Appendix:Guaranteed Scalable Learning of Latent Tree Models

A RELATED WORKS

There has been widespread interest in developing distributed learning techniques, e.g. the recent works
of ISmola and Narayanamurthy ((2010)) and [Wei et al| ((2013)). These works consider parameter estimation via
likelihood-based optimizations such as Gibbs sampling, while our method involves more challenging tasks where
both the structure and the parameters are estimated. Simple methods such as local neighborhood selection through ¢;-
regularization ((Meinshausen and Biihlmann, [2006)) or local conditional independence testing ((Anandkumar et al.,
2012c)) can be parallelized, but these methods do not incorporate hidden variables. Finally, note that the latent tree
models provide a statistical description, in addition to revealing the hierarchy. In contrast, hierarchical clustering tech-
niques are not based on a statistical model ((Krishnamurthy et al., 2012)) and cannot provide valuable information
such as the level of correlation between observed and hidden variables.

Both|Chang and Hartigan ((1991)) andChang ((1996)) provide detailed identifiability analyses of latent trees and the
former ((Chang and Hartigan, [1991)) introduces maximum likelihood estimation method, different from our guaran-
teed parallel spectral method using tensor decomposition.

P Parikh et al| ((2011)), Song et al. ((2011,12014)) are closely related to our paper. The [P Parikh et al. ((2011)) paper
does not address the structure learning. The sample complexity is polynomial in k, whereas ours is logarithmic
in k. The Song et al. ((2014)) paper provides guarantees for structure learning, but not for parameter estimation.
The|Song et al. ((2011)) paper does not provide sample complexity theorem or analysis for recovering the latent tree
structure or parameter with provable guarantees.

B SYNTHETIC EXPERIMENTS

B.1 Machine Setup

Setup Experiments are conducted on a server running the Red Hat Enterprise 6.6 with 64 AMD Opteron processors
and 265 GBRAM. The program is written in C++, coupled with the multi-threading capabilities of the OpenMP
environment ((Dagum and Menon, [1998)) (version 1.8.1). We use the Eigen toolki (| where BLAS operations are
incorporated. For SVDs of large matrices, we use randomized projection methods ((Gittens and Mahoney, 2013b)) as
described in Appendix L.

B.2 Synthetic Results:

We compare our method with the implementation of |Choi et al. ((2011)), where a serial learning procedure is carried
out for binary variables (d = 2) and parameter learning is carried out via EM. We consider a latent tree model over
nine observed variables four hidden nodes. We restart EM 20 times, and select the best result. The results are in
Figure[3
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We measure the structure recovery error via § » . min;|G; € G,|/|Gi| ¢ /|G|, where G and G are the ground-truth
i=1

and recovered categories. We measure the parameter recovery error via& = ||A— AHH r, where A is the true parameter
and A is the estimated parameter and II is a suitable permutation matrix that aligns the columns of A with A so that
they have minimum distance. 1I is greedily calculated. It is shown that as number of samples increases, both methods
recover the structure correctly, as predicted by the theory. However, EM is stuck in local optima and fails to recover
the true parameters, while the tensor decomposition correctly recovers the true parameters.

We then present our experimental results focusing on the large p and even larger d regime. See Table[2l We achieve
efficient running times with good accuracy for structure and parameter estimation.

We perform experiments on a synthetic tree with observable dimension d = 1,000, 000, number of observable nodes
p = 3, hidden dimension £ = 3 and number of samples N = 1000 which is similar to community detection setting of
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|];mang_e_t_aﬂ ((|2_Q]_3)). We note that the recovery of the structure and the parameters is done in 10.6 seconds.

C EXPERIMENTS ON NIPS AND NY TIMES DATASET

We use the entire NIPS dataset from the UCI bag-of-words repository. This consists of 1500 documents and 12419
words in the vocabulary. We estimate the hierarchical structure of the whole corpus in only 15332.4 seconds (4
hours). Additionally, we focus on the top 5000 most frequently appeared keywords and illustrate the local structures
in Figure[3l The running time for the subset is only 1164.4 seconds (20 minutes).

We also use the NY Times dataset from the UCI bag-of-words repository. This consists of 300000 documents and
102660 words in the vocabulary. Our algorithm estimates the hierarchical structure of 3000 most frequently appeared
keywords in the NY Times dataset in only 107.8 seconds. Note that d = 2, since we consider the occurrence of a word
in a document as a binary variable. Below is a subset of the keywords graph we estimated in Figure[6l We note that the
relationships the among the words in Figure [6 match intuition. For example, govern and secur are grouped together
whereas movi, studio and produc are grouped together. The numbers represent hidden nodes.
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Figure 4: Estimated NIPS top 5000 keywords global hierarchical structures. Red nodes are latent nodes introduced. The blue dash
circle in the global hierarchical structure is zoomed in which is the neighborhood of word “training”.
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Figure 5: Extended neighborhoods of some of the words estimated from the NIPS dataset. We run our algorithm for the top 5000
keywords global and local hierarchical structures.

Figure 6: A local view of recovered NY Times keywords structure



D EXPERIMENTS ON HEALTHCARE DATASETS

Quantitative Analysis We evaluate our resulting hierarchy with a ground truth tree, based on medical knowledge@.
We compare our results with a baseline: the agglomerative clustering. Evaluating the performance of tree structure
recovery is indeed nontrivial as the number and location of the hidden variables vary as well as the depths. Two
trees may be similar but may look different due to the difference that how refined the hierarchical clusterings are.
The standard Robinson Foulds (RF) metric ((Robinson and Foulds, [1981))(between our estimated latent tree and the
ground truth tree) is computed to evaluate the structure recovery in Table[3l RF is a well defined metric for evaluating
the difference of two tree structures. Similar to other distance metrics, smaller RF indicates the recovered structure
being closer to the ground-truth.The smaller the metric is, the better the recovered tree is. The proposed method is
slightly better than the baseline and the advantage increases with more nodes. However, our proposed method provides
an efficient probabilistic graphical model that can support general inference which is not feasible with the baseline.

Data | p | RF(agglo.) | RF(proposed)

MIMIC2 | 163 0.0061 0.0061
CMS 168 0.0060 0.0059
MIMIC2 | 952 0.0060 0.0011

Table 3: Robinson Foulds (RF) metric compared with the “ground-truth” tree for both MIMIC2 and CMS dataset. Our proposed
results are better as we increase the number of nodes.

Qualitative analysis Here we report the results from the 2-dimensional case (i.e., observed variable is binary). In
Figure[7 in appendix[D.2] we show a portion of the learned tree using the MIMIC2 healthcare data. The yellow nodes
are latent nodes from the learned subtrees while the blue nodes represent observed nodes(diagnosis codes) in the
original dataset. Diagnoses that are similar were generally grouped together. For example, many neoplastic diseases
were grouped under the same latent node (node 1135). While some dissimilar diseases were grouped together, there
usually exists a known or plausible association of the diseases in the clinical setting. For example, in Figure [7] in
appendix [D.2] clotting-related diseases and altered mental status were grouped under the same latent node as several
neoplasms. This may reflect the fact that altered mental status and clotting conditions such as thrombophlebitis can
occur as complications of neoplastic diseases ((Falanga et al., [2003)). The association of malignant neoplasms of
prostate and colon polyps, two common cancers in males, is captured under latent node 1136 ((Group et al.,2014)).

For both the MIMIC2 and CMS datasets, we performed a qualitative comparison of the resulting trees while varying
the hidden dimension k for the algorithm. The resulting trees for different values of k£ did not exhibit significant
differences. This implies that our algorithm is robust with different choices of hidden dimensions. The estimated
model parameters are also robust for different values of k based on the results.

Scalability Our algorithm is scalable w.r.t. varying characteristics of the input data. First, it can handle a large number
of patients efficiently, as shown in Figure[@(a). It has a linear scaling behavior as we vary the number observed nodes,
as shown in Figure [9(b). Furthermore, even in cases where the number of observed variables is large, our method
maintains an almost linear scale-up as we vary the computational power available, as shown in Figure O(c). So, by
providing the respective resources, our algorithm is practical under any variation of the input data characteristics.

D.1 Data Description

(1) MIMIC2: The MIMIC2 dataset record disease history of 29,862 patients where a overall of 314,647 diagnostic
events over time representing 5675 diseases are logged. We consider patients as samples and groups of diseases as
variables. We analyze and compare the results by varying the group size (therefore varying d and p).

(2) CMS: The CMS dataset includes 1.6 million patients, for whom 15.8 million medical encounter events are logged.
Across all events, 11,434 distinct diseases (represented by ICD codes) are logged. We consider patients as samples
and groups of diseases as variables. We consider specific diseases within each group as dimensions. We analyze
and compare the results by varying the group size (therefore varying d and p). While the MIMIC2 dataset and CMS
dataset both contain logged diagnostic events, the larger volume of data in CMS provides an opportunity for testing

The ground truth tree is the PheWAS hierarchy provided in the clinical study ((Denny et al}, 2010))



the algorithm’s scalability. We qualitatively evaluate biological implications on MIMIC2 and quantitatively evaluate
algorithm performance and scalability on CMS.

To learn the disease hierarchy from data, we also leverage some existing domain knowledge about diseases. In partic-
ular, we use an existing mapping between ICD codes and higher-level Phenome-wide Association Study (PheWAS)
codes ((Denny et al.,[2010)). We use (about 200) PheWAS codes as observed nodes and the observed node dimension
is set to be binary (d = 2) or the maximum number of ICD codes within a pheWAS code (d = 31).

D.2 Results

Cased =31: We learn a tree from the MIMIC2 dataset, in which we grouped diseases into 163 pheWAS codes and up
to 31 dimensions per variable. Figure[8lin appendix [D.2]shows a portion of the learned tree of four subtrees which all
reflect similar diseases relating to trauma. A majority of the learned subtrees reflected clinically meaningful concepts,
in that related and commonly co-occurring diseases tended to group together in the same subtrees or in nearby subtrees.

We also learn the disease tree from the larger CMS dataset, in which we group diseases into 168 variables and up to
31 dimensions per variable. Similar to the case from the MIMIC2 dataset, a majority of learned subtrees reflected
clinically meaningful concepts.
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Figure 7: An example of two subtrees which represent groups of similar diseases which may commonly co-occur. Nodes colored
yellow are latent nodes from learned subtrees.

E ADDITIVITY OF THE MULTIVARIATE INFORMATION DISTANCE

Recall that the additive information distance between nodes two categorical variables z; and z; was defined in
Choi et al. ((2011)). We extend the notation of information distance to high dimensional variables via Definition [4.1]
and present the proof of its additivity in Lemma[4. 2] here.
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Figure 8: An example of four subtrees which represent groups of similar diseases which may commonly co-occur. Most variables
in this subtree are related to trauma.
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Figure 9: (a) CMS dataset sub-sampling w.r.t. varying number of samples. (b) MIMIC2 dataset sub-sampling w.r.t. varying number
of observed nodes. Each one of the observed nodes is binary (d = 2). (¢) MIMIC2 dataset: Scaling w.r.t. varying computational
power, establishing the scalability of our method even in the large p regime. The number of observed nodes is 1083 and each one
of them is binary (p = 1083, d = 2).

Proof.
E[z,z!] = E[E[zaz, |13]] = AE[zpax, | BT

Consider three nodes a, b, ¢ such that there are edges between a and b, and b and c. Let the A = E(x,|zp) and
B = E(z.|xp). From Definition .1, we have, assuming that E(z,z, ), E(zpz, ) and E(z.2/ ) are full rank.

a

k
l;[1 0i(E(zaz/))

—1lo :
& /Aot (E(zan] ) det (E(wea]))
e~ dist(va,ve) — et (E(xax;r)_1/2UTE(xax:)VE(xch)_1/2)

dist(vg, ve) =

where k-SVD((E(z,2])) = UXVT). Similarly,
e~ dist(va,v) — et (E(xax;r)_1/2UTE($a$z;T)W]E($bIz;T)_1/2)

e dist(ve.ve) — et (E(xbbe)71/2WTE(beCT)VE(ICICT)fl/Q)



where k-SVD((E(zq2] ) = USWT) and k-SVD((E(zpz] ) = WV T).

Therefore,
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We conclude that the multivariate information distance is additive. Note that [E [a:aa:bT] = E (E (xa:ch|xb)) =
E (Azpz, ) = AE(zpzy) ). O

‘We note that when the second moments are not full rank, the above distance can be extended as follows:
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F LOCAL RECURSIVE GROUPING

The Local Recursive Grouping (LRG) algorithm is a local divide and conquer procedure for learning the structure
and parameter of the latent tree (Algorithm [I). We perform recursive grouping simultaneously on the sub-trees of
the MST. Each of the sub-tree consists of an internal node and its neighborhood nodes. We keep track of the internal
nodes of the MST, and their neighbors. The resultant latent sub-trees after LRG can be merged easily to recover the
final latent tree. Consider a pair of neighboring sub-trees in the MST. They have two common nodes (the internal
nodes) which are neighbors on MST. Firstly we identify the path from one internal node to the other in the trees to
be merged, then compute the multivariate information distances between the internal nodes and the introduced hidden
nodes. We recover the path between the two internal nodes in the merged tree by inserting the hidden nodes closely
to their surrogate node. Secondly, we merge all the leaves which are not in this path by attaching them to their parent.
Hence, the recursive grouping can be done in parallel and we can recover the latent tree structure via this merging
method.

Lemma F.1. If an observable node v; is the surrogate node of a hidden node h;, then the hidden node h; can be
discovered using v; and the neighbors of v; in the MST.

This is due to the additive property of the multivariate information distance on the tree and the definition of a surrogate
node. This observation is crucial for a completely local and parallel structure and parameter estimation. It is also easy
to see that all internal nodes in the MST are surrogate nodes.

After the parallel construction of the MST, we look at all the internal nodes Xj,. For v; € AXjy, we denote the
neighborhood of v; on MST as nbdsub(v;; MST) which is a small sub-tree. Note that the number of such sub-trees is
equal to the number of internal nodes in MST.

For any pair of sub-trees, nbdg, (v;; MST) and nbdgy (vj; MST), there are two topological relationships, namely over-
lapping (i.e., when the sub-trees share at least one node in common) and non-overlapping (i.e., when the sub-trees do
not share any nodes).

Since we define a neighborhood centered at v; as only its immediate neighbors and itself on MST, the overlapping
neighborhood pair nbdyy (v;; MST) and nbdsu, (v;; MST) can only have conflicting paths, namely path(v;, vj; N;) and
path(v;, v;; N;), if v; and v; are neighbors in MST.

With this in mind, we locally estimate all the latent sub-trees, denoted as A;, by applying Recursive Group-
ing ((Choi et al.,[2011)) in a parallel manner on nbdsub(v;; MST), Vv, € Xiy. Note that the latent nodes automatically
introduced by RG(v;) have v; as their surrogate. We update the tree structure by joining each level in a bottom-up
manner. The testing of the relationship among nodes ((Choi et al., [2011)) uses the additive multivariate information
distance metric (Appendix [E) ®(v;,v;;k) = dist(v;, vx) — dist(v;, vx) to decide whether the nodes v; and v; are
parent-child or siblings. If they are siblings, they should be joined by a hidden parent. If they are parent and child, the



child node is placed as a lower level node and we add the other node as the single parent node, which is then joined in
the next level.

Finally, for each internal edge of MST connecting two internal nodes v; and v;, we consider merging the latent sub-
trees. In the example of two local estimated latent sub-trees in Figure [[, we illustrate the complete local merging
algorithm that we propose.

G PROOF SKETCH FOR THEOREM

We argue for the correctness of the method under exact moments. The sample complexity follows from the previous
works. In order to clarify the proof ideas, we define the notion of surrogate node ((Choi et al., 2011)) as follows.

Definition G.1. Surrogate node for hidden node h; on the latent tree T = (V,E) is defined as Sg(hi; T) =
arg HliI)l( dist(v;, v;).
v €

In other words, the surrogate for a hidden node is an observable node which has the minimum multivariate information
distance from the hidden node. See Figure[I(a), the surrogate node of i1, Sg(h1; T), is v3, Sg(ho; T) = Sg(hs; T) =
vs. Note that the notion of the surrogate node is only required for analysis, and our algorithm does not need to know
this information.

The notion of surrogacy allows us to relate the constructed MST (over observed nodes) with the underlying latent tree.
It can be easily shown that contracting the hidden nodes to their surrogates on latent tree leads to MST. Local recursive
grouping procedure can be viewed as reversing these contractions, and hence, we obtain consistent local sub-trees.

We now argue the correctness of the structure union procedure, which merges the local sub-trees. In each reconstructed
sub-tree V;, where v; is the group leader, the discovered hidden nodes { hi} form a surrogate relationship with v;, i.e.
Sg(h%;T) = v;. Our merging approach maintains these surrogate relationships. For example in Figure [[{d1,d2), we
have the path v3 — h1 — v5 in V'3 and path v3 — hs — ha — v5 in N'5. The resulting path is v3 — h1 — hs — ha — vs,
as seen in Figure[[(e). We now argue why this is correct. As discussed before, Sg(hy1;7T) = v3 and Sg(he; T) =
Sg(hs; T) = vs. When we merge the two subtrees, we want to preserve the paths from the group leaders to the
added hidden nodes, and this ensures that the surrogate relationships are preserved in the resulting merged tree. Thus,
we obtain a global consistent tree structure by merging the local structures. The correctness of parameter learning
comes from the consistency of the tensor decomposition techniques and careful alignments of the hidden labels across
different decompositions. Refer to Appendix [H, [K for proof details and the sample complexity.

H PROOF OF CORRECTNESS FOR LRG

Definition H.1. A latent tree T>3 is defined to be a minimal (or identifiable) latent tree if it satisfies that each latent
variable has at least 3 neighbors.

Definition H.2. Surrogate node for hidden node h; in latent tree T = (V, £) is defined as

Sg(hi; T) := arg min dist(v;, vj).

v;€

There are some useful observations about the MST in|Choi et al. ((2011)) which we recall here.

Property H.3 (MST — surrogate neighborhood preservation). The surrogate nodes of any two neighboring nodes in
& are also neighbors in the MST. Le.,

(hi,hj) e = (Sg(hi),Sg(hj)) € MST.

Property H.4 (MST — surrogate consistency along path). Ifv; € X and vy, € Sg~! (vj), then every node along the
path connecting v; and vy, belongs to the inverse surrogate set Sg~! (vy), Le.,

v; € Sg~ 1 (v;), Yu; € Path(vj,vp,)

vy, € Sg~H(vy).



The MST properties observed connect the MST over observable nodes with the original latent tree 7. We obtain MST
by contracting all the latent nodes to its surrogate node.

Given that the correctness of CLRG algorithm is proved in|Choi et al. ((2011)), we prove the equivalence between the
CLRG and PLRG.

Lemma H.5. For any sub-tree pairs nbd[v;; MST| and nbd|v;; MST|, there is at most one overlapping edge. The
overlapping edge exists if and only if v; € nbd(v;; MST).

This is easy to see.

Lemma H.6. Denote the latent tree recovered from nbd[v;; MST| as N'; and similarly for nbdv;; MST|. The incon-
sistency, if any, between N'; and N j occurs in the overlapping path(v;,v;; N;) in and path(vi,vj; N';) after LRG
implementation on each subtrees.

We now prove the correctness of LRG. Let us denote the latent tree resulting from merging a subset of small latent
trees as Ty rg(S), where S is the set of center of subtrees that are merged pair-wisely. CLRG algorithm in|Choi et al.
((2011)) implements the RG in a serial manner. Let us denote the latent tree learned at iteration ¢ from CLRG is
Tcrra(S), where S is the set of internal nodes visited by CLRG at current iteration . We prove the correctness of LRG
by induction on the iterations.

At the initial step S = 0: Tcrg = M ST and Tirg = M ST, thus Terrg = TirG-

Now we assume that for the same set S;_1, Tcrrg = T1rg istrue forr = 1,...,7— 1. Atiteration » = ¢ where CLRG
employs RG on the immediate neighborhood of node v; on Terra(S;—1), let us assume that H; is the set of hidden
nodes who are immediate neighbors of i — 1. The CLRG algorithm thus considers all the neighbors and implements the
RG. We know that the surrogate nodes of every latent node in H; belong to previously visited nodes .S;_;. According
to Property [H.3land [H4] if we contract all the hidden node neighbors to their surrogate nodes, CLRG thus is a RG on
neighborhood of 7 on MST.

As for our LRG algorithm at this step, T{rg(S;) is the merging between T} rg(S;—1)and A;. The latent nodes whose
surrogate node is j are introduced between the edge (i — 1, 7). Now that we know N is the RG output from immediate
neighborhood of ¢ on MST. Therefore, we proved that Tcrrg(Si) = Tira(S:)-

I CROSS GROUP ALIGNMENT CORRECTION

In order to achieve cross group alignments, tensor decompositions on two cross group triplets have to be computed.
The first triplet is formed by three nodes: reference node in group 1, x;, non-reference node in group 1, x2, and
reference node in group 2, x3. The second triplet is formed by three nodes as well: reference node in group 2, 3,
non-reference node in group 2, x4 and reference node in group 1, z;. Let us use h; to denote the parent node in group
1, and hg the parent node in group 2.

From Trip(x1, &2, 3), we obtain P(hi|z,) = A, P(x3|hy) = B and P(z3|h1) = P(23]hs)P(ha|hy) = DE. From
Trip(:cg,x4,:c1), we know P(I3|h2) = DH, P($4|h2) = C1I and P(h2|561) = P(h2|h1)P(h1|ZC1) = HEA, where

IT is a permutation matrix. We compute IT as IT = \/(HEA)(A)T(DE)T(DH) so that D = (DIDTI is aligned with
group 1. Thus, when all the parameters in the two groups are aligned by permute group 2 parameters using II, thus the
alignment is completed.

Similarly, the alignment correction can be done by calculating the permutation matrices while merging different
threads.

Overall, we merge the local structures and align the parameters from LRG locla sub-trees using Procedure 2l and[3.

J COMPUTATIONAL COMPLEXITY

We recall some notations here: d is the observable node dimension, k is the hidden node dimension (k < d), N is the
number of samples, p is the number of observable nodes, and z is the number of non-zero elements in each sample.

Multivariate information distance estimation involves sparse matrix multiplications to compute the pairwise second



moments. Each observable node has a d x N sample matrix with z non-zeros per column. Computing the product
x123 from a single sample for nodes 1 and 2 requires O(z) time and there are N such sample pair products leading
to O(Nz) time. There are O(p?) node pairs and hence the degree of parallelism is O(p?). Next, we perform the
k-rank SVD of each of these matrices. Each SVD takes O(d?k) time using classical methods. Using randomized
methods ((Gittens and Mahoney, 2013b)), this can be improved to O(d + k?).

Next on, we construct the MST in O(log p) time per worker with p? workers. The structure learning can be done in
O(T'3) per sub-tree and the local neighborhood of each node can be processed completely in parallel. We assume that
the group sizes I' are constant (the sizes are determined by the degree of nodes in the latent tree and homogeneity of
parameters across different edges of the tree. The parameter estimation of each triplet of nodes consists of implicit
stochastic updates involving products of & x k and d x k matrices. Note that we do not need to consider all possible
triplets in groups but each node must be take care by a triplet and hence there are O(p) triplets. This leads to a factor
of O(T'k® + I'dk?) time per worker with p/I" degree of parallelism.

At last, the merging step consists of products of k£ x k and d x k matrices for each edge in the latent tree leading to
O(dk?) time per worker with p/T" degree of parallelism.

K SAMPLE COMPLEXITY

From Theorem 11 of|Choi et al. ((2011)), we recall the number of samples required for the recovery of the tree structure
that is consistent with the ground truth (for a precise definition of consistency, refer to Definition 2 of |Choi et al.

(201D))).

From|Anandkumar et al! ((20124)), we recall the sample complexity for the faithful recovery of parameters via tensor
decomposition methods.

We define € p to be the noise raised between empirical estimation of the second order moments and exact second order
moments, and e7 to be the noise raised between empirical estimation of the third order moments and the exact third
order moments.

Lemma K.1. Consider positive constants C, C’', ¢ and ¢, the following holds. If
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We note that 01 > 02 > ... 0y > 0 are the non-zero singular values of the second order moments, A\ > Ay > ... >
Ak > 0 are the ground-truth eigenvalues of the third order moments, and v; are the corresponding eigenvectors for all

i€ [kl



L EFFICIENT SVD USING SPARSITY AND DIMENSIONALITY REDUCTION

Without loss of generality, we assume that a matrix whose SVD we aim to compute has no row or column which is
fully zeros, since, if it does have zero entries, such row and columns can be dropped.

Let A € R™ "™ be the matrix to do SVD. Let ® € R** where k = ak with o is a scalar, usually, in the range
2, 3]. For the i*" row of @, if >, |®|(4,:) # 0 and Y, |®|(:,4) # 0, then there is only one non-zero entry and that
entry is uniformly chosen from [k]. If either >, |®|(i,:) = 0 or 3, |®|(:,4) = 0, we leave that row blank. Let
D € R% be a diagonal matrix with iid Rademacher entries, i.e., each non-zero entry is 1 or —1 with probability
%. Now, our embedding matrix ((Clarkson and Woodruff, 2013)) is S = D®, i.e., we find AS and then proceed with
the Nystrom ((Huang et al.,[2013)) method. Unlike the usual Nystrom method ((Gittens and Mahoney, |2013a)) which
uses a random matrix for computing the embedding, we improve upon this by using a sparse matrix for the embedding

since the sparsity improves the running time and the memory requirements of the algorithm.



