Practical Multi-fidelity Bayesian Optimization for Hyperparameter Tuning Supplementary Material

Jian Wu Operations Research & Information Eng. Cornell University Ithaca, NY 14850 Saul Toscano-Palmerin Operations Research & Information Eng. Cornell University Ithaca, NY 14850

1 Background: Gaussian processes

We put a Gaussian process (GP) prior [5] on the function g. The GP prior is defined by its mean function $\mu_0 : A \times [0,1]^m \mapsto \mathbb{R}$ and kernel function $K_0 :$ $\{A \times [0,1]^m\} \times \{A \times [0,1]^m\} \mapsto \mathbb{R}$. These mean and kernel functions have hyperparameters, whose inference we discuss below.

We assume that evaluations of $g(\mathbf{x}, \mathbf{s})$ are subject to additive independent normally distributed noise with common variance σ^2 . We treat the parameter σ^2 as a hyperparameter of our model, and also discuss its inference below. Our assumption of normally distributed noise with constant variance is common in the BO literature [2].

Here we use $\mathbf{z} = (\mathbf{x}, \mathbf{s})$ to refer more briefly to a point, fidelity pair. The posterior distribution on g after observing n function values at points $\mathbf{z}_{(1:n)} := \{(\mathbf{x}_{(1)}, \mathbf{s}_{(1)}), (\mathbf{x}_{(2)}, \mathbf{s}_{(2)}), \cdots, (\mathbf{x}_{(n)}, \mathbf{s}_{(n)})\}$ with observed values $y_{(1:n)} := \{y_{(1)}, y_{(2)}, \cdots, y_{(n)}\}$ remains a Gaussian process [5], and $g \mid \mathbf{z}_{(1:n)}, y_{(1:n)} \sim$ $GP(\mu_n, K_n)$ with μ_n and K_n as follows, where I is an identity matrix:

$$\mu_n(\mathbf{z}) = \mu_0(\mathbf{z}) + K_0(\mathbf{z}, \mathbf{z}_{1:n}) \left(K_0(\mathbf{z}_{1:n}, \mathbf{z}_{1:n}) + \sigma^2 I \right)^{-1} (y_{1:n} - \mu_0(\mathbf{z}_{1:n}))$$

$$K_n(\mathbf{z}, \mathbf{z}') = K_0(\mathbf{z}, \mathbf{z}') - K_0(\mathbf{z}, \mathbf{z}_{1:n}) \left(K_0(\mathbf{z}_{1:n}, \mathbf{z}_{1:n}) + \sigma^2 I \right)^{-1} K_0(\mathbf{z}_{1:n}, \mathbf{z}').$$

We should note that taKG may choose to retain more than one observations per evaluation because a single evaluation of g provides additional trace observations, and so n may be larger than the number of evaluations.

This statistical approach contains several hyperparameters: the variance σ^2 , and any parameters in the mean Peter I. Frazier Operations Research & Information Eng. Cornell University Ithaca, NY 14850 Andrew Gordon Wilson Courant Institute of Mathematical Sciences New York University New York, NY 10003

and kernel functions. We treat these hyperparameters in a Bayesian way as proposed in Snoek et al. [7]. We analogously train a separate GP on the logarithm of the cost of evaluating g(x, s).

Now, using the notation of the paper, let C_n be the Cholesky factor of the covariance matrix $K_n((\mathbf{x}, S), (\mathbf{x}, S)) + \sigma^2 I$. Thus, by the previous equations,

$$\mathbb{E}_n[g(\mathbf{x}', \mathbf{1})|\mathbf{y}(\mathbf{x}, S)] = \mu_n(\mathbf{x}') + K_n((\mathbf{x}', \mathbf{1}), (\mathbf{x}, S))(C_n^T)^{-1}(C_n)^{-1}$$
(1.1)
$$(\mathbf{y}(\mathbf{x}, S) - \mathbb{E}_n(\mathbf{y}(\mathbf{x}, S))),$$

and $(C_n)^{-1}(\mathbf{y}(\mathbf{x}, S) - \mathbb{E}_n(\mathbf{y}(\mathbf{x}, S)))$ follows an independent standard normal random distribution, which shows that

$$\mathbb{E}_{n}[g(\mathbf{x}', \mathbf{1})|\mathbf{y}(\mathbf{x}, S)] = \mu_{n}(\mathbf{x}')
+ \tilde{\sigma}_{n}(\mathbf{x}', \mathbf{x}, S)\mathbf{w},$$
(1.2)

where \mathbf{w} is an independent standard normal random vector.

2 Proofs Details

In this section we prove the theorems of the paper. We first show some smoothness properties of $\tilde{\sigma}_n$, μ_n and c_n in the following lemma.

Lemma 1. We assume that the domain A is compact, μ_0 is a constant, the kernel K_0 is continuously differentiable, and the prior parameters on log c continuously differentiable. We then have that

1. Fix any \mathbf{x} and S. Then $\mu_n(\mathbf{x}')$ and $\tilde{\sigma}_n(\mathbf{x}', \mathbf{x}, S)$ are both continuously differentiable in \mathbf{x}' .

- 2. Fix any \mathbf{x}' and number of fidelities |S|. Then $\tilde{\sigma}_n(\mathbf{x}', \mathbf{x}, S)$ is continuously differentiable in \mathbf{x} and each element of S.
- *3.* c_n is continuously differentiable.
- 4. $\max_{1 \le i \le q} c_n(x_i, s_i)$ is differentiable in **x** and **s** if $|\operatorname{argmax}_{1 \le i \le q} c_n(x_i, s_i)| = 1.$

Proof. The posterior parameters of the Gaussian process on $\log c$ are continuously differentiable if its prior parameters are continuously differentiable (this proves (3)).

By (1.1), we know that that $\tilde{\sigma}_n(\mathbf{x}', \mathbf{x}, S) = K_n((\mathbf{x}', 1), (\mathbf{x}, S)) (C_n^T)^{-1}$ where $(\mathbf{x}, S) := \{(\mathbf{x}, \mathbf{s}) : \mathbf{s} \in S\}$ and C_n is the Cholesky factor of the covariance matrix $K_n((\mathbf{x}, S), (\mathbf{x}, S)) + \sigma^2 I$. Thus, (1) follows from continuous differentiability of K_n .

To prove (2) we only need to show that $(C_n^T)^{-1}$ is continuously differentiable with respect to x and the components of S. This follows from the fact that multiplication, matrix inversion (when the inverse exists), and Cholesky factorization [6] preserve continuous differentiability.

(4) follows easily from (3).
$$\Box$$

We now prove Theorem 1.

Proof of Theorem 1. Recall the intuitive explanation of Theorem 1 given in the body of the paper:

$$\nabla_{\mathbf{x},S} \mathbb{E}_n \left[\min_{\mathbf{x}'} \left(\mu_n \left(\mathbf{x}', \mathbf{1} \right) + \tilde{\sigma}_n \left(\mathbf{x}', \mathbf{x}, S \right) \cdot \mathbf{w} \right) \right]$$

= $\mathbb{E}_n \left[\nabla_{\mathbf{x},S} \min_{\mathbf{x}'} \left(\mu_n \left(\mathbf{x}', \mathbf{1} \right) + \tilde{\sigma}_n \left(\mathbf{x}', \mathbf{x}, S \right) \cdot \mathbf{w} \right) \right]$
= $\mathbb{E}_n \left[\nabla_{\mathbf{x},S} \left(\mu_n \left(\mathbf{x}^*, \mathbf{1} \right) + \tilde{\sigma}_n \left(\mathbf{x}^*, \mathbf{x}, S \right) \cdot \mathbf{w} \right) \right]$
= $\mathbb{E}_n \left[\nabla_{\mathbf{x},S} \tilde{\sigma}_n \left(\mathbf{x}^*, \mathbf{x}, S \right) \cdot \mathbf{w} \right],$

where \mathbf{x}^* is a global minimum (over $\mathbf{x}' \in A$) of $h(\mathbf{x}', \mathbf{x}, S) := \mu_n(\mathbf{x}', \mathbf{1}) + \tilde{\sigma}_n(\mathbf{x}', \mathbf{x}, S) \cdot \mathbf{w}$, w is a standard normal random vector, and $\nabla_{\mathbf{x},S}$ indicates the gradient with respect to \mathbf{x} and S holding \mathbf{x}^* fixed.

To complete the proof, we need to justify the interchange of expectation and the gradient (the second line) and ignoring the dependence of x^* on x and S when taking the gradient (the third line).

We first justify the third line. By Lemma 1, h is continuously differentiable. Thus, by the envelope theorem (see Corollary 4 of Milgrom and Segal 4), even though \mathbf{x}^* depends on \mathbf{x} and S, this dependence can be ignored when computing $\nabla_{\mathbf{x},S} h(\mathbf{x}^*, \mathbf{x}, S)$ (observe that we assume that \mathbf{x}^* is unique in the statement of the theorem).

We now justify the fourth line. Recall that A is compact, components of s have domain [0, 1], and gradients with respect to S are taken assuming that |S| is held fixed. Thus, the domain of \mathbf{x}, S is compact. Also $\tilde{\sigma}_n(\mathbf{x}', \mathbf{x}, S)$ is continuously differentiable with respect to \mathbf{x}, S by Lemma 1. Thus $\|\tilde{\sigma}_n(\mathbf{x}', \mathbf{x}, S)\|$ is bounded. Consequently, Corollary 5.9 of Bartle [1] implies that we can interchange the gradient and the expectation.

The following corollary follows from the previous proof.

Corollary 1. Under the assumptions of the previous theorem, $L_n(\mathbf{x}, S)$ is continuous.

We now prove Theorem 2.

Proof. We prove this theorem using Theorem 2.3 of Section 5 of Kushner and Yin [3], which depends on the structure of the stochastic gradient G of the objective function. In addition, we simplify the notation and denote (\mathbf{x}_t, S_t) by Z_t .

The theorem from Kushner and Yin [3], requires the following hypotheses:

1.
$$\epsilon_t \to 0$$
, $\sum_{t=1}^{\infty} \epsilon_t = \infty$, and $\sum_t \epsilon_t^2 < \infty$.
2. $\sup_t \mathbb{E}\left[|G(Z_t)|^2 \right] < \infty$

3. There exist uniformly continuous functions $\{\lambda_t\}_{t\geq 0}$ of Z, and random vectors $\{\beta_t\}_{t\geq 0}$, such that $\beta_t \to 0$ almost surely and

$$E_n \left[G \left(Z_t \right) \right] = \lambda_t \left(Z_t \right) + \beta_t.$$

Furthermore, there exists a continuous function λ , such that for each $Z \in A^q$,

$$\lim_{n} \left| \sum_{i=1}^{m(r_{m}+s)} \epsilon_{i} \left[\lambda_{i} \left(Z \right) - \bar{\lambda} \left(Z \right) \right] \right| = 0$$

for each $s \ge 0$, where m(r) is the unique value of k such that $t_k \le t < t_{k+1}$, where $t_0 = 0, t_k = \sum_{i=0}^{k-1} \epsilon_i$.

- 4. There exists a continuously differentiable realvalued function ϕ , such that $\overline{\lambda} = -\nabla \phi$ and it is constant on each connected subset of stationary points.
- 5. The constraint functions defining A are continuously differentiable.

We now prove that our problem satisfies these hypotheses. (1) is true by the hypothesis of the lemma. We now prove (2). Letting \mathbf{x}^* be defined in terms of \mathbf{w} as in Theorem 2 and choosing a generic fixed Z,

$$\mathbb{E}\left[\left|\nabla_{\mathbf{x}} \, \tilde{\sigma}_n \left(\mathbf{x}^*, Z\right) \cdot \mathbf{w}\right|^2\right] \\ \leq \mathbb{E}\left[\left\|\nabla \tilde{\sigma}_n \left(\mathbf{x}^*, Z\right)\right\|^2 \left\|\mathbf{w}\right\|^2\right] \leq M|S|$$

where $M := \sup_{\mathbf{x},\mathbf{z}} \|\nabla \tilde{\sigma}_n(\mathbf{x},\mathbf{z})\|^2$ and |S| is the dimensionality of \mathbf{w} . M is finite because the domain of the problem is compact and $\nabla \tilde{\sigma}_n(\mathbf{x},\mathbf{z})$ is continuous by Lemma 1. Since c_n is continuously differentiable and bounded below, we conclude that the supremum over Z of $\mathbb{E}\left[|G(Z)|^2\right]$ is bounded.

We now prove (3). Our definition of λ_t will be the same for all *t*. Define

$$\lambda_{t}(Z) = \mathbb{E}\left[\frac{c_{n}(Z)\nabla\tilde{\sigma}_{n}(\mathbf{x}^{*}, Z)\mathbf{w}}{c_{n}(Z)^{2}}\right] - \mathbb{E}\left[\frac{\nabla c_{n}(Z)}{c_{n}(Z)^{2}}(\mu_{n}(\mathbf{x}^{*}, \mathbf{1}) + \tilde{\sigma}_{n}(\mathbf{x}^{*}, Z)\mathbf{w})\right].$$

We will prove that λ_t is continuous. In the proof of Theorem 1, we show that $\nabla \tilde{\sigma}_n(\mathbf{x}^*, Z) \mathbf{w}$ is continuous in Z. Furthermore,

$$\begin{aligned} \left\| \nabla \tilde{\sigma}_n \left(y_1, Z \right) \mathbf{w}^1 \right\| &\leq \| \nabla \tilde{\sigma}_n \left(y_1, Z \right) \| \| \mathbf{w} \| \\ &\leq L \| \mathbf{w} \| . \end{aligned}$$

Consequently $\mathbb{E} \left[\nabla \tilde{\sigma}_n (Y, Z) \mathbf{w} \right]$ is continuous by Corollary 5.7 of Bartle [1]. In Theorem 1, we also show that $\mathbb{E} \left[(\mu_n (Y, \mathbf{1}) + \tilde{\sigma}_n (Y, Z) \mathbf{w}) \right]$ is continuous in Z. Since c_n is continuously differentiable, we conclude that λ_t is continuous. By defining $\beta_t = 0$ for all t, and $\bar{\lambda} = \lambda_1$, we conclude the proof of (3).

Finally, define $\phi(Z) = -\mathbb{E}\left[\frac{\mu_n(Y,\mathbf{1})+\tilde{\sigma}_n(Y,Z)\mathbf{w}}{c_n(Z)}\right]$. Observe that in Lemma 2, we show that we can interchange the expectation and the gradient in $\mathbb{E}\left[\nabla\left(\mu_n\left(Y\right)+\tilde{\sigma}_n\left(Y,Z\right)\mathbf{w}\right)\right]$, and so $\lambda_m(Z) = -\nabla\phi(Z)$. In a connected subset of stationary points, we have that $\lambda_m(Z) = 0$, and so $\phi(Z)$ is constant. This ends the proof of the theorem.

Proof of Proposition 1. Since

$$VOI_n(x,s) := \mathbb{E}_n[\mu^*(x,1) - \min_{x'}(\mu_n(x') + C_n(x',(x,s))W]$$

where W is a standard normal random variable. By Jensen's inequality, we have

$$VOI_{n}(x,s) := \mathbb{E}_{n}[\mu^{*}(x,1) - \min_{x'}(u_{n}(x',s,W))]$$

$$\geq \mu^{*}(x,1) - \min_{x'}\mathbb{E}_{n}(u_{n}(x',s,W)) = 0$$

where $u_n(x, s, W) := \mu^n(x', 1) + C_n((x', 1), (x, s))W)$. The inequality becomes equal only if $\min_{x'}(\mu_n(x') + C_n(x', (x, s))W)$ is a linear function of W for any fixed (x, s), i.e the argmin for the inner optimization function doesn't change as we vary W, which is not true if $K_n((x', 1), (x, s)) > 0$ i.e. evaluating at (x, s) provides value to determine the argmin of the surface (x, 1).

Proof of Proposition 2. The proof follows a very similar argument than the previous proof. By Jensen's inequality, we have that

$$\mathbb{E}_n\left[\min_{x'} \mathbb{E}_n\left[g(x',1) \mid \mathbf{y}(x,S)\right]\right] \geq \mathbb{E}_n\left[\min_{x'} \mathbb{E}_n\left[g(x',1) \mid \mathbf{y}(x,S \bigcup C(S))\right]\right]$$

The inequality becomes equal only if the argmin for the inner optimization function doesn't change as we vary the normal random vector, which is not true under our assumptions.

3 GPs for Hyperparameter Optimization

In the context of hyperparameter optimization with two continuous fidelities, i.e. the number of training iterations $(s_{(1)})$ and the amount of training data $(s_{(2)})$, we set the kernel function of the GP as

$$K_0(z,\tilde{z}) = K(x,\tilde{x}) \times K_1(s_{(1)},\tilde{s}_{(1)}) \times K_2(s_{(2)},\tilde{s}_{(2)}),$$

where $K(\cdot, \cdot)$ is a square-exponential kernel. If we assume that the learning curve looks like

$$g(x,s) = h(x) \times (\beta_0 + \beta_1 \exp(-\lambda s_{(1)})) \times l(s_{(2)}), (3.1)$$

then inspired by [8], we set the kernel $K_1(\cdot, \cdot)$ as

$$K_1(s_{(1)}, \tilde{s}_{(1)}) = \left(w + \frac{\beta^{\alpha}}{(s_{(1)} + \tilde{s}_{(1)} + \beta^{\alpha})}\right)$$

where $w, \beta, \alpha > 0$ are hyperparameters. We add an intercept w compared to the kernel in [8] to model the fact that the loss will not diminish. We assume that the kernel $K_2(\cdot, \cdot)$ has the form

$$K_2(s_{(2)}, \tilde{s}_{(2)}) = \left(c + (1 - s_{(2)})^{(1+\delta)} (1 - \tilde{s}_{(2)})^{(1+\delta)}\right),$$

where $c, \delta > 0$ are hyperparameters.

All the hyperparameters can be treated in a Bayesian way 0. as proposed in Snoek et al. [7].

4 Additional experimental details

4.1 Synthetic experiments

Here we define in detail the synthetic test functions on which we perform numerical experiments The test functions are:

augmented-Branin (\mathbf{x}, \mathbf{s})

$$= \left(x_2 - \left(\frac{5.1}{4\pi^2} - 0.1 * (1 - s_1)\right)x_1^2 + \frac{5}{\pi}x_1 - 6\right)^2 + 10 * \left(1 - \frac{1}{8\pi}\right)\cos(x_1) + 10$$

augmented-Hartmann(x, s)

$$= (\alpha_1 - 0.1 * (1 - s_1)) \exp\left(-\sum_{j=1}^d A_{ij}(x_j - P_{1j})^2\right) + \sum_{i=2}^d \alpha_i \exp\left(-\sum_{j=1}^d A_{ij}(x_j - P_{ij})^2\right)$$

augmented-Rosenbrock(x, s)

$$= \sum_{i=1}^{2} \left(100 * (x_{i+1} - x_i^2 + 0.1 * (1 - s_1))^2 + (x_i - 1 + 0.1 * (1 - s_2)^2)^2 \right).$$

4.2 Real-world experiments

The range of search domain for feedforward NN experiments: the learning rate in $[10^{-6}, 10^0]$, dropout rate in [0, 1], batch size in $[2^5, 2^{10}]$ and the number of units at each layer in [100, 1000].

The range of search domain for CNN experiments: the learning rate in $[10^{-6}, 1.0]$, batch size $[2^5, 2^{10}]$, and number of filters in each convolutional block in $[2^5, 2^9]$.

References

- [1] R. G. Bartle. *The elements of integration*. John Wiley & Sons, 1966.
- [2] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast Bayesian optimization of machine learning hyperparameters on large datasets. In *Artificial Intelligence and Statistics*, 2017.
- [3] H. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms and Applications, volume 35. Springer Science & Business Media, 2003.

- [4] P. Milgrom and I. Segal. Envelope theorems for arbitrary choice sets. *Econometrica*, 70(2):583–601, 2002.
- [5] C. E. Rasmussen and C. K. I. Williams. *Gaussian Processes for Machine Learning*. MIT Press, 2006. ISBN ISBN 0-262-18253-X.
- [6] S. P. Smith. Differentiation of the cholesky algorithm. *Journal of Computational and Graphical Statistics*, 4(2):134 – 147, 1995.
- [7] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning algorithms. In Advances in Neural Information Processing Systems, 2012.
- [8] K. Swersky, J. Snoek, and R. P. Adams. Freezethaw Bayesian optimization. arXiv preprint arXiv:1406.3896, 2014.