG

boston 506 13 0.986 ± 0.018 0.985 ± 0.017 0.984 ± 0.017 0.986 ± 0.018
concrete 1030 8 0.864 ± 0.029 0.941 ± 0.021 0.934 ± 0.019 0.933 ± 0.024
energy 768 8 0.947 ± 0.026 0.953 ± 0.027 0.949 ± 0.027 0.951 ± 0.027
naval 11934 16 0.948 ± 0.051 0.978 ± 0.006 0.967 ± 0.008 0.967 ± 0.008
yacht 308 6 0.895 ± 0.069 0.948 ± 0.040 0.898 ± 0.067 0.898 ± 0.067

Table 5: RMSE comparison amongst methods on larger UCI regression tasks, as well as direct comparisons to the
numbers reported in deep kernel learning with a spectral mixture kernel (DKL, (Wilson et al., 2016)), orthogonally
decoupled variational GPs (OrthVGP, Salimbeni et al. (2018)), FastFood kernel GPs (FF, Yang et al. (2015) from Wilson
et al. (2016)), and Bayesian final layers (NL, Riquelme et al. (2018)). Subspace based inference typically outperforms
SGD and approximate GPs and is competitive with DKL.

dataset N D SGD PCA+ESS (SI) PCA+VI (SI) SWAG DKL OrthVGP FF NL

elevators 16599 18 0.092 ± 0.003 0.093 ± 0.004 0.090 ± 0.002 0.090 ± 0.002 0.084 ± 0.02 0.0952 0.089 ± 0.002 0.097 ± 0.003
keggD 48827 20 0.121 ± 0.003 0.137 ± 0.031 0.137 ± 0.032 0.138 ± 0.032 0.10 ± 0.01 0.1198 0.12 ± 0.00 0.121 ± 0.005
keggU 63608 27 0.125 ± 0.024 0.125 ± 0.023 0.125 ± 0.023 0.125 ± 0.023 0.11 ± 0.00 0.1172 0.12 ± 0.00 0.122 ± 0.008
protein 45730 9 0.443 ± 0.009 0.440 ± 0.007 0.444 ± 0.009 0.447 ± 0.011 0.46 ± 0.01 0.46071 0.47 ± 0.01 0.445 ± 0.008
skillcraft 3338 19 0.284 ± 0.015 0.286 ± 0.016 0.276 ± 0.015 0.298 ± 0.015 0.25 ± 0.00 0.25 ± 0.02 0.253 ± 0.05
pol 15000 26 3.018 ± 0.310 2.446 ± 0.151 2.427 ± 0.161 2.452 ± 0.156 3.11 ± 0.07 6.61749 4.30 ± 0.2 4.09 ± 1.25

Table 6: Normalized test log-likelihoods on larger UCI datasets. Subspace methods outperform an approximate GP
approach (OrthVGP), SGD, and Bayesian final layers (NL), typically often out-performing SWAG.

dataset N D SGD PCA+ESS (SI) PCA+VI (SI) SWAG OrthVGP NL

elevators 16599 18 ≠0.538 ± 0.108 ≠0.397 ± 0.05 -0.380 ± 0.041 ≠0.395 ± 0.030 -0.4479 0.803 ± 0.04
keggD 48827 20 0.985 ± 0.022 0.995 ± 0.104 0.988 ± 0.106 0.984 ± 0.114 1.0224 0.675 ± 0.05
keggU 63608 27 0.700 ± 0.046 0.707 ± 0.032 0.702 ± 0.043 0.707 ± 0.038 0.7007 0.664 ± 0.05
protein 45730 9 ≠0.861 ± 0.027 -0.834 ± 0.021 ≠0.849 ± 0.025 ≠0.861 ± 0.031 -0.9138 ≠0.619 ± 0.01
skillcraft 3338 19 ≠1.147 ± 0.035 ≠1.159 ± 0.034 -1.109 ± 0.036 ≠1.181 ± 0.032 ≠0.05 ± 0.05
pol 15000 26 1.290 ± 0.1834 1.737 ± 0.043 1.728 ± 0.076 1.680 ± 0.075 0.1586 ≠2.84 ± 0.226



Table 7: Calibration on large-scale UCI datasets. Bolded numbers are those closest to 95 % of the predicted coverage).

dataset N D SGD PCA+ESS (SI) PCA+VI (SI) SWAG

elevators 16599 18 0.857 ± 0.031 0.947 ± 0.024 0.968 ± 0.012 0.904 ± 0.012
keggD 48827 20 0.965 ± 0.002 0.962 ± 0.009 0.961 ± 0.009 0.961 ± 0.01
keggU 63608 27 0.962 ± 0.012 0.965 ± 0.009 0.962 ± 0.012 0.965 ± 0.009
protein 45730 9 0.917 ± 0.007 0.928 ± 0.007 0.926 ± 0.007 0.924 ± 0.007
skillcraft 3338 19 0.979 ± 0.010 0.980 ± 0.009 0.976 ± 0.010 0.978 ± 0.009
pol 15000 26 0.941 ± 0.011 0.965 ± 0.008 0.952 ± 0.022 0.947 ± 0.008

Table 8: NLL for various versions of subspace inference, SWAG, temperature scaling, and dropout.

Dataset Model PCA + VI (SI) PCA + ESS (SI) SWA SWAG KFAC-Laplace SWA-Dropout SWA-Temp

CIFAR-10 VGG-16 0.2052 ± 0.0029 0.2068 ± 0.0029 0.2621 ± 0.0104 0.2016 ± 0.0031 0.2252 ± 0.0032 0.2328 ± 0.0049 0.2481 ± 0.0245
CIFAR-10 PreResNet-164 0.1247 ± 0.0025 0.1252 ± 0.0018 0.1450 ± 0.0042 0.1232 ± 0.0022 0.1471 ± 0.0012 0.1270 ± 0.0000 0.1347 ± 0.0038
CIFAR-10 WideResNet28x10 0.1081 ± 0.0003 0.1090 ± 0.0038 0.1075 ± 0.0004 0.1122 ± 0.0009 0.1210 ± 0.0020 0.1094 ± 0.0021 0.1064 ± 0.0004
CIFAR-100 VGG-16 0.9904 ± 0.0218 1.015 ± 0.0259 1.2780 ± 0.0051 0.9480 ± 0.0038 1.1915 ± 0.0199 1.1872 ± 0.0524 1.0386 ± 0.0126
CIFAR-100 PreResNet-164 0.6640 ± 0.0025 0.6858 ± 0.0052 0.7370 ± 0.0265 0.7081 ± 0.0162 0.7881 ± 0.0025 0.6770 ± 0.0191
CIFAR-100 WideResNet28x10 0.6052 ± 0.0090 0.6096 ± 0.0072 0.6684 ± 0.0034 0.6078 ± 0.0006 0.7692 ± 0.0092 0.6500 ± 0.0049 0.6134 ± 0.0023

F.1 EFFECT OF TEMPERATURE

In this section we study the effect of temperature parame-
ter T defined in (4) on the performance of subspace infer-
ence. We run elliptical slice sampling in a 5-dimensional
PCA subspace for a PreResNet-164 on CIFAR-100. We
show test performance as a function of temperature param-
eter in Figure 11 panels (a) and (b). Bayesian model aver-
aging achieves strong results in the range 103

Æ T Æ 104.
We also observe that the value T has a larger effect on
uncertainty estimates and consequently NLL than on pre-
dictive accuracy.

We then repeat the same experiment on UCI elevators
using the setting described in Section 5.2.1. We show the
results in Figure 11 panels (c), (d). Again, we observe
that the performance is almost constant and close to opti-
mal in a certain range of temperatures, and the effect of
temperature on likelihood is larger compared to RMSE.



Table 9: Accuracy for various versions of subspace inference, SWAG, temperature scaling, and dropout.

Dataset Model PCA + VI (SI) PCA + ESS (SI) SWA SWAG KFAC-Laplace SWA-Dropout SWA-Temp

CIFAR-10 VGG-16 93.61 ± 0.02 93.66 ± 0.08 93.61 ± 0.11 93.60 ± 0.10 92.65 ± 0.20 93.23 ± 0.36 93.61 ± 0.11
CIFAR-10 PreResNet-164 95.96 ± 0.13 95.98 ± 0.09 96.09 ± 0.08 96.03 ± 0.02 95.49 ± 0.06 96.18 ± 0.00 96.09 ± 0.08
CIFAR-10 WideResNet28x10 96.32 ± 0.03 96.38 ± 0.05 96.46 ± 0.04 96.32 ± 0.08 96.17 ± 0.00 96.39 ± 0.09 96.46 ± 0.04
CIFAR-100 VGG-16 74.83 ± 0.08 74.62 ± 0.37 74.30 ± 0.22 74.77 ± 0.09 72.38 ± 0.23 72.50 ± 0.54 74.30 ± 0.22
CIFAR-100 PreResNet-164 80.52 ± 0.18 80.54 ± 0.13 80.19 ± 0.52 79.90 ± 0.50 78.51 ± 0.05 80.19 ± 0.52
CIFAR-100 WideResNet28x10 82.63 ± 0.26 82.49 ± 0.23 82.40 ± 0.16 82.23 ± 0.19 80.94 ± 0.41 82.30 ± 0.19 82.40 ± 0.16
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Figure 11: (a): Test negative log-likelihood and (b): accuracy as a function of temperature in (4) for PreResNet-164
on CIFAR-100. (c): Test negative log-likelihood and (d): RMSE as a function of temperature for our regression
architecture (see Section 5.2) on UCI Elevators. We used ESS in a 5-dimensional PCA subspace to construct this plot.
The dark blue line shows mean and shaded region shows standard deviation over 3 independent runs of the procedure.


