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APPENDIX

A: Additional Network Intervention Examples

Housing Vouchers

In urban development economics, housing vouchers have
been proposed as a means of inducing families to move
from areas with less opportunity for upward socioeco-
nomic mobility to areas of with greater opportunity [2].
As pointed out in [3], oftentimes these proposals ignore
the social network-related implications of such a policy
(e.g. decision is impacted by talking to neighbors). In
Fig. 1 we consider the specific impacts of transplanting a
family from one neighborhood to the other.

Each unit i in Fig. 1 has a variable Ci representing the
unit’s demographic information, and an outcome Yi which
represents the socioeconomic outcome targeted by the
housing voucher, such as annual income. In Fig 1 (a) we
see the pre-intervention network, where unit 3 is neigh-
bors with unit 2, while after the intervention (Fig. 1 (b))
unit 3 has been moved to a new neighborhood and is now
neighbors with unit 4 instead. This example represents
both a severance and a connection intervention.

Influencer Networks

Understanding social influence in networks is of interest
to a wide variety of fields. Researchers who study infec-
tious diseases and intravenous drug abuse often attempt to
identify major influencers that impact many people. More
recently, determining and leveraging knowledge of influ-
ence has become the focus of the algorithmic marketing
community. If one can identify the strongest influencer
in a network (not necessarily the individual with the most
connections), then understanding the effects of remov-
ing that individual from the network (e.g. by arresting a
drug-kingpin) might be useful for policymakers.

In Fig. 2, we represent this phenomenon via an undirected

graph where each unit, represented by Yi, is internally a
DAG and the undirected edges between units encode sym-
metric directed relationships similar to those in our other
examples. Fig. 2 (b) depicts the result of a hypothetical
intervention on Fig. 2 (a) in which unit 3 is effectively
removed from the network by severing all connections
with it’s friends. As a side-effect unit 4 is also effectively
removed from the network.

B: Proofs

We first prove two utility results on factorizations of joint
densities following Chen [1]. The first is a simple lemma
which is needed to prove the corollary that follows. We
will use Corollary 1 in each of the results that follow.

Let a be a set of fixed values. Then for a two-variable
conditional density f(Y1, Y2 | a), we have:

f(Y1 | Y 0
2 ,a)OR(Y1, Y2 | a)f(Y2 | Y 0

1 ,a)∑
Y1,Y2

f(Y1 | Y 0
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where the odds ratio is given by

OR(Y1, Y2 | a) = f(Y1 | Y2,a)f(Y 0
1 | Y 0

2 ,a)
f(Y1 | Y 0

2 ,a)f(Y 0
1 | Y2,a)
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1 , Y

0
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f(Y1, Y 0
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1 , Y2 | a) .

and Y 0
1 and Y 0

2 signify reference values of Y1 and Y2.

Lemma 1

f(Y | Z,X)
f(Y0 | Z,X) = f(Y | X)OR(Z, Y | X)

f(Y0 | X)E[OR(Z, Y | X) | Y0, X]
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Figure 1: (a) A DAG representing hypothetical connections between family units in two separate neighborhoods; (b)
the DAG resulting from moving unit 3 from the first neighborhood to the second neighborhood via both a severance and
connection intervention.
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Figure 2: (a) An undirected graph representing connections in an influence network between 6 agents; (b) the undirected
graph resulting from intervening on the network in (a) such that unit 3 is removed from the network.

Proof:

f(Y | Z,X)
f(Y0 | Z,X) =1 f(Y | X)f(Z | Y,X)/f(Z | X)

f(Y0 | X)f(Z | Y0, X)/f(Z | X)

=2 f(Y | X)f(Z | Y,X)
f(Y0 | X)f(Z | Y0, X)

=3
f(Y | X) f(Z|Y0,X)OR(Z,Y |X)∑

Z
f(Z|Y0,X)OR(Z,Y |X)

f(Y0 | X)f(Z | Y0, X)

=4 f(Y | X)OR(Z, Y | X)
f(Y0 | X)E[OR(Z, Y | X) | Y0, X] ,

where equality 1 is by Bayes rule, 2 by cancellation, 3 by
the Chen factorization of a conditional density, and 4 by
definition. �

Corollary 1 f(Y1, Y2 | a) = X∑
Y1,Y2

X
where X =

f(Y1 | a) OR(Y1, Y2 | a)OR(Y 0
1 , Y2|a)OR(Y1, Y
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Proof: We have the following for f(Y1, Y2 | a) (from

Chen [1]):
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X .

Equality 1 holds by probability rules since Y 0
1 and Y 0

2
are fixed. Equality 2 holds by application of Lemma 1.
Equality 3 holds by reverse application of the identity for
Y 0

1 and Y 0
2 . �

We now prove the main results of the paper. Each ap-
plies Corollary 1 to show increasingly general results



pertaining to the KL-divergence of a distribution p̃ with
additional independence constraints relative to an obser-
vational distribution p.

Theorem 1 Let V be a set of random variables with p(V)
corresponding to a DAG G. Let A ∈ V. Let P(V) be the
set of probability distributions that factorize according to
G. Then

p(A)
∏

V ∈V\A

p(V |paG(V )) = arg min
p̃∈P(V)

DKL(p||p̃)

s.t. A ⊥⊥ paG(A)

Proof: Applying Corollary 1, we can express the KL-
divergence of p̃(A,paG(A)) from p(A,paG) as propor-
tional to:

log
p(A,paG(A))
p̃(A,paG(A))

= log

[
p(A) ORnum

ORden
p(paG(A))∑

A,paG(A)
p(A) ORnum

ORden
p(paG(A))

]
[ p̃(A) ÕRnum

ÕRden

p̃(paG(A))∑
A,paG(A)

p̃(A) ÕRnum

ÕRden

p̃(paG(A))

]

= log p(A)
p̃(A) + log

p(paG(A))
p̃(paG(A))

log ORnum
ORden

− log ÕRnum
ÕRden

+ log
∑

A,paG(A)

p̃(A) ÕRnum
ÕRden

p̃(paG(A))

− log
∑

A,paG(A)

p(A)ORnum
ORden

p(paG(A))

where we apply the Chen factorization for p(A,paG(A))
and p̃(A,paG(A)) and

ORnum = OR(A,paG(A))OR(A,paG(A)0)OR(A0,paG(A))
ORden = E[OR(A,paG(A)0)|A0]×

E[OR(A0,paG(A))|paG(A)0]

and analogously for the ÕR’s.

Suppose we pick p̃(A,paG(A)) = p(A)p(paG(A)).
Then A ⊥⊥ paG(A) in p̃ and so

ÕRnum/ÕRden∑
A,paG(A)

p̃(A) ÕRnum

ÕRden

p̃(paG(A))
= 1. Thus, the

previous expression simplifies to:

log ORnum
ORden

− log
∑

A,paG(A)

p(A)ORnum
ORden

p(paG(A))

(1)

Suppose we instead picked some other p̃(A,paG(A)) =
p̃(A)p̃(paG(A)) (i.e. one in which A ⊥⊥ paG(A)). Then
the above expression would have additional non-zero
terms log p(A)

p̃(A) + log p(paG(A))
p̃(paG(A)) . For this alternative p̃ to

yield a lower KL divergence than that given by Eq. 1,
one of the terms, log p(A)

p̃(A) or log p(paG(A))
p̃(paG(A)) , must be less

than 0 (since the other terms in Eq. 1 remain the same
under the independence of A and paG(A)). However,
if log p(A)

p̃(A) < 0 then the KL-divergence of p̃(A) from
p(A) is negative, which violates Gibbs’ inequality. The
same holds for the distributions over paG(A). We there-
fore can conclude that p̃(A,paG(A)) = p(A)p(paG(A))
is the KL-closest distribution to p(A,paG(A)) such that
A ⊥⊥ paG(A).

Now, as a subclaim, we prove: if p̃ is KL-closest to p, then
any conditional obtained from p̃ (by dividing by some
(potentially conditional) distribution p∗ over a variable
V ∈ B), is KL-closest to the corresponding conditional
obtained from p.

This is a simple consequence of the formula for KL-
divergence:

DKL( p
p∗
|| p̃
p∗

) ∝ log
p
p∗

p̃
p∗

= log p
p̃

The KL-divergence between the two distributions does
not change by conditioning.

By the above two subclaims, the KL-closest distribution
p̃(A|paG(A)) to p(A|paG(A)) is p(A). By the local
Markov property of DAGs, the claim holds, with p̃(V \
A) = p(V \A). �

Theorem 2 Let V be a set of random variables with p(V)
corresponding to a DAG G. Let A ∈ V and B ⊆ V such
that B ⊆ paG(A). Let P(V) be the set of probability
distributions that factorize according to G. Then

p(A|paG(A) \B)
∏

V ∈V\A

p(V |paG(V ))

= arg min
p̃∈P(V)

DKL(p||p̃) s.t. A ⊥⊥ B|paG(A) \B

Proof: We adapt the argument from Thm. 1. We
can express the KL-divergence of p̃(A,paG(A)) from



p(A,paG) as proportional to:

log
p(A,B|paG(A) \B)p(paG(A) \B)
p̃(A,B|paG(A) \B)p̃(paG(A) \B)

= log

[
p(A| paG(A)\B) ORnum

ORden
p(B| paG(A)\B)∑

A,B
p(A| paG(A)\B) ORnum

ORden
p(B| paG(A)\B)

]
[ p̃(A| paG(A)\B) ÕRnum

ÕRden

p̃(B| paG(A)\B)∑
A,B

p̃(A| paG(A)\B) ÕRnum

ÕRden

p̃(B| paG(A)\B)

]

+ log
p(paG(A) \B)
p̃(paG(A) \B)

= log
p(A|paG(A) \B)
p̃(A|paG(A) \B) + log

p(B|paG(A) \B)
p̃(B|paG(A) \B)

+ log ORnum
ORden

− log ÕRnum
ÕRden

+ log
∑
A,B

p̃(A|paG(A) \B) ÕRnum
ÕRden

p̃(B|paG(A) \B)

− log
∑
A,B

p(A|paG(A) \B)ORnum
ORden

p(B|paG(A) \B)

+ log
p(paG(A) \B)
p̃(paG(A) \B)

where we apply the Chen factorization for p(A,paG(A))
and p̃(A,paG(A)) and

ORnum = OR(A,B|paG(A) \B)
×OR(A0,B|paG(A) \B)
×OR(A,B0|paG(A) \B)

ORden = E[OR(A,B0|paG(A) \B)|A0,paG(A) \B]
× E[OR(A0,B|paG(A) \B)|B0,paG(A) \B]

and analogously for the ÕR’s.

Suppose we pick p̃(A,paG(A)) = p(A|paG(A) \
B)p(B|paG(A) \ B)p(paG(A) \ B). Then
A ⊥⊥ B|paG(A) \ B in p̃ and so

ÕRnum/ÕRden∑
A,B

p̃(A| paG(A)\B) ÕRnum

ÕRden

p̃(B| paG(A)\B)
= 1. Thus,

the previous expression simplifies to:

logORnum
ORden

− log
∑
A,B

p(A|paG(A) \B)ORnum
ORden

p(B|paG(A) \B)

(2)

Suppose we instead picked some other p̃(A,paG(A)) =
p̃(A)p̃(paG(A)) (i.e. one in which A ⊥⊥ B|paG(A) \
B). Then the above expression would have additional
non-zero terms log p(A| paG(A)\B)

p̃(A| paG(A)\B) +log p(B| paG(A)\B)
p̃(B| paG(A)\B) +

log p(paG(A)\B)
p̃(paG(A)\B) . For this alternative p̃ to yield a lower

KL divergence than that given by Eq. 2, one of the
terms in the above sum must be less than 0 (since
the other terms in Eq. 2 remain the same under
the conditional independence of A and B). However,
if log p(A| paG(A)\B)

p̃(A| paG(A)\B) < 0 then the KL-divergence of
p̃(A|paG(A) \ B) from p(A|paG(A) \ B) is negative,
which violates Gibbs’ inequality. The same holds for
the distributions over paG(A) \ B and B|paG(A) \
B. We therefore can conclude that p̃(A,paG(A)) =
p(A|paG(A) \ B)p(B|paG(A) \ B)p(paG(A) \ B) is
the KL-closest distribution to p(A,paG(A)) such that
A ⊥⊥ B|paG(A) \B.

By the above argument and application of the condition-
ing argument in Thm. 1, the KL-closest distribution
p̃(A|paG(A)) to p(A|paG(A)) satisfying the necessary
independence constraint is p(A|paG(A) \ B). By the
local Markov property, the result is immediate since if
chose p̃ = p for variables V \ {A,paG(A)}.

�

Theorem 3 Let V be a set of random variables with
p(V) corresponding to a DAG G. Let A ∈ V and for
each A ∈ A define In(A) ⊆ paG(A), the set of parents
of A whose edges into A we wish to remove. Let P(V) be
the set of probability distributions that factorize according
to G. Then∏
A∈A

p(A|paG(A) \ In(A))
∏

V ∈V\A

p(V |paG(V ))

= arg min
p̃∈P(V)

DKL(p||p̃)

s.t. A ⊥⊥ In(A)|paG(A) \ In(A) ∀A ∈ A

Proof: We prove the claim inductively. When |A| = 1,
the claim holds trivially by application of Thm 2.

Suppose |A| > 1. Impose a reverse topological ordering
≺ on V (e.g. variables have higher indexes in the order-
ing than their parents). This ordering assumption is not
necessary to prove the claim, however it helps simplify
the argument.

Suppose that for some A′ ⊂ A, where every A ∈ A′
precedes every A∗ ∈ A \A′ in ≺, we know

p̃(V) =
∏
A∈A′

p(A|paG(A) \ In(A))

×
∏

V ∈V\A′
p(V |paG(V ))

(3)

is the KL-closest distribution to p(V) which satisfiesA ⊥
⊥ In(A)|paG(A)\In(A) for allA ∈ A′. Then it suffices



to show for some A∗ ∈ A \A′ that

p̃(V) =
∏

A∈(A′∪A∗)

p(A|paG(A) \ In(A))

×
∏

V ∈V\(A′∪A∗)

p(V |paG(V ))

is the KL-closest distribution to p(V) that satisfies A ⊥⊥
In(A)|paG(A) \ In(A) for all A ∈ A′ ∪A∗.

We can factorize p (and analogously p̃) by chain rule:

p(V) = p(A∗, In(A∗)|paG(A∗) \ In(A∗))
× p(paG(A∗) \ In(A∗))
× p(V \ (A∗ ∪ paG(A∗)))

By application of Cor. 1, we can re-write the first term as
Xp

Yp
, where:

Xp =p(A∗|paG(A∗) \ In(A∗))

× ORnum
ORden

× p(In(A∗)|paG(A∗) \ In(A∗))

and Yp =
∑
A∗,In(A∗) Xp, and analogously for Xp̃ and

Yp̃. Similar to previous arguments, for notational simplic-
ity, we use the shorthands ORnum =

OR(A?, In(A?)|paG(A? \ In(A?),V \ (A? ∪ paG(A?)))
×OR(A?0, In(A?)|paG(A? \ In(A?),V \ (A? ∪ paG(A?)))
×OR(A?, In(A?)0|paG(A? \ In(A?),V \ (A? ∪ paG(A?)))

and ORden =

E
[
OR(A?, In(A?)0)|A?0,

paG(A? \ In(A?),V \ (A? ∪ paG(A?))
]

×E
[
OR(A?0, In(A?))| In(A?)0,

paG(A? \ In(A?),V \ (A? ∪ paG(A?))
]

(analogously ÕRnum and ÕRden).

As before, we can express the KL-divergence from p to p̃

as proportional to:

log
p(A∗,paG(A∗))p(V \ (A∗ ∪ paG(A∗)))
p̃(A∗,paG(A∗))p̃(V \ (A∗ ∪ paG(A∗)))

=
[

log
p(A∗|paG(A∗) \ In(A∗))
p̃(A∗|paG(A∗) \ In(A∗))

+ log
p(In(A∗)|paG(A∗) \ In(A∗))
p̃(In(A∗)|paG(A∗) \ In(A∗))

+ log ORnum
ORden

− log
∑

A∗,In(A∗)

[
p(A∗|paG(A∗) \ In(A∗))

× ORnum
ORden

p(In(A∗)|paG(A∗) \ In(A∗))
]

− ÕRnum

ÕRden
+ log

∑
A∗,In(A∗)

[
p̃(A∗|paG(A∗) \ In(A∗))

× ÕRnum

ÕRden
p̃(In(A∗)|paG(A∗) \ In(A∗))

]
+ log

p(paG(A∗) \ In(A∗))
p̃(paG(A∗) \ In(A∗))

+ log
p(V \ (A∗ ∪ paG(A∗)))
p̃(V \ (A∗ ∪ paG(A∗)))

]

Suppose we let p̃(A∗|paG(A∗)) = p(A∗|paG(A∗) \
In(A∗)) and p̃(In(A∗)|paG(A∗ \ In(A∗))) =
p(In(A∗)|paG(A∗ \ In(A∗))). Then, similar to
the previous theorems, we induce conditional inde-
pendence between A? and In(A?) given A?’s other
parents paG(A?) \ In(A?). In turn, the above expression
simplifies to the following:

= log ORnum
ORden

− log
∑

A∗,In(A∗)

[
p(A∗|paG(A∗) \ In(A∗))

× ORnum
ORden

p(In(A∗)|paG(A∗) \ In(A∗))
]

+ log
p(paG(A?) \ In(A?)
p̃(paG(A?) \ In(A?)

+ log
p(V \ (A∗ ∪ paG(A∗)))
p̃(V \ (A∗ ∪ paG(A∗)))

Under the assumption of a topological ordering ≺, choos-
ing this choice of p̃ does not affect whether the constraint
A ⊥⊥ In(A)|paG(A) for A ∈ A′ ∪A∗ holds. This is be-
cause of the assumption made in Eq. 3. As a consequence,
the ratio of terms with respect to paG(A∗) \ In(A∗) can-



cels in equality 1 above, leaving us with:

= log ORnum
ORden

− log
∑

A∗,In(A∗)

[
p(A∗|paG(A∗) \ In(A∗))

× ORnum
ORden

p(In(A∗)|paG(A∗) \ In(A∗))
]

+ log
p(V \ (A∗ ∪ paG(A∗)))
p̃(V \ (A∗ ∪ paG(A∗)))

Now suppose we wish find a p∗ that yields a lower KL-
divergence, corresponding to decrease the quantity in
the above expression by changing p̃ for one or more
of the terms. By application of the argument in Thm.
2, changing p̃(A∗|paG(A∗)) to a function other than
p(A∗|paG(A∗)\ In(A)) would necessarily violate Gibbs’
inequality. So, we must consider changing p̃(V |paG(V ))
for some V ∈ V \ (A∗ ∪ paG(A∗)).

If V ∈ ndG(A∗) then, by the local Markov property of
DAGs, A∗ ⊥⊥ V |paG(A∗) \ In(A∗) and so choosing
p̃(V |paG(V )) = p(V |paG(V )) will maintain the neces-
sary independence constraints and ensure that the term
for V has 0 contribution to the KL quantity above. That
is log p(V |paG(V ))− log p̃(V |paG(V )) = 0. Changing
p̃(V |paG(V )) will therefore not move p̃ closer to p.

If, on the other hand, V ∈ deG(A∗), then In(V ) is either
empty or non-empty. If In(V ) = ∅ then by the same ar-
gument as for V ∈ ndG(A∗), choosing p̃(V |paG(V )) =
p(V |paG(V )) will ensure that the necessary constraints
hold and that V ’s contribution the KL-divergence expres-
sion will be 0. If In(V ) 6= ∅, then p̃(V |paG(V )) was
already set to be p(V |paG(V ) \ In(V )) by the assump-
tion in Eq. 3. By the argument in Thm. 2, changing this
setting of p̃ would violate Gibbs’ inequality.

By the above argument, as well as the argument given
in Thm. 1 that states that applying conditioning to two
distributions doesn’t affect their KL-divergence, we have
shown that∏
A∈(A′∪A∗)

p(A|paG(A) \ In(A))
∏

V ∈V\(A′∪A∗)

p(V |paG(V ))

is the KL-closest distribution to p which satisfies A ⊥⊥
In(A)|paG(A)\In(A) for allA ∈ A′∪A∗. By induction,
the claim of the theorem for A follows immediately. �

Theorem 4 Let V be a set of random variables with p(V)
corresponding to a DAG G. Let A ⊆ V and assume that
for some a we have p(A = a) > 0. Let P(V) be the set
of probability distributions that factorize according to G.
Then∏

V ∈V\A

p(V |paG(V ))|A=a = arg min
p̃∈P(V)

DKL(p||p̃)

s.t. p̃(Ai|ndG(Ai)) = I(Ai = ai)∀i ∈ [|A|]

where [|A|] = {1, . . . , |A|}.

Proof: This is a simple consequence of Thm. 3. For each
A ∈ A, if we let In(A) = paG , then by the local Markov
property, we have∏

A∈A

p(A)
∏

V ∈V\A

p(V |paG(V ))

is the KL-closest distribution to p(V) that satisfies A ⊥
⊥ ndG(A) for all A ∈ A. Now, by previous arguments,
replacing each p(A) with I(Ai = ai) maintains the KL-
closeness of p̃ since p̃(V \A) = p(V \A) and now the
required constraint holds. Since we are replacing each
p(A) with an indicator, this is equivalent to just evaluating
p(V \A) with A = a:∏

V ∈V\A

p(V |paG(V ))|A=a

�

We extend the above result to the case of edge interven-
tions. To simplify our argument, we formulate this theo-
rem in terms of extended graphs which are inspired by [7]
and requires the following additional background notation
[5]:

For a set of variables A and a set of edges α out of A,
define for each Ai ∈ A, the synthetic nodes Achi =
{Aji |Vj ∈ chG(Ai)}. That is, for each Vj ∈ chG(Ai), we
create a synthetic node Aji . Let Ach =

⋃
Ai∈A.

Define the extended graph of G(V), denoted Ge(V ∪
Ach), as the graph obtained by adding the synthetic Aji ’s
to G with edges Ai → Aji → Vj if and only if Ai → Vj
appears in G. The relationship for each edge of type
Ai → Aji as assumed to be deterministic. Following [5],
Ge(V∪Ach) is a valid DAG under the structural equation
model assumption.

Theorem 1 Let V be a set of random variables with
p(V) corresponding to a DAG G. Let α be a set of edges
in G and let Aα = {A|(AB)→ ∈ α} ⊆ V. For the
corresponding Ach and Ge(V∪Ach), if we let Pe(V) be
the set of probability distributions that factorize according
to Ge and assume for some ach, p(Ach = ach) > 0 then,∏
V ∈V

pe(V |paGe(V )) = arg min
p̃e∈Pe(V)

DKL(pe||p̃e) s.t.

p̃e(Ai|ndGe(Ai)) = I(Ai = ai) for i = {1, . . . , |Ach|}

Proof: This result follows directly from Thm. 4. By re-
expressing G as Ge, the intervention is no longer in terms
of a set of edges α but rather a set of nodes Ach. We
can simply apply the result of Thm. 4 where Ach corre-
sponds to the set of nodes A for which we are inducing
independence with their non-descendants. �



C Experimental Setup

The models for C,A, and Y are parametrized
by τC , τA = [τA0 , τAC

, τACN
], and τY =

[τY0 , τYA
, τYC

, τYAN
, τYCN

], specified in Table 1. C is
a 3-dimensional vector, with each component Cl drawn
from a Bernoulli distribution with probability τCl ; A and
Y are generated using the following parametric models:

p(Ai = 1|Ci, {Cj |j ∈ Ni}; τA)

= expit
(
τA0 + τAC

· Ci +
∑
j∈Ni

τACN
· Cj

)
p(Yi = 1|Ci, Ai, {Cj , Aj |j ∈ Ni}; τY )

= expit
(
τY0 + τYA

Ai + τYC
· Ci

+
∑
j∈Ni

(
τYCN

· Cj + τYAN
·Aj

))

Parameter Value
τC [.7, .3, .5]
τA [1, 3, .15, .2, .1, .15, .15]
τY [2.5, 1.2, -1, 1.2, .2, -.13, -1, -.2, -.3]

Table 1: Parameters for data generation in simulation
studies

For the first experiment, we use the Erdős-Rényi (with
attachment probability p = .05), Barabasi-Albert (with
a preferential attachment edge count of 4), and Watts-
Strogatz (with nearest neighbor attachment of 4 and an
edge re-wiring probability of .25) network generators.

Estimation Details

For homogeneous connections, estimating the post-
intervention value of Yi is done by simply adding the
connecting unit to Ni for the sake of forming covariate
vectors on which we perform inference.

For known policy interventions, we consider adding a
weight to the terms associated with the added neighbor.
This corresponds, for instance, to joining one unit gain-
ing an addition connection on a social media service and
also algorithmically promoting the content of new neigh-
bor unit. To estimate Yi here, we simply multiply the
new neighbor’s variables by the known weight and form
covariate vectors as in the homogeneous case. In our
simulations we use a weight of 1.2.

Finally, for unknown policy interventions, we repeat the
process for known policies where a weight is added to the
adjoined neighbors. Here, however, we choose the weight
by maximizing a function g(Yi, Yj) = min(Yi+Yj

2 , .3).

This corresponds to ensuring we satisfy a ‘worst-case’
scenario for the outcomes of the newly joined neighbors.
We chose .3 as the floor for this function since the mean
Y in our data-generating process was .395 and we wanted
to simulate not making one unit better off at the expense
of making the other substantially worse off. We chose
optimal parameters using standard optimization software
[4].

Stochastic severance interventions are estimated analo-
gously to homogeneous connections. We remove the
terms relating to the severed connection from the feature
vector for predicting Ai and Yi and perform inference
using our logistic regression models. Severance interven-
tions performed with interventional values for the severed
neighbor’sC andA values are estimated by simply replac-
ing the variables in the Monte Carlo sampling procedure
with the interventional values according to the g-formula
[6]. For our simulations we chose the cross-unit interven-
tional values for Cj and Aj to be 0 and 1 respectively. In
either case, when a unit has no pre-intervention neighbors,
the estimate of their outcome is the same in both the pre-
and post-intervention worlds.

Extended Results

Network Size Bias CI
4 (-.0082, .0051)
8 (-.0088, .0011)

16 (-.0057, .0006)
32 (-.0009, .0040)
64 (-.0009, .0016)

Table 2: 95% confidence intervals for the bias of estimates
of stochastic severance task with varied network sizes.

Attachment Prob. Bias CI
.01 (-.0008, .0017)
.05 (-.0018, .0026)
.10 (-.0043, .0003)
.15 (-.0014, .0016)
.20 (-.0011, .0004)

Table 3: 95% confidence intervals for the bias of estimates
of stochastic severance task with varied Erdős-Rényi at-
tachment probabilities.



Sample Size Bias CI
10 (-.0278, .0178)
100 (-.0075, .0057)

1,000 (-.0007, .0028)
10,000 (-.0001, .0006)

Table 4: 95% confidence intervals for the bias of estimates
of stochastic severance task with varied sample sizes.
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