
Variational Sparse Coding - Supplementary material

A DETAILS OF THE VSC MODEL

We describe here the details of the VSC model and the architecture of all the neural networks the VSC model is
constructed with.

A.1 LIKELIHOOD FUNCTION

The likelihood function p(x|zi) is composed of a neural network which takes as input a latent variable zi ∈ RJ×1
and outputs the mean µi ∈ RM×1 and log variance log(σ2

i ) ∈ RM×1. The log likelihood of a sample xi is then
computed evaluating the log probability density assigned to xi by a Gaussian having mean µi and standard deviation
σi. In our experiments we use a one hidden layer fully connected neural network for all experiments. The hidden layer
between the latent space and the observation space was chosen to have between 1, 000 and 3, 000 units, depending on
the experimental settings.

A.2 RECOGNITION MODEL

The recognition model p(z|xi) is composed of a neural network which takes as input an observation xi ∈ RM×1 and
outputs the mean µz,i ∈ RJ×1, the log variance log(σ2

z,i) ∈ RJ×1 and the log Spike probabilities vector log(γi) ∈
RJ×1. The elements of γi need to be constrained between 0 and 1, therefore, other than using log(γi) as output, which
ensures γi > 0, we employ a ReLU non-linearity at this output of the neural network as follows

log(γi) = −ReLU(−vout,i),

where vout,i is output to the same standard neural network that outputs µz,i and log(σ2
z,i). This ensures that γi < 1.

Samples in the latent space zi,l can then be drawn as detailed in supplementary B.1. The structure of the neural network
is analogous to that of the likelihood function, with one hidden layer of 1, 000 to 3, 000 units between the observation
space and the latent space.

A.3 SELECTION FUNCTION

The selection function Cω(xi) is composed of a one layer neural network which takes observations xi as input and
returns a vector with the dimensionaliy equal to the number of possible pseudo-inputs u. The output is normalised to
unitary sum, then, to encourage the selection of a single pseudo-input while retaining differentiability, the resulting
vector is passed through a scaled and displaced Sigmoid function as follows

u∗ = S(a(u− b)),

where u∗ is the output selection vector, a is chosen to be equal to 60 in our experiments and b is chosen to be 0.5.
The ELBO KL divergence for a given input xi is then computed as a weighted sum of the KL divergences of the
recognition model with each pseudo-input encoding, where the weights are the elements of u∗.

B SPIKE AND SLAB DRAWS REPARAMETRISATION

B.1 REPARAMETRISATION OF THE DRAWS

The draws zi,l are computed as follows

zi,l = T (ηl − 1 + γi)� (µz,i + σz,i � εl),



where � indicates an element wise product. The function T (yi,l) is in principle a step function centered at zero,
however, in order to maintain differentiability, we employ a scaled Sigmoid function T (y) = S(cy). In the limit
c → ∞, S(cy) tends to the true binary mapping. In practice, the value of c needs to be small enough to provide
stability of the gradient ascent. In our implementation we employ a warm-up strategy to gradually increase the value
of c during training.

B.2 SPIKE VARIABLE REPARAMETRISATION

We report here a detailed description of the Spike variable reparametrisation, similar to the relaxation of discrete
variables in Maddison et al. (2017) and Rolfe (2017). Our aim is to find a function f(ηl,j , γi,j) such that a binary
variable wi,l,j ∼ p(wi,l,j) drawn from the discrete distribution p(wi,l,j = 1) = γi,j , p(wi,l,j = 0) = (1− γi,j) can be
expressed as wi,l,j = f(ηl,j , γl,j), where ηl,j is some noise variable drawn from a distribution which does not depend
on γi,j .

The function of choice f(ηl,j , γi,j) should ideally only take values 1 and 0, as these are the only values of wi,l,j
permitted by p(wi,l,j). Furthermore, the probabilities of wi,l,j being 1 or 0 are linear in γi,j , therefore the distribution
of the noise variable ηi,j should have evenly distributed mass. The simplest function which satisfy these conditions
and yields our reparametrisation is then a step function f(ηl,j , γi,j) = T (ηl,j − p(wi,l,j = 0)) = T (ηl,j − 1 + γi,j)
where ηl,j is uniformly distributed and T (y) is the following step function

T (y) =

{
1, if y ≥ 0.

0, if y < 0.

An illustration of this reparametrisation is shown in figure 8.

P(ηl,j)

P(w=0) = (1-γi,j)P(w=1) = 1 P(w=1) = γi,j

(1-γi,j)

Figure 8: Schematic representation of the reparametrisation of the Spike variable. The variable yi,l,j is drawn in
the range covered by the grey square with probability proportional to its height. On the left, for a spike probability
γi,j = 1, the variable yi,l,j is drawn to always be greater than zero and the Spike variable wi,l,j is always one. On the
right, for an arbitrary γi,j , the probability density of yi,l,j is displaced to the left by 1− γi,j and yi,l,j has probability
γi,j of being ≥ 0, in which case wi,l,j is one, and probability 1− γi,j of being < 0, in which case wi,l,j is zero.

The function T (yi,l,j) is not differentiable, therefore we approximate it with a scaled Sigmoid S(cyi,l,j), where c is a
real positive constant. In our implementation, we gradually increase c from 50 to 200 during training to achieve good
approximations without making convergence unstable.



C DERIVATION OF THE SPIKE AND SLAB KL DIVERGENCE

We report here a detailed derivation of the KL divergence between two Spike and Slab distributions shown in equation
6. The KL divergence can be separated into four cross entropy components in each latent dimension

DKL(qφ(z|xi)||qφ(z|xu∗)) =

∫
qφ(z|xi)(log qφ(z|xi)− log qφ(z|xu∗))dz

=
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j

[
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]
.

1 and 3 are of a similar form; the cross entropy between a Gaussian and a discrete mixture distributions. These
components reduce to the corresponding Gaussian-Gaussian entropy terms, as the point mass contributions vanish.
In fact, for any finite density distributions f(zj) and g(zj), the point mass contribution to the cross entropy between
f(zj) and a discrete mixture h(zj) = αg(zj) + (1 − α)δ(zj − c) is infinitesimal. The proof is as follows; the cross
entropy between the functions f(zj) and h(zj) is∫

f(zj) log [αg(zj) + (1− α)δ(zj − c)] dzj .

We can split this integral in two components over two different domains, the first in the region where zj 6= c and the
second in the region where zj = c. By using a Dirac Delta function, the first component can be expressed as follows∫

zj 6=c
f(zj) log [αg(zj) + (1− α)δ(zj − c)] dzj =∫

zj 6=c
f(zj) log [αg(zj)] dzj =∫ (

1− δ(zj − c)
δ(0)

)
f(zj) log [αg(zj)] dzj ,

where from the first to the second line we can ignore the component containing δ(zj − c), as the domain does not
include zj = c. We then use a coefficient which is zero at zj = c and one otherwise to write the integral over the
whole domain of zj . Similarly, we can write the term in the domain zj = c as∫

zj=c

f(zj) log [αg(zj) + (1− α)δ(zj − c)] dzj =∫
δ(zj − c)
δ(0)

f(zj) log [αg(zj) + (1− α)δ(zj − c)] dzj ,

Now combining the two terms we obtain



∫
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Rearranging to gather the terms in δ(zj − c)/δ(0) we get
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Simplifying the argument of the second logarithm and solving the second integral we get
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u
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),

where the second term tends to zero, leaving the cross entropy between f(zj) and αg(zj). Applying this result to 1

and 3 we obtain the following
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(8)
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2 and 4 take the form of the cross entropy between a Dirac Delta function and a discrete mixture distribution. In
this case, instead, the continuous density contributions vanish:
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Substituting the results of equations 8, 9 and 10 into equation 8, we obtain the KL divergence between two general
Spike and Slab distributions
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This prior term presents two components. The first is the negative KL divergence between the distributions of the Slab
variables, multiplied by the probability of zi,j being non-zero γi,j . The second term is the negative KL divergence
between the distributions of the Spike variables. We find of particular interest that by computing the KL divergence
analytically we recover a linear combination of the Spike and Slab components divergences.

D DETAILS OF THE EXPERIMENTS

D.1 ELBO EVALUATION EXPERIMENTAL DETAILS

For the ELBO evaluation experiments, we train identical VSC models for the Fashion-MNIST and UCI-HAR datasets,
with the exception of the first layer in the recognition model and the last layer in the likelihood function, as the two
data sets have different dimensionality (784 and 561 respectively). The likelihood function takes as input of a fully
connected network a latent variable zi and maps it to a first deterministic layer of 3, 000 dimensions. Two separate
fully connected network then map this layer to the observation space mean µ and log variance log(σ2) respectively.
The recognition model takes as input of a fully connected network an observation xi and maps it to a first deterministic
layer of 3, 000 dimensions. Three separate fully connected networks then map this layer to the latent space mean µz,i,
log variance log(σ2

z,i) and spike probabilities γi respectively. The selection function u∗ = Cω(x) is composed of a
single fully connected layer (linear matrix and ReLu non-linearity) taking as input observations xi and outputting a
selection vector, as described in supplementary A.3. The total number of pseudo-inputs was set to 20.

The models were then trained with the ADAM optimiser in Tensorflow, with a batch size of 500. The spike pre-
training, carried out as described in section 3.4, was performed over 15, 000 iterations with λ = 0. λ was then linearly
increased between 0 and 1 over 5, 000 iterations. During this phase, the initial training rate was set to 10−3. The model
is then trained further for 50, 000 iterations and an initial training rate of 10−4.

The β-VAE was trained with as an identical structure as possible; The likelihood function was identical to that of
the VSC and the recognition model was given the same structure, a side of the fact that there is no mapping to a
Spike variable. The β-VAE was trained for 70, 000 iterations with the same batch size and an initial training rate of



10−4. Each data point in figure 1 is obtained by performing the same experiment five times with different random
initialisation and seeds. the points are obtained as the means and the error bars as the standard deviations of the results.

D.2 FEATURES DISENTANGLEMENT EXPERIMENTAL DETAILS

For the feature disentanglement experiments using the Smiley sparse data set we use a VSC and β-VAE identical
to those used in the Fashion-MNIST ELBO evaluation, as the two types of data have the same dimensionality. The
VSC model is trained with the ADAM optimiser over a total of 200, 000 iterations with a batch size of 500. 50, 000
iterations are dedicated to pre-training, with λ = 0, then λ is linearly increased to 1 over 10, 000 iterations and the
model is then trained with λ = 1 for the remaining training duration. During the first pre-training 60, 000 iterations,
the optimiser is given a step size of 5× 10−4, which is then decreased to 5× 10−5 for the rest of training. The β-VAE
was given analogous structure and was trained over 200, 000 iterations and a step size of 5 × 10−5. The value of β
was cross validated between 1 and 50 at increasing steps between 1 and 8 and the model giving the best correlation
contrast in the matrices shown was chosen.

The results obtained with the CelebA data set were obtained with the same VSC architecture described above, with
the only differences that the observation space is of 3072 dimensions (the CelebA examples were down-sampled to
32 × 32) and, due to this higher dimensionality, the latent space was given 300 dimensions. The model was trained
with the same training parameters described above. However, the total number of iterations was extended to 500, 000,
maintaining the same Spike pre-training procedure.

D.3 FEATURES ACTIVATION EXPERIMENTAL DETAIL

The matrices of figure 6 were obtained from the exact models trained for the ELBO evaluations at a prior sparsity
of α = 0.01. The images shown for the examples of conditional sampling in figure 6 and controlled continuous and
discrete interpolation of figure 7 are also generated from the same VSC model, trained with the Fashion-MNIST data
set.

E SMILEY DATA SET DETAILS

The Smiley sparse data set is composed of 32×32 binary images of automatically generated smileys. the base of every
example is a centered filled circle 10 pixels in radius. Each example is then generated with a sparse superposition of 4
attributes, each defined by a variable number of features. The attribute are assigned a fixed probability of being present
or absent in each example. The attributes are the following:

• Eyes - The eyes are added as two symmetric circular holes in the circular head and are determined by 3 variables:
vertical position, horizontal separation and radius. If eyes are active, each of these features is drawn from a
normal distribution with standard deviation of 0.5 pixels.

• Mouth - The mouth is added as a central horizontal rectangular hole and two smaller horizontal rectangular holes
at its side at the bottom of the head. It is determined by 5 variables: vertical position, horizontal position, vertical
width, horizontal length and vertical position of side holes. If mouth is active, each of these features is drawn
from a normal distribution with standard deviation of 0.5 pixels.

• Hat - The hat is added as a larger rectangle above the smiley’s head and a smaller rectangle above it. It is
determined by 6 variables: vertical and horizontal position, height and width of larger rectangle, height and width
of smaller rectangle. If hat is active, features are drawn from normal distributions with the following standard
deviations: 0.5 pixels for the two position variables, 1 pixels for the vertical position of the larger rectangle, 1.5
pixels for the horizontal position of the larger rectangle, 0.5 pixels for the vertical position of the smaller rectangle
and 1 pixels for the horizontal position of the smaller rectangle.

• Bowtie - The Bowtie is inserted by adding an image of two triangles connected at a corner at the bottom of
the smiley’s head. It is determined by 4 variables: vertical position, horizontal position, vertical width and
horizontal length. If mouth is active, these features are drawn from normal distributions with the following
standard deviations: 0.5 pixels for vertical position, 0.25 pixels for horizontal position, 1 pixels for height, and
1.5 pixels for length.



All of the aforementioned standard deviations and other parameters can be altered in the generating code to make dif-
ferent variations of the smiley sparse data set. THe dataset used in our experiments was generated with the parameters
detailed above and an attribute presence probability of 0.5.

F ADDITIONAL FEATURE DISENTANGLEMENT RESULTS

We show in figure 9 absolute value of correlation matrices analogous to those shown in figure 3, but for β-VAE,
β-TCVAE, and VSC for different choices of latent space dimensionality dz . As the number of latent dimensions in-
creases, the correlation between ground-truth features and latent variables recovered with the β-VAE and the β-TCVAE
decreases, as these unsupervised disentanglement models force to disperse the 18 original generating variables into an
increasingly larger number of factors of variation. Conversely, the VSC model maintains good feature disentanglement
regardless of latent dimensionality, as the correlation contrast remails strong in all experiments. Furthermore, VSC
consistently activates a number of variables which is close to the true number of sources of variation, both in total and
for each attribute (zero column indicate latent variables that were never used), as the correlation matrices all present a
close to square matrix with block diagonal structure.
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Figure 9: Absolute value of correlation between source features and recovered latent variables with the Smiley sparse
data set for multiple choices of latent space dimensionality. While the β-VAE and the β-TCVAE gradually loses
their feature disentanglement properties as the number of dimensions is made increasingly different from the number
of true sources of variation, the VSC maintains strong disentanglement properties, independently of the choice of
dimensionality.
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