
SUPPLEMENTARY MATERIAL
Active Multi-Information Source Bayesian Quadrature

A MULTI-SOURCE MODELS
AND MULTI-OUTPUT GPS

We have seen in Section 2.2 that linear multi-source
models can be phrased in terms of multi-output gps.
Typically, the goal of multi-output gps is to model
a vector-valued function and observations come as a
vector y = f(x) + ε, where y ∈ RL. In multi-source
models, we wish to observe only elements of f , i.e.,
yl = fl(x) + εl. These observations can be written as
projections of the vector-valued observations,

yl = hᵀ
l y (11)

where hl denotes a vector with a 1 in the lth coordi-
nate and zero elsewhere. Let Y ∈ RNL denote the
vector of N stacked vector-valued noisy observations
[y1, . . . ,yN ]. Then the correspondingN observations
of elements ` = [l1 . . . lN ]ᵀ is

y` =

hᵀ
l1
· · · 0

...
. . .

...
0 · · · hᵀ

lN

Y =: HᵀY, (12)

where H is a sparse NL×N matrix. Note the delicate
notational difference between the N observations of
single elements of f , y` ∈ RN , and a single evaluation
of the vector-valued function y ∈ RL. The covariance
matrix between all of the observations is
cov[y`, y`] =

Hᵀ


K(x1, x1) · · · K(x1, xN )

...
. . .

...
K(xN , x1) · · · K(xN , xN )


︸ ︷︷ ︸

K(X,X)

+Σ � 1N×N

H

(13)
where Σ = diag(σ2

1 , . . . , σ
2
L) ∈ RL×L and 1N×N is

an N × N matrix with every element a 1. Also,
K(X,X) ∈ RNL×NL. With the following mappings,
we arrive at the multi-source notation introduced in
Section 2;

HᵀKXXH = K``(X,X);
Hᵀ(Σ � 1N×N )H = Σ`;

HY = y`; etc.
(14)

Hence, the notational detour over vector-valued obser-
vations Y is not required and evaluations of individual
sources can be incorporated easily in the multi-source
model. From the mappings Eq. (14) follow the poste-
rior mean and covariance of the multi-source model
Eq. (2).

B ADDITIONAL PLOTS FOR
SECTION 4.1

Section 4.1 showed two examples to demonstrate
the behavior of our derived acquisition functions.
All relevant details and cross-references are in the
captions.
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Figure 7: mi, ivr, and ip acquisitions for the top row
of Figure 3. mi and ivr do not differ a lot, i.e., the
correlation ρ is rarely large enough for mi to leave
the linear regime. mi puts slightly more emphasis
on the primary source where x? is close to 1. This
indicates that the correlation between Z and y? quite
large there. The bottom plot displays the pathology
of ip, where the acquisition for the secondary source
essentially follows the inverse cost c2.
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Figure 8: The cost used for the experiment in Fig-
ure 3.
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Figure 9: A later state for the experiment shown
in Figure 3. Note the absence of f2 evaluations for
small x where c1 and c2 are similar.
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Figure 10: Final state of the gp for the second ex-
periment explained in Section 4.1 and shown in Fig-
ure 4 (‘wigglified Forrester’). Note the increasing
density of evalutions of the secondary source where
the cost is minimal, and the lack of f2 queries where
c1(x) ' c2(x). The leftmost evaluation is at the pri-
mary source. See Figure 4 for the cost functions. In
this experiment, the ip acquisition exclusively evalu-
ates at the location of the minimum of the secondary
cost function and is thus stuck.

C DETAILS FOR THE
INFECTIONS MODEL

C.1 THE SIR MODEL AND
EXTENSIONS

When the population size is large, the sir
(susceptible, infected, recovered) model can be de-

scribed by the following system of ordinary differen-
tial equations,

dNS
d t = −aNSNI

N
,

dNI
d t = a

NSNI
N

− bNI ,

dNR
d t = bNI ,

(15)

in which a is the rate of infection and b the rate of
recovery. It is the most basic of a series of compart-
mental epidemiological models. Various extensions
exist to accommodate additional effects e.g., vital
dynamics, immunity, incubation time (cf. e.g., Het-
hcote, 2000). Some of these extensions serve as a
general model refinement, others are relevant to spe-
cific diseases.

Statistical properties, however, are not captured by
the description through odes and call for a stochas-
tic model. The Gillespie algorithm (Gillespie, 1976;
Gillespie, 1977) enables discrete and stochastic simu-
lations in which every trajectory is an exact sample
of the solution of the ‘master equation’ that defines a
probability distribution over solutions to a stochastic
equation. In the sir model, the rate constants are
time-independent and thus, the underlying process
is Markovian in which the event times are Poisson
distributed. Here, an event denotes the transition
of one individual from one compartment to another
(e.g., NI → NR).

C.2 EXPERIMENTAL SETUP

For the ams-bq experiment, we assume that we know
the recovery rate b, but we are uncertain about the
infection rate a. Therefore, we rescale the odes and
place a shifted gamma prior on a/b that starts at
a/b = 1 and has shape and scale parameters 5 and
4 respectively. With this prior we encode our belief
that the infection rate is significantly larger than
the recovery rate so an offset of the epidemic is very
likely. Also, we set the population size to N = 100 to
be well below the thermodynamic limit and set one
individual to be infected initially. We are interested
in the expected maximum number Ea[maxtNI(t)] of
simultaneously infected individuals and the time this
maximum occurs Ea[arg maxtNI(t)], which might
be relevant for vaccination planning. Querying the
primary source f1 for the quantities of interest as
a function of a requires numerous realizations of a
stochastic four-compartments epidemic model using
the Gillespie algorithm (Gillespie, 1976; Gillespie,
1977); in addition to the base model (sir), we include
the state ‘exposed’, in which individuals are infected
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Figure 11: Demonstration of the sir and seir models for a/b = 10. See text for details.

but not yet infectious. The modified system of odes
that also account for assumed known incubation time
γ−1 are

dNS
d t = −aNSNI

N
,

dNE
d t = a

NSNI
N

− γNE ,

dNI
d t = γNE − bNI ,

dNR
d t = bNI ,

(16)

where we set γ = 10b. We absorb the prior on a/b in
the black-box function for all methods.

Figure 11 shows the sir and seir models (Eq. (15)
and (16), respectively) with 10 stochastic trajectories
(thin lines). The solid lines indicate the mean of 100
of these stochastic realizations, and the dashed lines
show the solution of the odes, in both cases for the
sir model. We also use the sir model for solving the
odes even though the stochastic model simulates the
seir model. The purpose of this is to mimic a case
where secondary sources are simplified simulations
in that minor components are deprecated. In the
stochastic case, there is not always an outbreak of
the disease, i.e., the initially infected individuum
recovers before infecting someone else. This causes
the average NR to level off significantly below 1. For
the integrals, only outbreaks are taken into account.
The corresponding integrands for the quantities of
interest are shown in Figure 12.
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Figure 12: Integrands used for the epidemiological
model. Solid lines denote the primary source (i.e.,
stochastic simulations), dashed lines indicate the
secondary source (solving the system of odes). It is
apparent from the function that simply integrating
the cheap source introduces a significant bias.

D BIVARIATE LINEAR
COMBINATION OF
GAUSSIANS

We construct an integrand (primary source) f1 in
the 2D-domain [−3, 3]2 as a linear combination of
K = 20 normalized Gaussian basis functions

Φ1
k(x) = (2π|A1

k|)−
1
2 e−

1
2 (x−m1

k)ᵀ(A1
k)−1(x−m1

k), (17)

i.e., f1(x) =
∑K
k=1 z

1
kΦ1

k(x). For this, we sample
K = 20 means uniformly m1

k ∼ Uniform[−3, 3]2
in the 2D domain. We then sample corresponding
covariance matices A1

k according to u1
k ∼ N (0, I),

κ1
k ∼ Uniform[0, 1]2, and A1

k := diag(κ1
k) + u1

k(u1
k)ᵀ.

The scalar weights z1
k are sampled from a standard

Gaussian z1
k ∼ N (0, 1) and can be negative. Thus f1

is not a probability density function but rather a lin-
ear combination of Gaussians with varying location,
shape, and weight. We then construct secondary
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Figure 13: Integrands used for the bivariate linear
combination of Gaussians. From left to right: pri-
mary source f1 and secondary sources f2 and f3.
Initial evaluations marked as red dots.

sources f2 and f3 consecutively by adding uniform
noise to the means, and additive uniform noise to the
diagonal of the covariance matrices. Thus, with each
additional source, each of the K means get randomly
but consecutively shifted up and right, and the basis
functions Φik(x), i = 2, 3 randomly become wider and
flatter. Additionally we consecutively add Gaussian
random noise to the weights zk which ensures that
the true integrals of the secondary sources differ from
the integral of the primary source. All sources are
depicted in Figure 13; the primary source f1 on the
left, and secondary sources f2 and f3 in the middle
and right respectively. The cost for evaluating the
primary source is 1 everywhere, the cost of evaluating
f2 and f3 are 5% of the primary cost each.

The priors on the kernel lengthscale and coregionaliza-
tion matrix B are set analogously to the other exper-
iments already described in Section 4.1. ams-bq is
initialized with one evaluation of the primary source
and two evaluations each of the secondary sources
which amounts to a total initial cost of 1.2 (initial
evaluations shown as red dots in Figure 13). Vanilla-
bq is initialized with three evaluations which are
needed to get an initial guess for its hyperparameters
(initial cost=3). The result is shown in Figure 14
which plots relative error of the integral estimate
versus the budget spent as well as two standard devi-
ations of the relative error as returned by the model.
It is apparent that ams-bq finds a good solution
faster than vanilla-bq.

Figure 15 illustrates the sequence of sources choses by
ams-bq. Secondary source f2 is chosen more often
than secondary source f3 at equal evolution cost
of 0.05. This is intuitive since f2, by construction,
provides more information about f1 than f3, but both
secondary sources shrink the budget equally when
queried. The percentage of number of evaluations
for each source after spending a total budget of 50 is
15%, 57%, 28% for sources f1, f2, f3 respectively.
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Figure 14: Relative error vs. budget spent for vanilla-
bq and ams-bq.
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Figure 15: Evaluation sequence of primary and sec-
ondary sources in 2D experiment (250 evaluations
shown).



Variable Shape Description
L number of sources, indexed by l where l = 1 is the primary source
D dimension of the input space, indexed by d
N number of source-input-evaluation triplets, indexed by n
N? number of potential new source-input-evaluation triplets
x D × 1 input location
f(x) L× 1 [f1(x) . . . fL(x)]ᵀ, where fl(x) is the lth source
〈fl〉

∫
Ω fl(x) dπ(x) integral of the lth source

π(x) integration measure on Ω
Ω domain that is integrated over, Ω ⊆ RD
Z random variable for integral of interest Z ∼ N (E[Z | D],V[Z | D])

(ln, xn) (1, D × 1) nth source-location pair where f is evaluated
(`,X) (N × 1, N ×D) N source-location-pairs ([l1 . . . lN ]ᵀ, [x1 . . . xN ]ᵀ)

f` N × 1 [fl1(x1) . . . flN (xN )]ᵀ noise-free function evaluations
y` N × 1 [fl1(x1) + εl1 . . . flN (xN ) + εlN ]ᵀ noisy function evaluations
y L× 1 y = f(x) + ε simultaneous evaluation of all sources
ε L× 1 ε = [ε1 . . . εL] noise vector, εl ∼ N (0, σ2

l )
Σ` N ×N = diag(σ2

l1
, . . . , σ2

lN
) diagonal noise matrix with noise per level σ2

ln
D N collected data triplets {(ln, xn, fln(xn))}Nn=1
K L× L K = cov[f ,f ] matrix-valued covariance matrix

kll′(x, x′) covariance function cov[fl(x), fl′(x′)]
kl`(x,X) 1× L vector-valued covariance cov[fl(x), f`(X)]

K``(X,X) N ×N cov[f`(X), f`(X)]
G`(X) N ×N Gram matrix K``(X,X) + Σ`

m(x) L× 1 gp prior mean for multi-output gp
m`(X) N × 1 prior mean evaluated at source-location pairs (`,X)
ml | D posterior mean at source l
kll′ | D posterior covariance of sources l, l′
〈ml〉

∫
Ωml(x) dπ(x) integrated prior mean

〈k`l(X, ·)〉 1× L kernel mean of lth source at source-location pairs (`,X)
〈〈kll′〉〉

∫∫
Ω kll′(x, x′) dπ(x) dπ(x′) initial error

B L× L coregionalization matrix for the kernel used in the icm
κ(x, x′) kernel encoding purely spatial correlation in the icm

(`?,X?, y`?
) (N? × 1, N? ×D,N? × 1) potential new source-location-evaluation triplets

c`?
(X?) cost of evaluating at (`?,X?); c`?

(X?) =
∑N?

i=1 cli(xi)
V`?|D(X?) N? ×N? = K`?`?|D(X?,X?) + Σ`?

; in the myopic case denoted as vl?|D(x?)
ρ2

1`?|D(X?) scalar correlation function for (`?,X?), defined in Eq. (6)
α`?

(X?) non-myopic acquisition function, αl?(x?) in the myopic case

Table 1: Summary of the notation used. Generally, vector-valued quantities are denoted by lower case bold
letters and matrices are upper case bold letters. Normal font denotes scalars.


