
A Proof for Approximation Ratio

We prove Theorem 1 in this section. First, we prove the following technical lemma:

Lemma 1 For any positive integer K = 1, 2, . . ., and any real numbers b1, . . . , bK 2 [0, B], where B is a real number
in [0, 1], we have the following bounds
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where (a) follows from the induction hypothesis. This concludes the proof for the upper bound 1 �
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That is, the lower bound trivially holds for the case with K = 1.

Induction: Assume that the lower bound holds for K, we prove that it also holds for K+1. Notice that if 1�K
2 B  0,



then this lower bound holds trivially. For the non-trivial case with 1� K
2 B > 0, we have
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where (a) follows from the induction hypothesis, (b) follows from the fact that bi  B for all i and 1 � K�1
2 B > 0,

and (c) follows from the fact that
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k=1 bk. This concludes the proof.

We have the following remarks on the results of Lemma 1:
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We now prove Theorem 1 based on Lemma 1. Notice that by definition of cmax, we have h�(ak |
{a1, . . . , ak�1}), ✓⇤i  cmax. From Lemma 1, for any A 2 ⇧K(E), we have
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where (a) and (d) follow from (19); (b) follows from the facts that hc(A), ✓⇤i is a monotone and submodular set
function in A and A

greedy is computed based on the greedy algorithm; and (c) trivially follows from the fact that
A

⇤ 2 ⇧K(E). This concludes the proof for Theorem 1.



B Proof for Regret Bound

We start by defining some useful notations. Let ⇧(E) =
SL

k=1 ⇧k(E) be the set of all (ordered) lists of set E with
cardinality 1 to L, and w : ⇧(E)! [0, 1] be an arbitrary weight function for lists. For any A 2 ⇧(E) and any w, we
define
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where A
k is the prefix of A with length k. With a little bit abuse of notation, we also define the feature �(A) for list

A = (a1, . . . , a|A|) as �(A) = �(a|A||{a1, . . . , a|A|�1}). Then, we define the weight function w̄, its high-probability
upper bound Ut, and its high-probability lower bound Lt as
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for any ordered list A and any time t. Note that Proj[0,1] [·] projects a real number onto interval [0, 1], and based on
Equation 5, 21, and 22, we have h(A, w̄) = f(A, ✓

⇤) for all ordered list A. We also use Ht to denote the history of past
actions and observations by the end of time period t. Note that Ut�1, Lt�1 and At are all deterministic conditioned
on Ht�1. For all time t, we define the “good event” as Et = {Lt(A)  w̄(A)  Ut(A), 8A 2 ⇧(E)}, and Ēt as the
complement of Et. Notice that both Et�1 and Ēt�1 are also deterministic conditioned on Ht�1. Hence, we have
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where the above inequality follows from the naive bound that h(A⇤
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where the last inequality follows from the fact that 0  Ut�1(A
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and Et�1 is deterministic conditioned on Ht�1, for any Ht�1 s.t. Et�1 holds, we have
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where (a) follows from the definitions of Ut�1 and Lt�1 (see Equation 22), and (b) follows from the definitions of Ct

and Gtk. Plug the above inequality into Equation 23, we have
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bound on P (Ēt�1). The derivations of these two bounds are the same as in Zong et al. Zong et al. (2016). Specifically,
we have

Lemma 2 The following worst-case bound holds
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Please refer to Lemma 2 in Zong et al. Zong et al. (2016) for the derivation of Lemma 2. We also have the following
bound on P (Ēt):
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we have P (Ēt)  1/n for all t and hence

R
�(n)  2↵K

�

s
dn log

⇥
1 + nK

d�2

⇤

log
�
1 + 1

�2

� + 1.

This concludes the proof for Theorem 2.



C Extension to Special Case of Dependent Click Model

In this section, we discuss a special case of dependent click model (DCM) (Guo et al., 2009), which establishes the
deficiency of existing online diversity-driven approaches that learn from penalizing the unexamined items even in the
multiple click scenario.

C.1 DCM Background

The following description follows from the formulation discussed in Katariya et al. (2016). The DCM is an extension
of the cascade model (Craswell et al., 2008) to multiple clicks. The model assumes that the user scans a list of K items
A = (a1, . . . , aK) 2 ⇧K(E) from the first item a1 to the last aK . The DCM is parameterized by L item-dependent
attraction probabilities w̄ 2 [0, 1]L and K position-dependent termination probabilities v̄ 2 [0, 1]K . After the user
examines item ak, the item attracts the user with probability w̄(ak). If the user is attracted by the item ak, then the
user clicks on the item and terminates scanning the list with probability v̄(k). If this happens, the user is satisfied with
item ak and does not examine any of the remaining items. If item ak is not attractive or the user does not terminate,
the user examines item ak+1. The first item is examined with probability one. The probability w̄(ak) is conditioned
on the event that the user examines item at position k. The probability v̄(k) is conditioned on the event that the user is
attracted to the item at position k.

Under this model, the probability that the user is satisfied with an item in list A is:

fDCM (A, v̄, w̄) = 1�
QK

k=1(1� v̄(k)w̄(ak)). (24)

Clearly, the list which places k-th most attractive item at the k-th position maximizes the objective function in (24).

C.2 Special Case of DCM and the Associated Bandit Setting

In order to extend CascadeLSB to the multiple-click scenario, we assume the following. Similar to model in Sec-
tion 2.2, the diversity in this model is over d topics, such as movie genres or restaurant types. The preferences of the
user are a distribution over these topics represented by a vector ✓⇤ = (✓⇤1 , . . . , ✓

⇤
d).

The attraction probability of item ak is defined in (3), i.e,

w̄(ak) = h�(ak | {a1, . . . , ak�1}), ✓⇤i. (25)

The quantity in (3) is the gain in topic coverage after item ak is added to the first k � 1 items weighted by the
preferences of the user ✓⇤ over the topics. The termination probability is kept constant to be v̄(k) = ⇣ for all positions
k 2 [K]. Notice that ⇣ is the probability that the user terminates scanning the list after getting attracted to (i.e. clicked)
an item. ⇣ = 1 will lead to the CDCM in Section 3. Any ⇣ < 1 will lead to multiple clicks until the user is satisfied
(i.e. the user clicks on an item and then decides to terminate). Under this assumption, the probability that at least one
item in A is satisfactory is fDCM (A, ✓

⇤
, ⇣), where

fDCM (A, ✓, ⇣) = 1�
KY

k=1

(1� ⇣h�(ak | {a1, . . . , ak�1}), ✓i) (26)

for any list A, preferences ✓, topic coverage c, and termination probability ⇣. Let us denote the list that maximizes
(26) under user preferences ✓⇤ as

A
⇤
DCM = argmaxA2⇧K(E) fDCM (A, ✓

⇤
, ⇣). (27)

We again follow the greedy algorithm of (7) that maximizes fDCM (A, ✓
⇤
, ⇣) approximately. The algorithm chooses

K items sequentially. The k-th item ak is chosen such that it maximizes its gain over previously chosen items
a1, . . . , ak�1. In particular, for any k 2 [K],

ak = argmax
e2E\{a1,...,ak�1}

h�(e | {a1, . . . , ak�1})✓⇤i. (28)



Deriving approximation guarantees for the above algorithm is a part of our future work. We conjecture that the
approximation factor, say �DCM , would be very similar to � in Theorem 1, with a multiplicative factor of ⇣ coming
in at least for this special case of DCM.

The bandit setting in this case follows from Section 4. We call it dependent click linear submodular bandit. An instance
of this problem is a tuple (E, c, ✓

⇤
,K, ⇣), where E = [L] represents a ground set of L items, c is the topic coverage

function in Section 2.2, ✓⇤ are user preferences in Section 3, K  L is the number of recommended items, and ⇣ is
the termination probability which is assumed to be same for all the positions in this special case. The preferences ✓⇤
are unknown to the learning agent.

Our learning agent interacts with the user as follows. At time t, the agent recommends a list of K items At =
(at1, . . . , a

t
K) 2 ⇧K(E). The attractiveness of item ak at time t, wt(atk), is a realization of an independent Bernoulli

random variable with mean h�(atk | {at1, . . . , atk�1}), ✓⇤i. The termination at the k-th position at time t, vt(k), is a
realization of an independent Bernoulli random variable with mean ⇣. The user examines the list from the first item
a
t
1 to the last atK and clicks on all attractive items till the user is satisfied. i.e. the realization vt(k) is one after a click.

The feedback is the sequence of clicks and no-clicks till the index where the user gets satisfied, {C1t , . . . , CTt}, where
Tt = min {k 2 [K] : wt(atk) = 1 and vt(k) = 1}. We assume that min ; = 1. That is, if the user clicks on an item
and decides to terminate, then Tt  K; and if the user does not click or decide not to terminate on any item, then Tt =
1. We say that item e is examined at time t if e = a

t
k for some k 2 [min {Tt,K}]. Note that the attractiveness of all

examined items at time t can be computed from {C1t , . . . CTt}. In particular, wt(atk) = 1{Ckt : k 2 [min{Tt,K}]}.
The reward is defined as rt = 1{Tt  K}. That is, the reward is one if the user is satisfied (clicks and decides to
terminate) by at least one item in At; and zero otherwise.

The goal of the learning agent is to maximize its expected cumulative reward. This is equivalent to minimizing the
expected cumulative regret with respect to the optimal list in (27). The regret is defined analogously to (9), i.e.,

R
�DCM (n) =

nX

t=1

E [fDCM (A⇤
DCM , ✓

⇤
, ⇣)� fDCM (At, ✓

⇤
, ⇣)/�DCM ] . (29)

C.3 Algorithm dcmLSB

Our algorithm for solving dependent click linear submodular bandit is provided in Algorithm 2. We call it dcmLSB.
dcmLSB is almost same as CascadeLSB. The only difference is that the feedback is a sequence of clicks and no-clicks
till the index where the user gets satisfied, {C1t , . . . , CTt} with Tt = min {k 2 [K] : wt(atk) = 1 and vt(k) = 1},
instead of just the index of the first click Ct = min {k 2 [K] : wt(atk) = 1} as in CascadeLSB.

C.4 Experiments

We compare dcmLSB with LSBGreedy, which assumes feedback on the entire recommended list even after the user is
satisfied and terminates scanning the list. We discuss two experiments in this section – first, on a simulated setting,
and second, on the MovieLens dataset. We work with topic coverage and the parameters as described in Section 8.4
and use �DCM = 1 during regret computation in (29) .

C.4.1 Synthetic Experiments

This experiment illustrates the need for modeling both diversity and position bias via partial-click feedback even
when one considers multiple clicks on the recommended list. The setting is an extension to the synthetic experiment
in Section 8.3, providing more room for multiple clicks through larger d,K, and L.

We simulate a problem with L = 61 items and d = 5 topics. We recommend K = 8 items and simulate a single
user whose preferences are ✓

⇤ = (0.300, 0.275, 0.225, 0.200, 0). The attractiveness of items 1, 2, and 3 in topic 1 is
0.5, and 0 in all other topics. The attractiveness of items 4, 5, and 6 in topic 2 is 0.5, and 0 in all other topics. The
attractiveness of items 7, 8, and 9 in topic 3 is 0.5, and 0 in all other topics. The attractiveness of items 10 and 11 in
topic 4 is 0.5, and 0 in all other topics. The attractiveness of remaining 50 items in topic 5 is 1, and 0 in other topics.

The optimal recommended list is A⇤ = (1, 4, 7, 10, 2, 5, 8, 11) in that order. The n-step regret of both the algorithms
is shown in Figure 6(a). We observe that the regret of dcmLSB flattens and does not increase with the number of steps



Algorithm 2 dcmLSB

1: Inputs: Parameters � > 0 and ↵ > 0 (Section 6)
2: M0  Id, B0  0 . Initialization
3: for t = 1, . . . , n do
4: ✓̄t�1  �

�2
M

�1
t�1Bt�1 . Regression estimate

5: S  ; . Recommend list and receive feedback
6: for k = 1, . . . ,K do
7: for all e 2 E \ S do
8: xe  �(e | S)
9: end for

10: a
t
k  argmax
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q
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11: S  S [ {atk}
12: end for
13: Recommend list At  (at1, . . . , a

t
K)

14: Observe click sequence {Ckt 2 {0, 1} 8 k 2 [min{Tt,K}].
15: Mt  Mt�1, Bt  Bt�1 . Update statistics
16: for k = 1, . . . ,min {Tt,K} do
17: xe  �

�
a
t
k

�� �at1, . . . , atk�1

 �

18: Mt  Mt + �
�2

xex
T
e, Bt  Bt + xeCkt

19: end for
20: end for

n. This means that dcmLSB learns the optimal solution. The regret of LSBGreedy grows linearly with the number
of steps n, which means LSBGreedy does not learn the optimal solution. When LSBGreedy recommends A

⇤, it
severely underestimates the preference for topic 3 or topic 4, because it assumes feedback at the lower positions even
if the first few positions are clicked and the user becomes satisfied in between the list. Because of this, LSBGreedy
switches to recommending other suboptimal items at some point in time. After some time, LSBGreedy swiches back
to recommending item A

⇤, and then it oscillates between optimal and suboptimal items similar to the experiment
in Section 8.3. Therefore, LSBGreedy has a linear regret and performs poorly.

C.4.2 Experiments on MovieLens

We experimented the Movielens dataset on a similar setting as described in Section 8.5 to compare dcmLSB and
LSBGreedy. We work with d = 10 and K = 8. The regret is shown in Figure 6(b). We observe that the regret of
dcmLSB is sublinear and much lower than LSBGreedy. This shows that the current diversity-driven online approaches
are insufficient to handle cases with partial-feedback albeit in the form of multiple-clicks.

0 50000 100000 150000 200000
6teS n

0
50
100
150
200
250
300
350

5e
gr
et

|E|   61, K   8, G   5

DC0L6B
L6BGreeGy

0 5000 10000 15000 20000
SteS n

0

50

100

150

200

250

5e
gr
et

|E|   1000, K   8, G   10

DC0LSB
LSBGreeGy

Figure 6: Regret on synthetic (left) and Movielens (right) dataset in the special case of DCM model.
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