
A COUNTEREXAMPLE

In this section we show that in the multivariate set-
ting, the worst-case counterfactual unfairness with a con-
founding budget of pmax is not necessarily obtained
when all non-zero entries of the correlation matrix are
set to pmax. To this end, it suffices to find a symmetric
matrix A with 1s on the diagonal that is not positive-
semidefinite when all its non-zero off-diagonal entries
are set to the same value, which we define to be the
considered confounding budget pmax. Since each valid
correlation matrix must be positive-semidefinite, the cor-
relation matrix for the worst-case counterfactual unfair-
ness must be different from A (while maintaining the
zero entries). Because all off-diagonal entries are upper
bounded by pmax, at least one of them must be smaller
than the corresponding value in A.

For example, consider

A =

 1 pmax pmax

pmax 1 0
pmax 0 1

 .

Since the eigenvalues of A are 1, 1 −
√

2pmax, and 1 +√
2pmax, we see that A is not positive-semidefinite for

pmax > 1/
√

2.

In general, the matrix A ∈ Rn×n with Aii = 1 for
i ∈ {1, . . . , n}, A1i = Ai1 = pmax for i ∈ {2, . . . , n}
and Aij = 0 for all remaining entries, has the eigen-
values (without multiplicity) 1, 1 −

√
n− 1p, and 1 +√

n− 1p. Therefore, A is not positive-semidefinite for
pmax > 1/

√
n− 1. We conclude that as the dimension-

ality of the problem increases, we may encounter such
situations for ever smaller confounding budget.

B COMPUTATIONAL
CONSIDERATIONS

Step 17 of Algorithm 1 is the main place where code op-
timization can take place, and alternatives to the (local)
penalized maximum likelihood taking place there could
be suggested (perhaps using spectral methods). It is hard
though to say much in general about Step 20, as coun-
terfactual fairness allows for a large variety of loss func-
tions usable in supervised learning. In the case of lin-
ear predictors, it is still a non-convex problem due to the
complex structure of the correlation matrix, and for now
we leave as an open problem whether non-gradient based
optimization may find better local minima.

C PATH-SPECIFIC SENSITIVITY

Path-specific effects were not originally described by
Kusner et al. (2017) as the goal there was to introduce
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Figure 5: A path-specific model where the path from pro-
tected attributeA to feature U is unfair and the path from
A to feature F is fair.

the core idea of counterfactual fairness in a way as ac-
cessible as possible (some discussion is provided in the
supplementary material of that paper). See Chiappa &
Gillam (2018) for one take on the problem, and Loftus
et al. (2018) for another take to be fully developed in a fu-
ture paper. Here we consider an example that illustrates
how notions of path-specific effects (Shpitser, 2013) can
be easily pipelined with our sensitivity analysis frame-
work.

Consider Figure 5, where the path from A → U is con-
sidered unfair and A→ F is considered fair, in the sense
that we do not want a non-zero path-specific effect of A
on Ŷ that is comprised by a possible path A → U → Ŷ
in the causal graph implied by the chosen construction
of Ŷ . Then a path-specific counterfactually fair predic-
tor is one that uses {εU , F} as input. Note that the only
difference this makes in our grid-based tool is that we
only estimate the error εU for the unfair path in Model A
(step 2, Section 3.3) and fit a predictor on {εU , F} (step
3, Section 3.3). Additionally, we only compute the incor-
rect error terms of the counterfactuals in Model B, using
the weights of Model A (step 4, Section 3.4). For the
optimization-based tool we would change lines 13, 14,
and 20 in the same way.
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