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1 Background: Gaussian processes

We put a Gaussian process (GP) prior [5] on the func-
tion g. The GP prior is defined by its mean function
µ0 : A × [0, 1]m 7→ R and kernel function K0 :
{A× [0, 1]m} × {A× [0, 1]m} 7→ R. These mean and
kernel functions have hyperparameters, whose inference
we discuss below.

We assume that evaluations of g(x, s) are subject to ad-
ditive independent normally distributed noise with com-
mon variance σ2. We treat the parameter σ2 as a hyper-
parameter of our model, and also discuss its inference be-
low. Our assumption of normally distributed noise with
constant variance is common in the BO literature [2].

Here we use z = (x, s) to refer more briefly
to a point, fidelity pair. The posterior distribu-
tion on g after observing n function values at points
z(1:n) := {(x(1), s(1)), (x(2), s(2)), · · · , (x(n), s(n))}
with observed values y(1:n) := {y(1), y(2), · · · , y(n)} re-
mains a Gaussian process [5], and g | z(1:n), y(1:n) ∼
GP(µn,Kn) with µn and Kn as follows, where I is an
identity matrix:

µn(z) = µ0(z)

+K0(z, z1:n)
(
K0(z1:n, z1:n) + σ2I

)−1
(y1:n − µ0(z1:n))

Kn(z, z′) = K0(z, z′)

−K0(z, z1:n)
(
K0(z1:n, z1:n) + σ2I

)−1
K0(z1:n, z

′).

We should note that taKG may choose to retain more
than one observations per evaluation because a single
evaluation of g provides additional trace observations,
and so n may be larger than the number of evaluations.

This statistical approach contains several hyperparame-
ters: the variance σ2, and any parameters in the mean

and kernel functions. We treat these hyperparameters in
a Bayesian way as proposed in Snoek et al. [7]. We anal-
ogously train a separate GP on the logarithm of the cost
of evaluating g(x, s).

Now, using the notation of the paper, let Cn
be the Cholesky factor of the covariance matrix
Kn ((x, S), (x, S)) + σ2I . Thus, by the previous equa-
tions,

En[g(x′,1)|y(x, S)] = µn(x′)

+Kn((x′,1), (x, S))(CTn )−1(Cn)−1

(y(x, S)− En(y(x, S))),

(1.1)

and (Cn)−1(y(x, S)−En(y(x, S))) follows an indepen-
dent standard normal random distribution, which shows
that

En[g(x′,1)|y(x, S)] = µn(x′)

+ σ̃n(x′,x, S)w,
(1.2)

where w is an independent standard normal random vec-
tor.

2 Proofs Details

In this section we prove the theorems of the paper. We
first show some smoothness properties of σ̃n, µn and cn
in the following lemma.

Lemma 1. We assume that the domain A is compact,
µ0 is a constant, the kernel K0 is continuously differ-
entiable, and the prior parameters on log c continuously
differentiable. We then have that

1. Fix any x and S. Then µn(x′) and σ̃n (x′,x, S) are
both continuously differentiable in x′.



2. Fix any x′ and number of fidelities |S|. Then
σ̃n (x′,x, S) is continuously differentiable in x and
each element of S.

3. cn is continuously differentiable.

4. max1≤i≤q cn(xi, si) is differentiable in x and s if∣∣argmax1≤i≤qcn (xi, si)
∣∣ = 1.

Proof. The posterior parameters of the Gaussian process
on log c are continuously differentiable if its prior param-
eters are continuously differentiable (this proves (3)).

By (1.1), we know that that σ̃n(x′,x, S) =
Kn ((x′, 1), (x, S)) (CTn )−1 where (x, S) := {(x, s) :
s ∈ S} and Cn is the Cholesky factor of the covariance
matrix Kn ((x, S), (x, S)) + σ2I . Thus, (1) follows
from continuous differentiability of Kn.

To prove (2) we only need to show that (CTn )−1 is con-
tinuously differentiable with respect to x and the compo-
nents of S. This follows from the fact that multiplication,
matrix inversion (when the inverse exists) , and Cholesky
factorization [6] preserve continuous differentiability.

(4) follows easily from (3).

We now prove Theorem 1.

Proof of Theorem 1. Recall the intuitive explanation of
Theorem 1 given in the body of the paper:

∇x,S En
[
min
x′

(µn (x′,1) + σ̃n (x′,x, S) ·w)
]

= En
[
∇x,S min

x′
(µn (x′,1) + σ̃n (x′,x, S) ·w)

]
= En [∇x,S (µn (x∗,1) + σ̃n (x∗,x, S) ·w)]

= En [∇x,S σ̃n (x∗,x, S) ·w] ,

where x∗ is a global minimum (over x′ ∈ A) of
h(x′,x, S) := µn(x′,1) + σ̃n(x′,x, S) ·w, w is a stan-
dard normal random vector, and ∇x,S indicates the gra-
dient with respect to x and S holding x∗ fixed.

To complete the proof, we need to justify the interchange
of expectation and the gradient (the second line) and ig-
noring the dependence of x∗ on x and S when taking the
gradient (the third line).

We first justify the third line. By Lemma 1, h is con-
tinuously differentiable. Thus, by the envelope theorem
(see Corollary 4 of Milgrom and Segal 4), even though
x∗ depends on x and S, this dependence can be ignored
when computing ∇x,S h(x∗,x, S) (observe that we as-
sume that x∗ is unique in the statement of the theorem).

We now justify the fourth line. Recall that A is com-
pact, components of s have domain [0, 1], and gradi-
ents with respect to S are taken assuming that |S| is

held fixed. Thus, the domain of x, S is compact. Also
σ̃n (x′,x, S) is continuously differentiable with respect
to x, S by Lemma 1. Thus ‖σ̃n (x′,x, S)‖ is bounded.
Consequently, Corollary 5.9 of Bartle [1] implies that we
can interchange the gradient and the expectation.

The following corollary follows from the previous proof.

Corollary 1. Under the assumptions of the previous the-
orem, Ln(x, S) is continuous.

We now prove Theorem 2.

Proof. We prove this theorem using Theorem 2.3 of Sec-
tion 5 of Kushner and Yin [3], which depends on the
structure of the stochastic gradient G of the objective
function. In addition, we simplify the notation and de-
note (xt, St) by Zt.

The theorem from Kushner and Yin [3], requires the fol-
lowing hypotheses:

1. εt → 0,
∑∞
t=1 εt =∞, and

∑
t ε

2
t <∞.

2. supt E
[
|G (Zt)|2

]
<∞

3. There exist uniformly continuous functions {λt}t≥0
of Z, and random vectors {βt}t≥0 , such that βt →
0 almost surely and

En [G (Zt)] = λt (Zt) + βt.

Furthermore, there exists a continuous function λ̄,
such that for each Z ∈ Aq ,

lim
n

∣∣∣∣∣∣
m(rm+s)∑
i=1

εi
[
λi (Z)− λ̄ (Z)

]∣∣∣∣∣∣ = 0

for each s ≥ 0, where m (r) is the unique value of
k such that tk ≤ t < tk+1, where t0 = 0,tk =∑k−1
i=0 εi.

4. There exists a continuously differentiable real-
valued function φ, such that λ̄ = −∇φ and it is con-
stant on each connected subset of stationary points.

5. The constraint functions defining A are continu-
ously differentiable.

We now prove that our problem satisfies these hypothe-
ses. (1) is true by the hypothesis of the lemma.



We now prove (2). Letting x∗ be defined in terms of w
as in Theorem 2 and choosing a generic fixed Z,

E
[
|∇x σ̃n (x∗, Z) ·w|2

]
≤ E

[
‖∇σ̃n (x∗, Z)‖2 ‖w‖2

]
≤M |S|

where M := supx,z ‖∇σ̃n (x, z)‖2 and |S| is the di-
mensionality of w. M is finite because the domain of
the problem is compact and ∇σ̃n (x, z) is continuous by
Lemma 1. Since cn is continuously differentiable and
bounded below, we conclude that the supremum over Z
of E

[
|G (Z)|2

]
is bounded.

We now prove (3). Our definition of λt will be the same
for all t. Define

λt (Z) = E

[
cn (Z)∇σ̃n (x∗, Z)w

cn (Z)
2

]

− E

[
∇cn (Z)

cn (Z)
2 (µn (x∗,1) + σ̃n (x∗, Z)w)

]
.

We will prove that λt is continuous. In the proof of The-
orem 1, we show that∇σ̃n (x∗, Z)w is continuous in Z.
Furthermore,∥∥∇σ̃n (y1, Z)w1

∥∥ ≤ ‖∇σ̃n (y1, Z)‖ ‖w‖
≤ L ‖w‖ .

Consequently E [∇σ̃n (Y,Z)w] is continuous by Corol-
lary 5.7 of Bartle [1]. In Theorem 1, we also show that
E [(µn (Y,1) + σ̃n (Y, Z)w)] is continuous in Z. Since
cn is continuously differentiable, we conclude that λt is
continuous. By defining βt = 0 for all t, and λ̄ = λ1, we
conclude the proof of (3).

Finally, define φ (Z) = −E
[
µn(Y,1)+σ̃n(Y,Z)w

cn(Z)

]
.

Observe that in Lemma 2, we show that we
can interchange the expectation and the gradient
in E [∇ (µn (Y ) + σ̃n (Y, Z)w)], and so λm (Z) =
−∇φ (Z) . In a connected subset of stationary points, we
have that λm (Z) = 0, and so φ (Z) is constant. This
ends the proof of the theorem.

Proof of Proposition 1. Since

V OIn(x, s) :=

En[µ∗(x, 1)−min
x′

(µn(x′) + Cn(x′, (x, s))W ]

where W is a standard normal random variable. By
Jensen’s inequality, we have

V OIn(x, s) := En[µ∗(x, 1)−min
x′

(un (x′, s,W ))]

≥ µ∗(x, 1)−min
x′

En(un (x′, s,W )) = 0.

where un (x, s,W ) := µn(x′, 1) +
Cn((x′, 1), (x, s))W ). The inequality becomes equal
only if minx′(µn(x′) + Cn(x′, (x, s))W is a linear
function of W for any fixed (x, s), i.e the argmin for
the inner optimization function doesn’t change as we
vary W , which is not true if Kn((x′, 1), (x, s)) > 0
i.e. evaluating at (x, s) provides value to determine the
argmin of the surface (x, 1).

Proof of Proposition 2. The proof follows a very similar
argument than the previous proof. By Jensen’s inequal-
ity, we have that

En
[
min
x′

En [g(x′, 1) | y(x, S)]
]
≥

En
[
min
x′

En
[
g(x′, 1) | y(x, S

⋃
C(S))

]]
The inequality becomes equal only if the argmin for the
inner optimization function doesn’t change as we vary
the normal random vector, which is not true under our
assumptions.

3 GPs for Hyperparameter Optimization

In the context of hyperparameter optimization with two
continuous fidelities, i.e. the number of training itera-
tions (s(1)) and the amount of training data (s(2)), we set
the kernel function of the GP as

K0(z, z̃) = K(x, x̃)×K1(s(1), s̃(1))×K2(s(2), , s̃(2)),

where K(·, ·) is a square-exponential kernel. If we as-
sume that the learning curve looks like

g(x, s) = h(x)×
(
β0 + β1 exp (−λs(1))

)
× l(s(2)),(3.1)

then inspired by [8], we set the kernel K1(·, ·) as

K1(s(1), s̃(1)) =

(
w +

βα

(s(1) + s̃(1) + βα)

)
,

where w, β, α > 0 are hyperparameters. We add an in-
tercept w compared to the kernel in [8] to model the fact
that the loss will not diminish. We assume that the kernel
K2(·, ·) has the form

K2(s(2), s̃(2)) =
(
c+ (1− s(2))(1+δ)(1− s̃(2))(1+δ)

)
,

where c, δ > 0 are hyperparameters.

All the hyperparameters can be treated in a Bayesian way
as proposed in Snoek et al. [7].



4 Additional experimental details

4.1 Synthetic experiments

Here we define in detail the synthetic test functions on
which we perform numerical experiments The test func-
tions are:

augmented-Branin(x, s)

=

(
x2 −

(
5.1

4π2
− 0.1 ∗ (1− s1)

)
x21 +

5

π
x1 − 6

)2

+ 10 ∗
(

1− 1

8π

)
cos(x1) + 10

augmented-Hartmann(x, s)

= (α1 − 0.1 ∗ (1− s1)) exp

− d∑
j=1

Aij(xj − P1j)
2


+

4∑
i=2

αi exp

− d∑
j=1

Aij(xj − Pij)2


augmented-Rosenbrock(x, s)

=

2∑
i=1

(
100 ∗ (xi+1 − x2i + 0.1 ∗ (1− s1))2

+
(
xi − 1 + 0.1 ∗ (1− s2)2

)2)
.

4.2 Real-world experiments

The range of search domain for feedforward NN exper-
iments: the learning rate in [10−6, 100], dropout rate in
[0, 1], batch size in [25, 210] and the number of units at
each layer in [100, 1000].

The range of search domain for CNN experiments: the
learning rate in [10−6, 1.0], batch size [25, 210], and num-
ber of filters in each convolutional block in [25, 29].
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