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Abstract

Proximal policy optimization (PPO) is one of
the most successful deep reinforcement learn-
ing methods, achieving state-of-the-art per-
formance across a wide range of challenging
tasks. However, its optimization behavior is
still far from being fully understood. In this
paper, we show that PPO could neither strictly
restrict the probability ratio as it attempts to
do nor enforce a well-defined trust region con-
straint, which means that it may still suffer
from the risk of performance instability. To ad-
dress this issue, we present an enhanced PPO
method, named Trust Region-based PPO with
Rollback (TR-PPO-RB). Two critical improve-
ments are made in our method: 1) it adopts
a new clipping function to support a rollback
behavior to restrict the ratio between the new
policy and the old one; 2) the triggering condi-
tion for clipping is replaced with a trust region-
based one, which is theoretically justified ac-
cording to the trust region theorem. It seems,
by adhering more truly to the “proximal” prop-
erty − restricting the policy within the trust re-
gion, the new algorithm improves the original
PPO on both stability and sample efficiency.

1 INTRODUCTION

Deep model-free reinforcement learning has achieved
great successes in recent years, notably in video games
(Mnih et al., 2015), board games (Silver et al., 2017),
robotics (Levine et al., 2016), and challenging control
tasks (Schulman et al., 2016; Duan et al., 2016). Pol-
icy gradient (PG) methods are useful model-free policy
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search algorithms, updating the policy with an estimator
of the gradient of the expected return (Peters & Schaal,
2008). One major challenge of PG-based methods is to
estimate the right step size for the policy updating, and
an improper step size may result in severe policy degra-
dation due to the fact that the input data strongly depends
on the current policy (Kakade & Langford, 2002; Schul-
man et al., 2015). For this reason, the trade-off between
learning stability and learning speed is an essential issue
to be considered for a PG method.

The well-known trust region policy optimization (TRPO)
method addressed this problem by imposing onto the ob-
jective function a trust region constraint so as to control
the KL divergence between the old policy and the new
one (Schulman et al., 2015). This can be theoretically
justified by showing that optimizing the policy within
the trust region leads to guaranteed monotonic perfor-
mance improvement. However, the complicated second-
order optimization involved in TRPO makes it compu-
tationally inefficient and difficult to scale up for large
scale problems when extending to complex network ar-
chitectures. Proximal Policy Optimization (PPO) signif-
icantly reduces the complexity by adopting a clipping
mechanism so as to avoid imposing the hard constraint
completely, allowing it to use a first-order optimizer like
the Gradient Descent method to optimize the objective
(Schulman et al., 2017). As for the mechanism for deal-
ing with the learning stability issue, in contrast with the
trust region method of TRPO, PPO tries to remove the
incentive for pushing the policy away from the old one
when the probability ratio between them is out of a clip-
ping range. PPO is proven to be very effective in dealing
with a wide range of challenging tasks, while being sim-
ple to implement and tune.

However, despite its success, the actual optimization be-
havior of PPO is less studied, highlighting the need to
study the proximal property of PPO. Some researchers
have raised concerns about whether PPO could restrict
the probability ratio as it attempts to do (Wang et al.,



2019; Ilyas et al., 2018), and since there exists an obvi-
ous gap between the heuristic probability ratio constraint
and the theoretically-justified trust region constraint, it is
natural to ask whether PPO enforces a trust region-like
constraint as well to ensure its stability in learning?

In this paper, we formally address both the above ques-
tions and give negative answers to both of them. In par-
ticular, we found that PPO could neither strictly restrict
the probability ratio nor enforce a trust region constraint.
The former issue is mainly caused by the fact that PPO
could not entirely remove the incentive for pushing the
policy away, while the latter is mainly due to the inherent
difference between the two types of constraints adopted
by PPO and TRPO respectively.

Inspired by the insights above, we propose an enhanced
PPO method, named Trust Region-based PPO with Roll-
back (TR-PPO-RB). In particular, we apply a nega-
tive incentive to prevent the policy from being pushed
away during training, which we called a rollback op-
eration. Furthermore, we replace the triggering condi-
tion for clipping with a trust region-based one, which
is theoretically justified according to the trust region
theorem that optimizing the policy within the trust re-
gion lead to guaranteed monotonic improvement (Schul-
man et al., 2015). TR-PPO-RB actually combines the
strengths of TRPO and PPO − it is theoretically jus-
tified and is simple to implement with first-order opti-
mization. Extensive results on several benchmark tasks
show that the proposed methods significantly improve
both the policy performance and the sample efficiency.
Source code is available at https://github.com/
wangyuhuix/TrulyPPO.

2 RELATED WORK

Many researchers have extensively studied different ap-
proach to constrain policy updating in recent years. The
natural policy gradient (NPG) (Kakade, 2001) improves
REINFORCE by computing an ascent direction that ap-
proximately ensures a small change in the policy dis-
tribution. Relative entropy policy search (REPS) (Pe-
ters et al., 2010) constrains the state-action marginals,
limits the loss of information per iteration and aims to
ensure a smooth learning progress. While this algo-
rithm requires a costly nonlinear optimization in the in-
ner loop, which is computationally expansive. TRPO is
derived from the conservative policy iteration (Kakade &
Langford, 2002), in which the performance improvement
lower bound has been first introduced.

There has been a focus on the problem of constraining
policy update, and attention is being paid to TRPO and

PPO in recent years. Wu et al. (2017) proposed an actor
critic method which uses Kronecker-factor trust regions
(ACKTR). Hmlinen et al. (2018) proposed a method to
improve exploration behavior with evolution strategies.
Chen et al. (2018) presented a method adaptively adjusts
the scale of policy gradient according to the significance
of state-action.

Several studies focus on investigating the clipping mech-
anism of PPO. Wang et al. (2019) found that the ratio-
based clipping of PPO could lead to limited sample effi-
ciency when the policy is initialized from a bad solution.
To address this problem, the clipping ranges are adap-
tively adjusted guided by a trust region criterion. This
paper also works on a trust region criterion, but it is used
as a triggering condition for clipping, which is much
simpler to implement. Ilyas et al. (2018) performed a
fine-grained examination and found that the PPO’s per-
formance depends heavily on optimization tricks but not
the core clipping mechanism. However, as we found, al-
though the clipping mechanism could not strictly restrict
the policy, it does exert an important effect in restrict-
ing the policy and maintain stability. We provide detail
discussion in our experiments.

3 PRELIMINARIES

A Markov Decision Processes (MDP) is described by the
tuple (S,A, T , c, ρ1, γ). S andA are the state space and
action space; T : S × A × S → R is the transition
probability distribution; c : S × A → R is the reward
function; ρ1 is the distribution of the initial state s1, and
γ ∈ (0, 1) is the discount factor. The performance of a
policy π is defined as η(π) = Es∼ρπ,a∼π [c(s, a)] where
ρπ(s) = (1−γ)

∑∞
t=1 γ

t−1ρπt (s), ρπt is the density func-
tion of state at time t.

Policy gradients methods (Sutton et al., 1999) update the
policy by the following surrogate performance objective,

Lπold
(π) = Es,a [rπ(s, a)Aπold(s, a)] + η(πold) (1)

where π(a|s)/πold(a|s) is the probability ratio between
the new policy π and the old policy πold, Aπold(s, a) =
E[Rγt |st = s, at = a;πold] − E[Rγt |st = s;πold] is the
advantage value function of the old policy πold. Schul-
man et al. (2015) derived the following performance
bound:
Theorem 1. Let

C = max
s,a
|Aπold (s, a)| 4γ/(1− γ)

2, Ds
KL (πold, π) ,

DKL (πold(·|s)||π(·|s)), Mπold
(π) = Lπold

(π) −
C maxs∈S D

s
KL (πold, π) . We have

η(π) ≥Mπold
(π), η(πold) = Mπold

(πold). (2)



This theorem implies that maximizing Mπold
(π) guaran-

tee non-decreasing of the performance of the new policy
π. TRPO imposed a constraint on the KL divergence:

max
π
Lπold

(π)

s.t. max
s∈S

Ds
KL (πold, π) ≤ δ

(3a)

(3b)

Constraint (3b) is called the trust region-based con-
straint, which is a constraint on the KL divergence be-
tween the old policy and the new one.

To faithfully investigate how the algorithms work in
practice, we consider a parametrized policy. In practical
Deep RL algorithms, the policy are usually parametrized
by Deep Neural Networks (DNNs). For discrete action
space tasks where |A|= D, the policy is parametrized
by πθ(st) = fpθ (st). where fpθ is the DNN outputting
a vector which represents a D-dimensional discrete dis-
tribution. For continuous action space tasks, it is stan-
dard to represent the policy by a Gaussian policy, i.e.,
πθ(a|st) = N (a|fµθ (st), f

Σ
θ (st)) (Williams, 1992; Mnih

et al., 2016), where fµθ and fΣ
θ are the DNNs which

output the mean and covariance matrix of the Gaussian
distribution. For simplicity, we will use the notation of
θ rather than π in the our paper, e.g., Ds

KL(θold, θ) ,
Ds

KL(πθold , πθ).

4 ANALYSIS OF THE “PROXI-
MAL” PROPERTY OF PPO

In this section, we will first give a brief review of PPO
and then investigate the “proximal” property of PPO. We
refer to “proximal” property as whether the algorithm
could restrict the policy difference, regarding the proba-
bility ratio or the KL divergence between the new policy
and the old one.

PPO employs a clipped surrogate objective to prevent the
new policy from straying away from the old one. The
clipped objective function of state-action (st, at) is

LCLIP
t (θ)

= min
(
rt(θ, θold)At,FCLIP (rt(θ, θold), ε)At

) (4)

where θ and θold are the parameters of the new
policy and the old one respectively; rt(θ, θold) ,
πθ(at|st)/πθold(at|st) is the probability ratio, we will
omit writing the parameter of the old policy θold ex-
plicitly; st ∼ ρπθold , at ∼ πθold(·|st) are the sampled
states and actions; At is the estimated advantage value of

Aπθold (st, at); The clipping functionFCLIP is defined as

FCLIP(rt(θ), ε) =


1− ε rt(θ) ≤ 1− ε
1 + ε rt(θ) ≥ 1 + ε

rt(θ) else

(5)

where (1−ε, 1+ε) is called the clipping range, 0 < ε < 1
is the parameter. The overall objective function is

LCLIP(θ) =
1

T

T∑
t=1

LCLIP
t (θ) (6)

To faithfully analyse how PPO works in practice, we as-
sume that si 6= sj for all i 6= j (1 ≤ i, j ≤ T ), since
we could hardly meet exactly the same states in finite tri-
als in large or continuous state space. This assumption
means that only one action is sampled on each sampled
states.

PPO restricts the policy by clipping the probability ratio
between the new policy and the old one. Recently, re-
searchers have raised concerns about whether this clip-
ping mechanism can really restrict the policy (Wang
et al., 2019; Ilyas et al., 2018). We investigate the fol-
lowing questions of PPO. The first one is that whether
PPO could bound the probability ratio as it attempts to
do. The second one is that whether PPO could enforce
a well-defined trust region constraint, which is primar-
ily concerned since that it is a theoretical indicator on
the performance guarantee (see eq. (2)) (Schulman et al.,
2015). We give an elaborate analysis of PPO to answer
these two questions.

Question 1. Could PPO bound the probability ratio
within the clipping range as it attempts to do?

In general, PPO could generate an effect of preventing
the probability ratio from exceeding the clipping range
too much, but it could not strictly bound the probability
ratio. To see this, LCLIP

t (θ) in eq. (4) can be rewritten
as:

LCLIP
t (θ) =


(1− ε)At

rt(θ) ≤ 1− ε
and At < 0

(1 + ε)At
rt(θ) ≥ 1 + ε
and At > 0

rt(θ)At otherwise

(7a)

(7b)

The case (7a) and (7b) are called the clipping condition.
As the equation implies, once rt(θ) is out of the clipping
range (with a certain condition of At), the gradient of
LCLIP
t (θ) w.r.t. θ will be zero. As a result, the incentive,

deriving from LCLIP
t (θ), for driving rt(θ) to go farther

beyond the clipping range is removed.

However, in practice the probability ratios are known to
be not bounded within the clipping range (Ilyas et al.,



2018). The probability ratios on some tasks could even
reach a value of 40, which is much larger than the upper
clipping range 1.2 (ε = 0.2, see our empirical results in
Section 6). One main factor for this problem is that the
clipping mechanism could not entirely remove incentive
deriving from the overall objectiveLCLIP(θ), which pos-
sibly push these out-of-the-range rt(θ) to go farther be-
yond the clipping range. We formally describe this claim
in following.
Theorem 2. Given θ0 that rt(θ0) satisfies the clipping
condition (either 7a or 7b). Let ∇LCLIP(θ0) denote the
gradient of LCLIP at θ0, and similarly∇rt(θ0). Let θ1 =
θ0 + β∇LCLIP(θ0), where β is the step size. If

〈∇LCLIP(θ0),∇rt(θ0)〉At > 0 (8)

then there exists some β̄ > 0 such that for any β ∈ (0, β̄),
we have

|rt(θ1)− 1| > |rt(θ0)− 1| > ε. (9)

We provide the proof in Appendix A. As this theorem
implies, even the probability ratio rt(θ0) is already out
of the clipping range, it could be driven to go farther be-
yond the range (see eq. (9)). The condition (8) requires
the gradient of the overall objective LCLIP(θ0) to be sim-
ilar in direction to that of rt(θ0)At. This condition possi-
bly happens due to the similar gradients of different sam-
ples or optimization tricks. For example, the Momentum
optimization methods preserve the gradients attained be-
fore, which could possibly make this situation happen.
Such condition occurs quite often in practice. We made
statistics over 1 million samples on benchmark tasks in
Section 6, and the condition occurs at a percentage from
25% to 45% across different tasks.

Question 2. Could PPO enforce a trust region con-
straint?

PPO does not explicitly attempt to impose a trust region
constraint, i.e., the KL divergence between the old pol-
icy and the new one. Nevertheless, Wang et al. (2019)
revealed that a different scale of the clipping range can
affect the scale of the KL divergence. As they stated,
under state-action (st, at), if the probability ratio rt(θ)
is not bounded, then neither could the corresponding
KL divergence Dst

KL(θold, θ) be bounded. Thus, together
with the previous conclusion in Question 1, we can know
that PPO could not bound KL divergence. In fact, even
the probability ratio rt(θ) is bounded, the corresponding
KL divergence Dst

KL(θold, θ) is not necessarily bounded.
Formally, we have the following theorem.

Theorem 3. Assume that for discrete action space
tasks where |A|≥ 3 and the policy is πθ(s) =
fpθ (s), we have {fpθ (st)|θ ∈ R} = {p|p ∈
R+D,

∑D
d p

(d) = 1}; for continuous action space tasks
where the policy is πθ(a|s) = N (a|fµθ (s), fΣ

θ (s)),
we have {(fµθ (st), f

Σ
θ (st))|θ ∈ R} = {(µ,Σ)|µ ∈

RD,Σ is a symmetric semidefinite D × D matrix}. Let
Θ = {θ|1 − ε ≤ rt(θ) ≤ 1 + ε}. We have
supθ∈ΘD

st
KL(θold, θ) = +∞ for both discrete and con-

tinuous action space tasks.

To attain an intuition on how this theorem holds, we
plot the sublevel sets of rt(θ) and the level sets of
Dst

KL(θold, θ) for the continuous and discrete action
space tasks respectively. As Fig. 1 illustrates, the KL
divergences (solid lines) within the sublevel sets of prob-
ability ratio (grey area) could go to infinity.

It can be concluded that there is an obvious gap between

(a) Case of a Continuous Action Space
Task

(b) Case of a Discrete Action Space
Task

Figure 1: The grey area shows the sublevel sets of rt(θ), i.e., Θ = {θ|1 − ε ≤ rt(θ) ≤ 1 + ε}. The solid lines
are the level sets of the KL divergence, i.e., {θ|Dst

KL(θold, θ) = δ}. (a) The case of a continuous action space case,
where dim(A) = 1. The action distribution under state st is πθ(st) = N (µt,Σt), where µt = fµθ (st),Σt = fΣ

θ (st).
(b) The case of a discrete action space task, where |A|= 3. The policy under state st is parametrized by πθ(st) =

(p
(1)
t , p

(2)
t , p

(3)
t ). Note that the level sets are plotted on the hyperplane

∑3
d=1 p

(d)
t = 1 and the figure is showed from

the view of elevation= 45◦ and azimuth= 45◦.



bounding the probability ratio and bounding the KL di-
vergence. Approaches which manage to bound the prob-
ability ratio could not necessarily bound KL divergence
theoretically.

5 METHOD

In the previous section, we have shown that PPO could
neither strictly restrict the probability ratio nor enforce a
trust region constraint. We address these problems in the
scheme of PPO with a general form

Lt(θ) = min (rt(θ)At,F (rt(θ), ·)At) (10)

where F is a clipping function which attempts to restrict
the policy, “·” inF means any hyperparameters of it. For
example, in PPO, F is a ratio-based clipping function
FCLIP(rt(θ), ε) (see eq. (5)). We modify this function
to promote the ability in bounding the probability ratio
and the KL divergence. We now detail how to achieve
this goal in the following sections.

5.1 PPO WITH ROLLBACK (PPO-RB)

As discussed in Question 1, PPO could not strictly re-
strict the probability ratio within the clipping range: the
clipping mechanism could not entirely remove the incen-
tive for driving rt(θ) to go beyond the clipping range,
even rt(θ) has already exceeded the clipping range. We
address this issue by substituting the clipping function
with a rollback function, which is defined as

FRB(rt(θ), ε, α)

=


−αrt(θ)+(1 + α)(1− ε) rt(θ) ≤ 1− ε
−αrt(θ)+(1 + α)(1 + ε) rt(θ) ≥ 1 + ε

rt(θ) otherwise

(11)

where α > 0 is a hyperparameter to decide the force
of the rollback. The corresponding objective function
at timestep t is denoted as LRB

t (θ) and the overall
objective function is LRB(θ). The rollback function
FRB (rt(θ), ε, α) generates a negative incentive when
rt(θ) is outside of the clipping range. Thus it could
somewhat neutralize the incentive deriving from the
overall objective LFB(θ). Fig. 2 plots LRB

t and LCLIP
t

as functions of the probability ratio rt(θ). As the figure
depicted, when rt(θ) is over the clipping range, the slope
of LRB

t is reversed, while that of LCLIP
t is zero.

The rollback operation could more forcefully prevent the
probability ratio from being pushed away compared to
the original clipping function. Formally, we have the fol-
lowing theorem.

(a) At > 0 (b) At < 0

Figure 2: Plots showing LRB
t and LCLIP

t as functions of
the probability ratio rt(θ), for positive advantages (left)
and negative advantages (right). The red circle on each
plot shows the starting point for the optimization, i.e.,
rt(θ) = 1. When rt(θ) crosses the clipping range, the
slope of LRB

t is reversed, while that of LCLIP
t is zero.

Theorem 4. Let θCLIP
1 = θ0 + β∇LCLIP(θ0), θRB

1 =
θ0 +β∇LRB(θ0). The indexes of the samples which sat-
isfy the clipping condition is denoted as Ω = {t|1 ≤
t ≤ T, (At > 0 and rt(θ0) ≥ 1 + ε) or (At <
0 and rt(θ0) ≤ 1 − ε)}. If t ∈ Ω and rt(θ0) satisfies∑
t′∈Ω 〈∇rt(θ0),∇rt′(θ0)〉AtAt′ > 0, then there exists

some β̄ > 0 such that for any β ∈ (0, β̄), we have

∣∣rt(θRB
1 )− 1

∣∣ < ∣∣rt(θCLIP
1 )− 1

∣∣ . (12)

This theorem implies that the rollback function can im-
prove its ability in preventing the out-of-the-range ratios
from going farther beyond the range.

5.2 TRUST REGION-BASED PPO (TR-
PPO)

As discussed in Question 2, there is a gap between the
ratio-based constraint and the trust region-based one:
bounding the probability ratio is not sufficient to bound
the KL divergence. However, bounding the KL diver-
gence is what we primarily concern about, since it is a
theoretical indicator on the performance guarantee (see
eq. (2)). Therefore, new mechanism incorporating the
KL divergence should be taken into account.

The original clipping function uses the probability ratio
as the element of the trigger condition for clipping (see
eq. (5)). Inspired by the thinking above, we substitute
the ratio-based clipping with a trust region-based one.
Formally, the probability ratio is clipped when the policy



πθ is out of the trust region,

FTR(rt(θ), δ) =

{
rt(θold) Dst

KL(θold, θ) ≥ δ
rt(θ) otherwise

(13)

where δ is the parameter, rt(θold) = 1 is a constant. The
incentive for updating policy is removed when the pol-
icy πθ is out of the trust region, i.e., Dst

KL(θold, θ) ≥ δ.
Although the clipped value rt(θold) may make the surro-
gate objective discontinuous, this discontinuity does not
affect the optimization of the parameter θ at all, since the
value of the constant does not affect the gradient.

In general, TR-PPO could combine both the strengths
of TRPO and PPO: it is somewhat theoretically-justified
(by the trust region constraint) while is simple to imple-
ment and only requires first-order optimization. Com-
pared to TRPO, TR-PPO doesn’t need to optimize θ
through the KL divergence term Dst

KL(θold, θ). The
KL divergence is just calculated to decide whether
to clip rt(θ) or not. Compared to PPO, TR-PPO
uses a different metric of policy difference to restrict
the policy. PPO applies a ratio-based metric, i.e.,
π(at|st)/πold(at|st), which imposes an element-wise
constraint on the sampled action point. While TR-PPO
uses a trust region-based one, i.e., the KL divergence∑
a πold(a|st) log(πold(a|st)/π(a|st)), which imposes

a summation constraint over the action space. The ratio-
based constraint could impose a relatively strict con-
straint on actions which are not preferred by the old pol-
icy (i.e., πold(at|st) is small), which may lead to limited
sample efficiency when the policy is initialized from a
bad solution (Wang et al., 2019). While the trust region-
based one has no such bias and tends to perform more
sample efficient in practice.

Finally, we should note the importance of the min(·, ·)
operation for all variants of PPO. Take TR-PPO as an
example, the objective function incorporating the extra
min(·, ·) operation is

LTR
t (θ) = min

(
rt(θ)At,FTR (rt(θ), δ)At

)
(14)

Schulman et al. (2017) stated that this extra min(·, ·)
operation makes LTR

t (θ) be a lower bound on the un-
clipped objective rt(θ)At. It should also be noted that
such operation is important for optimization. As eq. (13)
implies, the objective without min(·, ·) operation, i.e.,
FTR(rt(θ), δ)At, would stop updating once the policy
violates the trust region, even the objective value is worse
than the initial one, i.e., rt(θ)At < rt(θold)At. The
min(·, ·) operation actually provides a remedy for this
issue. To see this, eq. (14) is rewritten as

LTR
t (θ) =

rt(θold)At
Dst

KL(θold, θ) ≥ δ and
rt(θ)At ≥ rt(θold)At

rt(θ)At otherwise
(15)

As can be seen, the ratio is clipped only if the objective
value is improved (and the policy violates the constraint).
We also experimented with the direct-clipping method,
i.e., FTR(rt(θ), δ)At, and found it performs extremely
bad in practice.

5.3 COMBINATION OF TR-PPO AND
PPO-RB (TR-PPO-RB)

The trust region-based clipping still possibly suffers from
the unbounded probability ratio problem, since we do not
provide any negative incentive when the policy is out of
the trust region. Thus we integrate the trust region-based
clipping with the rollback mechanism.

FTR−RB(rt(θ), δ, α)

=

{
−αrt(θ) Dst

KL(θold, θ) ≥ δ
rt(θ) otherwise

(16)

As the equation implies, FTR−RB(rt(θ), δ, α) generates
a negative incentive when πθ is out of the trust region.

6 EXPERIMENT

We conducted experiments to investigate whether the
proposed methods could improve ability in restricting the
policy and accordingly benefit the learning.

To measure the behavior and the performance of the al-
gorithm, we evaluate the probability ratio, the KL diver-
gence, and the episode reward during the training pro-
cess. The probability ratio and the KL divergence are
measured between the new policy and the old one at each
epoch. We refer one epoch as: 1) sample state-actions
from a behavior policy πθold ; 2) optimize the policy πθ
with the surrogate function and obtain a new policy.

We evaluate the following algorithms. (a) PPO: the orig-
inal PPO algorithm. We used ε = 0.2, which is recom-
mended by (Schulman et al., 2017). We also tested PPO
with ε = 0.6, denoted as PPO-0.6. (b) PPO-RB: PPO
with the extra rollback trick. The rollback coefficient is
set to be α = 0.3 for all tasks (except for the Humanoid
task we use α = 0.1). (c) TR-PPO: trust region-based
PPO. The trust region coefficient is set to be δ = 0.025
for all tasks (except for the Humanoid and HalfCheetah
task we use δ = 0.03). (d) TR-PPO-RB: trust region-
based PPO with rollback. The coefficients are set to be
δ = 0.03 and α = 0.05 (except for the Humanoid and
HalfCheetah task we use α = 0.1). The δ of TR-PPO-
RB is set to be slightly larger than that of TR-PPO due



to the existence of the rollback mechanism. (e) TR-PPO-
simple: A vanilla version of TR-PPO, which does not
include the min(·, ·) operation. The δ is same as TR-
PPO. (f) A2C: a classic policy gradient method. A2C has
the exactly same implementations and hyperparameters
as PPO except the clipping mechanism is removed. (g)
SAC: Soft Actor-Critic, a state-of-the-art off-policy RL
algorithm (Haarnoja et al., 2018). We adopt the imple-
mentations provided in (Haarnoja et al., 2018). (h) PPO-
SAC and TR-PPO-SAC: two variants of SAC which use
ratio-based clipping with ε = 0.2 and trust region-based
clipping with δ = 0.02 respectively. All our proposed
methods and PPO adopt exactly the same implemen-
tations and hyperparameters given in (Dhariwal et al.,
2017) except the clipping function. This ensures that the
differences are due to the algorithm changes instead of
the implementations.

The algorithms are evaluated on continuous and discrete
control benchmark tasks implemented in OpenAI Gym
(Brockman et al., 2016), simulated by MuJoCo (Todorov
et al., 2012) and Arcade Learning Environment (Belle-
mare et al., 2013). For continuous control tasks, we eval-
uate algorithms on 6 benchmark tasks (including a chal-
lenging high-dimensional Humanoid locomotion task).
All tasks were run with 1 million timesteps except for
the Humanoid task was 20 million timesteps. Each algo-
rithm was run with 4 random seeds. The experiments on
discrete control tasks are detailed in Appendix B.
Question 1. Does PPO suffer from the issue in bound-
ing the probability ratio and KL divergence as we have
analysed?

In general, PPO could not strictly bound the probability
ratio within the predefined clipping range. As shown in
Fig. 3, a reasonable proportion of the probability ratios
of PPO are out of the clipping range on all tasks. Espe-
cially on Humanoid-v2, HalfCheetah-v2, and Walker2d-
v2, even half of the probability ratios exceed. Moreover,
as can be seen in Fig. 4, the maximum probability ratio
of PPO can achieve more than 3 on all tasks (the upper
clipping range is 1.2). In addition, the maximum KL di-
vergence also grows as timestep increases (see Fig. 5).

Nevertheless, PPO still exerts an important effect on re-
stricting the policy. To show this, we tested two variants
of PPO: one uses ε = 0.6, denoted as PPO-0.6; another
one entirely removes the clipping mechanism, which col-
lapses to the vanilla A2C algorithm. As expected, the
probability ratios and the KL divergences of these two
variants are much larger than that of PPO (we put the
results in Appendix B, since the values are too large).
Moreover, the performance of these two methods fluctu-
ate dramatically during the training process (see Fig. 6).

In summary, it could be concluded that although the core

Figure 3: The proportions of the probability ratios which
are out of the clipping range. The proportions are cal-
culated over all sampled state-actions at that epoch. We
only show the results of PPO and PPO-RB, since only
these two methods have the clipping range parameter to
judge whether the probability ratio is out of the clipping
range.

Figure 4: The maximum ratio over all sampled sates of
each update during the training process. The results of
TR-PPO-simple and PPO-0.6 are provided in Appendix.
since their value are too large.

Figure 5: The maximum KL divergence over all sam-
pled states of each update during the training process.
The results of TR-PPO-simple and PPO-0.6 are plotted
in Appendix, since their value are too large.

clipping mechanism of PPO could not strictly restrict the
probability ratio within the predefined clipping range, it
could somewhat generate the effect on restricting the pol-
icy and benefit the learning. This conclusion is partly
different from that of Ilyas et al. (2018). They drew
a conclusion that “PPO’s performance depends heavily



Table 1: a) Timesteps to hit thresholds within 1 million timesteps (except Humanoid with 20 million). b) Averaged
top 10 episode rewards during training process. These results are averaged over 4 random seeds.

(a) Timesteps to hit threshold (×103) (b) Averaged top 10 episode tewards

Threshold PPO PPO-RB TR-PPO TR-PPO-
RB SAC PPO-SAC TR-PPO-

SAC PPO PPO-RB TR-PPO TR-PPO-
RB SAC PPO-SAC TR-PPO-

SAC

Hopper 3000 273 179 153 130 187 144 136 3612 3604 3788 3653 3453 3376 3439
Walker2d 3000 528 305 345 320 666 519 378 4036 4992 4874 5011 3526 3833 4125
Humanoid 5000 8410 8344 7580 6422 314 / / 7510 7366 6842 6501 7636 / /
Reacher -4.5 230 206 211 161 352 367 299 -3.55 -1.61 -1.55 -1.5 -3.81 -3.44 -4.21

Swimmer 70 721 359 221 318 / / / 101 126 110 112 53 54 56
HalfCheetah 2100 / 374 227 266 39 45 36 1623 3536 4672 4048 10674 10826 10969

Figure 6: Episode rewards of the policy during the training process averaged over 4 random seeds. The shaded area
depicts the mean ± the standard deviation.

on optimization tricks but not the core clipping mecha-
nism”. They got this conclusion by examining a variant
of PPO which implements only the core clipping mech-
anism and removes additional optimization tricks (e.g.,
clipped value loss, reward scaling). This variant also
fails in restricting policy and learning. However, as can
be seen in our results, arbitrarily enlarging the clipping
range or removing the core clipping mechanism can also
result in failure. These results means that the core clip-
ping mechanism also plays a critical and indispensable
role in learning.

Question 2. Could the rollback mechanism and the trust
region-based clipping improve its ability in bounding the
probability ratio or the KL divergence? Could it benefit
policy learning?

In general, our new methods could take a significant ef-
fect in restricting the policy compared to PPO. As can
be seen in Fig. 3, the proportions of out-of-range proba-
bility ratios of PPO-RB are much less than those of the
original PPO during the training process. The probabil-
ity ratios and the KL divergences of PPO-RB are also
much smaller than those of PPO (see Fig. 4 and 5). Al-
though PPO-RB focuses on restricting the probability ra-

tio, it seems that the improved ability of restriction on
the probability ratio also leads to better restriction on the
KL divergence. For the trust region-based clipping meth-
ods (TR-PPO and TR-PPO-RB), the KL divergences are
also smaller than those of PPO (see Fig. 5). Especially,
TR-PPO possesses the enhanced restriction ability on the
KL divergence even it does not incorporate the rollback
mechanism.

Our new methods could benefit policy learning in both
sample efficiency and policy performance. As listed in
Table 1 (a), all the three new methods require less sam-
ples to hit the threshold on all tasks. Especially, these
new methods requires about 3/5 samples of PPO on Hop-
per, Walker2d and Swimmer. As Table 1 (b) lists, all the
three proposed methods achieve much higher episode re-
wards than PPO does on Walker2d, Reacher, Swimmer,
HalfCheetah (while performs fairly good as PPO on the
remaining tasks).

The improvement on policy learning of the newly pro-
posed methods may be considered as a success of the
“trust region” theorem, which makes the algorithm per-
form less greedy to the advantage value of the old policy.
To show this, we plot the entropy of the policy during the



Figure 7: The policy entropy during the training process,
averaged over 4 random seeds. The shaded area depicts
the mean ± the standard deviation.

training process. As can be seen in Fig. 7, the entropy of
the three proposed methods are much larger than that of
PPO on almost all tasks, which means the policy per-
forms less greedy and explores more sufficiently.

Question 3. How well do the ratio-based methods per-
form compared to trust region-based ones?

The ratio-based and trust region-based methods restrict
the probability ratio and KL divergence respectively. The
ratio-based methods include PPO and PPO-RB, while
the trust region-based methods include TR-PPO and TR-
PPO-RB. We consider two groups of comparisons, that
is, PPO vs. TR-PPO and PPO-RB vs. TR-PPO-RB, since
the only difference within each group is the the measure-
ment of the policies.

In general, the trust region-based methods are more sam-
ple efficient than the ratio-based ones, and they could ob-
tain a better policy on most of the tasks. As listed in Ta-
ble 1 (a), both TR-PPO and TR-PPO-RB require much
fewer episodes to achieve the threshold than PPO and
PPO-RB do on all the tasks. Notably, on Hopper and
Swimmer, TR-PPO requires almost half of the episodes
of PPO. Besides, as listed in Table 1 (b), the episode re-
wards of TR-PPO and TR-PPO-RB are better than those
of PPO and PPO-RB on 4 of the 6 tasks except Humanoid
and Swimmer. As Fig. 7 plots, the entropies of trust
region-based tends to be larger than those of ratio-based
on all tasks, and the entropies even increase at the lat-
ter stages of training process. On the one hand, larger
entropy may make trust region-based methods explore
more sufficiently. On the other hand, it may make the
policy hardly converge to the optimal policy.

Comparison with the state-of-art method: We com-
pare our methods with soft actor critic (SAC) (Haarnoja
et al., 2018). As Table 1 lists, our methods are fairly bet-
ter than SAC on 4 of 6 tasks. In addition, the variants
of PPO are much more computationally efficient than

SAC. Within one million timesteps, the training wall-
clock time for all variants of PPO is about 32 min; for
SAC, 182 min (see Appendix B.4 for more detail). Fur-
thermore, the variants of PPO require relatively less ef-
fort on hyperparameter tuning as we use the same hyper-
parameter across most of the tasks.

Our methods perform worse than SAC on the remaining
2 tasks. This may due to that we adopt an on-policy ap-
proach to learn the actor and critic while SAC adopts an
off-policy one. We have also evaluated two variants of
SAC which incorporate the clipping technique, termed
as PPO-SAC and TR-PPO-SAC, which use ratio-based
and trust region-based clipping respectively. As Table 1
lists, the introduced clipping mechanism could improve
SAC on both sample efficiency and policy performance
on 5 of 6 tasks (see Appendix B.2 for more detail).

7 CONCLUSION

Despite the effectiveness of the well-known PPO, it
somehow lacks theoretical justification, and its actual op-
timization behaviour is less studied. To our knowledge,
this is the first work to reveal the reason why PPO could
neither strictly bound the probability ratio nor enforce a
well-defined trust region constraint. Based on this obser-
vation, we proposed a trust region-based clipping objec-
tive function with a rollback operation. The trust region-
based clipping is more theoretically justified while the
rollback operation could enhance its ability in restrict-
ing policy. Both these two techniques significantly im-
prove ability in restricting policy and maintaining train-
ing stability. Extensive results show the effectiveness of
the proposed methods.

Deep RL algorithms have been notorious in its tricky im-
plementations and require much effort to tune the hyper-
parameters (Islam et al., 2017; Henderson et al., 2018).
Our three variants of the proposed methods are equally
simple to implement and tune as PPO. They may be con-
sidered as useful alternatives to PPO.
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