
Sliced Score Matching: A Scalable Approach to
Density and Score Estimation

Yang Song∗
Stanford University

Sahaj Garg∗
Stanford University

Jiaxin Shi
Tsinghua University

Stefano Ermon
Stanford University

Abstract

Score matching is a popular method for esti-
mating unnormalized statistical models. How-
ever, it has been so far limited to simple, shal-
low models or low-dimensional data, due to
the difficulty of computing the Hessian of log-
density functions. We show this difficulty can
be mitigated by projecting the scores onto ran-
dom vectors before comparing them. This ob-
jective, called sliced score matching, only in-
volves Hessian-vector products, which can be
easily implemented using reverse-mode auto-
matic differentiation. Therefore, sliced score
matching is amenable to more complex models
and higher dimensional data compared to score
matching. Theoretically, we prove the consis-
tency and asymptotic normality of sliced score
matching estimators. Moreover, we demon-
strate that sliced score matching can be used
to learn deep score estimators for implicit dis-
tributions. In our experiments, we show sliced
score matching can learn deep energy-based
models effectively, and can produce accurate
score estimates for applications such as varia-
tional inference with implicit distributions and
training Wasserstein Auto-Encoders.

1 INTRODUCTION

Score matching (Hyvärinen, 2005) is particularly suitable
for learning unnormalized statistical models, such as en-
ergy based ones. It is based on minimizing the distance be-
tween the derivatives of the log-density functions (a.k.a.,
scores) of the data and model distributions. Unlike maxi-
mum likelihood estimation (MLE), the objective of score

∗ Joint first authors. Correspondence to Yang Song
<yangsong@cs.stanford.edu> and Stefano Ermon <er-
mon@cs.stanford.edu>.

matching only depends on the scores, which are oblivious
to the (usually) intractable partition functions. However,
score matching requires the computation of the diago-
nal elements of the Hessian of the model’s log-density
function. This Hessian trace computation is generally
expensive (Martens et al., 2012), requiring a number of
forward and backward propagations proportional to the
data dimension. This severely limits its applicability to
complex models parameterized by deep neural networks,
such as deep energy-based models (LeCun et al., 2006;
Wenliang et al., 2019).

Several approaches have been proposed to alleviate this
difficulty: Kingma & LeCun (2010) propose approximate
backpropagation for computing the trace of the Hessian;
Martens et al. (2012) develop curvature propagation, a
fast stochastic estimator for the trace in score matching;
and Vincent (2011) transforms score matching to a de-
noising problem which avoids second-order derivatives.
These methods have achieved some success, but may
suffer from one or more of the following problems: incon-
sistent parameter estimation, large estimation variance,
and cumbersome implementation.

To alleviate these problems, we propose sliced score
matching, a variant of score matching that can scale to
deep unnormalized models and high dimensional data.
The key intuition is that instead of directly matching
the high-dimensional scores, we match their projections
along random directions. Theoretically, we show that
under some regularity conditions, sliced score matching
is a well-defined statistical estimation criterion that yields
consistent and asymptotically normal parameter estimates.
Moreover, compared to the methods of Kingma & LeCun
(2010) and Martens et al. (2012), whose implementations
require customized backpropagation for deep networks,
sliced score matching only involves Hessian-vector prod-
ucts, thus can be easily and efficiently implemented in
frameworks such as TensorFlow (Abadi et al., 2016) and
PyTorch (Adam et al., 2017).



Beyond training unnormalized models, sliced score
matching can also be naturally adapted as an objective for
estimating the score function of a data generating distri-
bution (Sasaki et al., 2014; Strathmann et al., 2015) by
training a score function model parameterized by deep
neural networks. This observation enables many new
applications of sliced score matching. For example, we
show that it can be used to provide accurate score es-
timates needed for variational inference with implicit
distributions (Huszár, 2017) and learning Wasserstein
Auto-Encoders (WAE, Tolstikhin et al. (2018)).

Finally, we evaluate the performance of sliced score
matching on learning unnormalized statistical models
(density estimation) and estimating score functions of
a data generating process (score estimation). For density
estimation, experiments on deep kernel exponential fami-
lies (Wenliang et al., 2019) and NICE flow models (Dinh
et al., 2015) show that our method is either more scalable
or more accurate than existing score matching variants.

For score estimation, our method improves the perfor-
mance of variational auto-encoders (VAE) with implicit
encoders, and can train WAEs without a discriminator
or MMD loss by directly optimizing the KL divergence
between aggregated posteriors and the prior. In both situ-
ations we outperformed kernel-based score estimators (Li
& Turner, 2018; Shi et al., 2018) by achieving better test
likelihoods and better sample quality in image generation.

2 BACKGROUND

Given i.i.d. samples {x1,x2, · · · ,xN} ⊂ RD from a data
distribution pd(x), our task is to learn an unnormalized
density, p̃m(x;θ), where θ is from some parameter space
Θ. The model’s partition function is denoted as Zθ , which
is assumed to be existent but intractable. Let pm(x;θ) be
the normalized density determined by our model, we have

pm(x;θ) =
p̃m(x;θ)

Zθ
, Zθ =

∫
p̃m(x;θ)dx.

For convenience, we denote the score functions of
pm and pd as sm(x;θ) , ∇x log pm(x;θ) and
sd(x) , ∇x log pd(x) respectively. Note that since
log pm(x;θ) = log p̃m(x;θ)− logZθ, we immediately
conclude that sm(x;θ) does not depend on the intractable
partition function Zθ.

2.1 SCORE MATCHING

Learning unnormalized models with maximum likeli-
hood estimation (MLE) can be difficult due to the in-
tractable partition function Zθ . To avoid this, score match-
ing (Hyvärinen, 2005) minimizes the Fisher divergence

between pd and pm(·,θ), which is defined as

L(θ) ,
1

2
Epd [‖sm(x;θ)− sd(x)‖22]. (1)

Since sm(x;θ) does not involve Zθ, the Fisher diver-
gence does not depend on the intractable partition func-
tion. However, Eq. (1) is still not readily usable for learn-
ing unnormalized models, as we only have samples and
do not have access to the score function of the data sd(x).

By applying integration by parts, Hyvärinen (2005) shows
that L(θ) can be written as L(θ) = J(θ) + C (cf ., Theo-
rem 1 in Hyvärinen (2005)), where

J(θ) , Epd
[

tr(∇xsm(x;θ)) +
1

2
‖sm(x;θ)‖22

]
, (2)

C is a constant that does not depend on θ, tr(·) denotes
the trace of a matrix, and

∇xsm(x;θ) = ∇2
x log p̃m(x;θ) (3)

is the Hessian of the log-density function. The constant
can be ignored and the following unbiased estimator of
the remaining terms is used to train p̃m(x;θ):

Ĵ(θ;xN1 ) ,
1

N

N∑
i=1

[
tr(∇xsm(xi;θ)) +

1

2
‖sm(xi;θ)‖22

]
,

where xN1 is a shorthand used throughout the paper for
a collection of N data points {x1,x2, · · · ,xN} sampled
i.i.d. from pd, and ∇xsm(xi;θ) denotes the Hessian of
log p̃m(x;θ) evaluted at xi.

Computational Difficulty. While the score matching
objective Ĵ(θ;xN1 ) avoids the computation of Zθ for un-
normalized models, it introduces a new computational
difficulty: computing the trace of the Hessian of a log-
density function, ∇2

x log p̃m. A naïve approach of com-
puting the trace of the Hessian requires D times more
backward passes than computing the gradient sm =
∇x log p̃m (see Alg. 2 in the appendix). For example, the
trace could be computed by applying backpropogation D
times to sm to get each diagonal term of ∇2

x log p̃m se-
quentially. In practice, D can be many thousands, which
can render score matching too slow for practical purposes.
Moreover, Martens et al. (2012) argues from a theoretical
perspective that it is unlikely that there exists an algorithm
for computing the diagonal of the Hessian defined by an
arbitrary computation graph within a constant number of
forward and backward passes.

2.2 SCORE ESTIMATION FOR IMPLICIT
DISTRIBUTIONS

Besides parameter estimation in unnormalized models,
score matching can also be used to estimate scores of



implicit distributions, which are distributions that have a
tractable sampling process but without a tractable density.
For example, the distribution of random samples from
the generator of a GAN (Goodfellow et al., 2014) is an
implicit distribution. Implicit distributions can arise in
many more situations such as the marginal distribution
of a non-conjugate model (Sun et al., 2019), and models
defined by complex simulation processes (Tran et al.,
2017). In many cases learning and inference become
intractable due to the need of optimizing an objective that
involves the intractable density.

In these cases, directly estimating the score function
sq(x) = ∇x log qθ(x) based on i.i.d. samples from an
implicit density qθ(x) can be useful. For example, sup-
pose our learning problem involves optimizing the en-
tropy H(qθ(x)) of an implicit distribution. This situa-
tion is common when dealing with variational free ener-
gies (Kingma & Welling, 2014). Suppose x ∼ qθ can
be reparameterized as x = gθ(ε), where ε is a simple
random variable independent of θ, such as a standard
normal, and gθ is a deterministic mapping. We can write
the gradient of the entropy with respect to θ as

∇θH(qθ) , −∇θEqθ(x)[log qθ(x)]

= −∇θEp(ε)[log qθ(gθ(ε))]

= −Ep(ε)[∇x log qθ(x)|x=gθ(ε)∇θgθ(ε)],

where ∇θgθ(ε) is usually easy to compute. The score
∇x log qθ(x) is intractable but can be approximated by
score estimation.

Score matching is an attractive solution for score estima-
tion since (1) naturally serves as an objective to measure
the difference between the a trainable score function and
the score of a data generating process. We will discuss
this in more detail in Section 3.2 and mention some other
approaches of score estimation in Section 5.2.

3 DENSITY AND SCORE ESTIMATION
WITH SLICED SCORE MATCHING

3.1 SLICED SCORE MATCHING

We observe that one dimensional problems are usually
much easier to solve than high dimensional ones. Inspired
by the idea of Sliced Wasserstein distance (Rabin et al.,
2012), we consider projecting sd(x) and sm(x;θ) onto
some random direction v and propose to compare their
average difference along that random direction. More
specifically, we consider the following objective as a re-
placement of the Fisher divergence L(θ) in Eq. (1):

L(θ; pv) ,
1

2
EpvEpd

[
(vᵀsm(x;θ)− vᵀsd(x))2

]
.(4)

Here v ∼ pv and x ∼ pd are independent, and we require
Epv [vvᵀ] � 0 and Epv [‖v‖22] < ∞. Many examples of
pv satisfy these requirements. For instance, pv can be a
multivariate standard normal (N (0, ID)), a multivariate
Rademacher distribution (the uniform distribution over
{±1}D), or a uniform distribution on the hypersphere
SD−1 (recall that D refers to the dimension of x).

To eliminate the dependence of L(θ; pv) on sd(x), we
use integration by parts as in score matching (cf ., the
equivalence between Eq. (1) and (2)). Defining

J(θ; pv) , EpvEpd
[
vᵀ∇xsm(x;θ)v

+
1

2
(vᵀsm(x;θ))

2 ]
, (5)

the equivalence is summarized in the following theorem.

Theorem 1. Under some regularity conditions (Assump-
tion 1-3 in Appendix B.2), we have

L(θ; pv) = J(θ; pv) + C, (6)

where C is a constant w.r.t. θ.

Other than our requirements on pv, the assumptions are
exactly the same as in Theorem 1 of Hyvärinen (2005).
We advise the interested readers to read Appendix B.2 for
technical statements of the assumptions and a rigorous
proof of the theorem.

In practice, given a dataset xN1 , we draw M projection
vectors independently for each point xi from pv. The
collection of all such vectors {vij}1≤i≤N,1≤j≤M are ab-
breviated as vNM11 .We then use the following unbiased
estimator of J(θ; pv)

Ĵ(θ;xN1 ,v
NM
11 ) ,

1

N

1

M

N∑
i=1

M∑
j=1

vᵀ
ij∇xsm(xi;θ)vij

+
1

2

(
vᵀ
ijsm(xi;θ)

)2
. (7)

Note that when pv is a multivariate standard nor-
mal or multivariate Rademacher distribution, we have
Epv [(vᵀsm(x;θ))2] = ‖sm(x;θ)‖22, in which case the
second term of J(θ; pv) can be integrated analytically,
and may lead to an estimator with reduced variance:

Ĵvr(θ;xN1 ,v
NM
11 ) ,

1

N

1

M

N∑
i=1

M∑
j=1

vᵀ
ij∇xsm(xi;θ)vij

+
1

2
‖sm(xi;θ)‖22 . (8)

Empirically, we do find that Ĵvr has better performance
than Ĵ . We refer to this version as sliced score match-
ing with variance reduction (SSM-VR). In fact, we can



leverage Epv [(vᵀsm(x;θ))2] = ‖sm(x;θ)‖22 to create a
control variate for guaranteed reduction of variance (Ap-
pendix D). Ĵvr is also closely related to Hutchinson’s trace
estimator (Hutchinson, 1990), which we will analyze later
in Section 4.3.

For sliced score matching, the second derivative term
vᵀ∇xsm(x;θ)v is much less computationally expensive
than tr(∇xsm(x;θ)). Using auto-differentiation systems
that support higher order gradients, we can compute it
using two gradient operations for a single v, as shown in
Alg. 1. Similarly, when there are M v’s, the total number
of gradient operations is M + 1. In contrast, assuming
the dimension of x is D and D �M , we typically need
D + 1 gradient operations to compute tr(∇xsm(x;θ))
because each diagonal entry of ∇xsm(x;θ) needs to be
computed separately (see Alg. 2 in the appendix).

Algorithm 1 Sliced Score Matching
Input: p̃m(·;θ),x,v

1: sm(x;θ)← grad(log p̃m(x;θ),x)
2: vᵀ∇xsm(x;θ)← grad(vᵀsm(x;θ),x)

3: J ← 1
2 (vᵀsm(x;θ))2 (or J ← 1

2 ‖sm(x;θ)‖22)
4: J ← J + vᵀ∇xsm(x;θ)v

return J

In practice, we can tune M to trade off variance and
computational cost. In our experiments, we find that
oftentimes M = 1 is already a good choice.

3.2 SLICED SCORE ESTIMATION

As mentioned in section 2.2, the task of score estimation
is to estimate ∇x log q(x) at some test point x, given a
set of samples xN1

i.i.d.∼ q(x). In what follows, we show
how our sliced score matching objective Ĵ(θ;xN1 ,v

NM
11 )

can be straightforwardly adapted for this task.

We propose to use a vector-valued deep neural network
h(x;θ) : RD → RD as our score model. Then, substitut-
ing h into Ĵ(θ;xN1 ,v

NM
11 ) for sm, we get

1

N

1

M

N∑
i=1

M∑
j=1

vᵀ
ij∇xh(xi;θ)vij +

1

2

(
vᵀ
ijh(xi;θ)

)2
,

and we can optimize the objective to get θ̂. Afterwards,
h(x; θ̂) can be used as an approximation to∇x log q(x).1

1Note that h(x;θ) may not correspond to the gradient of
any scalar function. For h(x;θ) to represent a gradient, one
necessary condition is∇x × h(x;θ) = 0 for all x, which may
not be satisfied by general networks. However, this is oblivious
to the fact that h(x; θ̂) will be close to∇x log qθ(x) in `2 norm.
As will be shown later, our argument based on integration by
parts does not require h(x;θ) to be a gradient.

Using a similar argument of integration by parts (cf .,
Eq. (4), (5) and (6)), we have

EpvEpd
[
vᵀ∇xh(x;θ)v +

1

2
(vᵀh(x;θ))2

]
=

1

2
EpvEpd [(vᵀh(x;θ)− vᵀ∇x log q(x))2] + C,

which implies that minimizing Ĵ(θ;xN1 ,v
NM
11 ) with

sm(x;θ) replaced by h(x;θ) is approximately minimiz-
ing the average projected difference between h(x;θ)

and ∇x log q(x). Hence, h(x; θ̂) should be close to
∇x log q(x) and can serve as a score estimator.

4 THEORETICAL ANALYSIS

In this section, we present several theoretical results to
justify sliced score matching as a principled objective.
We also discuss the connection of sliced score matching
to other methods. For readability, we will defer rigorous
statements of assumptions and theorems to the Appendix.

4.1 CONSISTENCY

One important question to ask for any statistical estima-
tion objective is whether the estimated parameter is con-
sistent under reasonable assumptions. Our results confirm
that for any M , the objective Ĵ(θ;xN1 ,v

NM
11 ) is consis-

tent under suitable assumptions as N →∞.

We need several standard assumptions to prove the results
rigorously. Let pm be the normalized density induced
by our unnormalized model p̃m, which is assumed to be
normalizable. First, we assume Θ is compact (Assump-
tion 6), and our model family {pm(x;θ) : θ ∈ Θ} is
well-specified and identifiable (Assumption 4). These
are standard assumptions used for proving the consis-
tency of MLE (van der Vaart, 1998). We also adopt
the assumption in Hyvärinen (2005) that all densities
are strictly positive (Assumption 5). Finally, we as-
sume that pm(x;θ) has some Lipschitz properties (As-
sumption 7), and pv has bounded higher-order moments
(Assumption 2, true for all pv considered in the ex-
periments). Then, we can prove the consistency of
θ̂N,M , arg minθ∈Θ Ĵ(θ;xN1 ,v

NM
11 ):

Theorem 2 (Consistency). Assume the conditions of The-
orem 1 are satisfied. Assume further that the assumptions
discussed above hold. Let θ∗ be the true parameter of the
data distribution. Then for every M ∈ N+,

θ̂N,M
p→ θ∗, N →∞.

Sketch of proof. We first prove that J(θ; pv) = 0⇔ θ =
θ∗ (Lemma 1 and Theorem 1). Then we prove the uni-
form convergence of Ĵ(θ;xN1 ,v

NM
11 ) (Lemma 3), which



holds regardless of M . These two facts lead to consis-
tency. For a complete proof, see Appendix B.3.

Remark 1. In Hyvärinen (2005), the authors only
showed that J(θ) = 0⇔ θ = θ∗, which leads to “local
consistency” of score matching. This is a weaker notion
of consistency compared to our settings.

4.2 ASYMPTOTIC NORMALITY

Asymptotic normality results can be very useful for ap-
proximate hypothesis testing and comparing different es-
timators. Below we show that θ̂N,M is asymptotically
normal when N →∞.

In addition to the assumptions in Section 4.1, we need
an extra assumption to prove asymptotic normality. We
require pm(x;θ) to have a stronger Lipschitz property
(Assumption 9).

For simplicity, we denote ∇xh(x)|x=x′ as ∇xh(x′),
where h(·) is an arbitrary function. In the following,
we will only show the asymptotic normality result for a
specific pv. More general results are in Appendix B.4.
Theorem 3 (Asymptotic normality, special case). As-
sume the assumptions discussed above hold. If pv is the
multivariate Rademacher distribution, we have

√
N(θ̂N,M − θ∗)

d→ N (0,Σ),

where

Σ , [∇2
θJ(θ∗)]−1

( ∑
1≤i,j≤D

Vij+
2

M

∑
1≤i6=j≤D

Wij

)
· [∇2

θJ(θ∗)]−1. (9)

Here D is the dimension of data; Vij and Wij are p.s.d
matrices depending on pm(x;θ∗), and their definitions
can be found in Appendix B.4.

Sketch of proof. Once we get the consistency (Theo-
rem 2), the rest closely follows the proof of asymptotic
normality of MLE (van der Vaart, 1998). A rigorous proof
can be found in Appendix B.4.

Remark 2. As expected, larger M will lead to smaller
asymptotic variance, as can be seen in Eq. (9).
Remark 3. As far as we know, there is no published
proof of asymptotic normality for the standard (not sliced)
score matching. However, by using the same techniques
in our proofs, and under similar assumptions, we can
conclude that the asymptotic variance of the score match-
ing estimator is [∇2

θJ(θ∗)]−1
(∑

ij Vij

)
[∇2

θJ(θ∗)]−1

(Corollary 1), which will always be smaller than sliced
score matching with multivariate Rademacher projections.
However, the gap reduces when M increases.

4.3 CONNECTION TO OTHER METHODS

Sliced score matching is widely connected to many other
methods, and can be motivated from some different per-
spectives. Here we discuss a few of them.

Connection to NCE. Noise contrastive estimation
(NCE), proposed by Gutmann & Hyvärinen (2010), is an-
other principle for training unnormalized statistical mod-
els. The method works by comparing pm(x;θ) with a
noise distribution pn(x). We consider a special form of
NCE which minimizes the following objective

−Epd [log h(x;θ)]− Epn [log(1− h(x;θ))], (10)

where h(x;θ) , pm(x;θ)
pm(x;θ)+pm(x−v;θ) , and we choose

pn(x) = pd(x+v). Assuming ‖v‖2 to be small, Eq. (10)
can be written as the following by Taylor expansion

1

4
Epd
[
vᵀ∇xsm(x;θ)v +

1

2
(sm(x;θ)ᵀv)2

]
+ 2 log 2 + o(‖v‖22). (11)

For derivation, see Proposition 1 in the appendix. A simi-
lar derivation can also be found in Gutmann & Hirayama
(2011). As a result of (11), if we choose some pv and
take the expectation of (10) w.r.t. pv, the objective will be
equivalent to sliced score matching whenever ‖v‖2 ≈ 0.

Connection to Hutchinson’s Trick. Hutchinson’s
trick (Hutchinson, 1990) is a stochastic algorithm to
approximate tr(A) for any square matrix A. The
idea is to choose a distribution of a random vector v
such that Epv [vvᵀ] = I , and then we have tr(A) =
Epv [vᵀAv]. Hence, using Hutchinson’s trick, we can re-
place tr(∇xsm(x;θ)) with Epv [vᵀ∇xsm(x;θ)v] in the
score matching objective J(θ). Then the finite sample
objective of score matching becomes

1

N

N∑
i=1

(
1

M

M∑
j=1

vᵀ
ij∇xsm(xi;θ)vij

)
+

1

2
‖sm(xi;θ)‖22 ,

which is exactly the sliced score matching objective with
variance reduction Ĵvr(θ;xN1 ,v

NM
11 ).

5 RELATED WORK

5.1 SCALABLE SCORE MATCHING

To the best of our knowledge, there are three existing
methods that are able to scale up score matching to learn-
ing deep models on high dimensional data.



Denoising Score Matching. Vincent (2011) proposes
denoising score matching, a variant of score matching
that completely circumvents the Hessian. Specifically,
consider a noise distribution qσ(x̃ | x), and let qσ(x̃) =∫
qσ(x̃ | x)pd(x)dx. Denoising score matching applies

the original score matching to the noise-corrupted data
distribution qσ(x̃), and the objective can be proven to be
equivalent to the following up to a constant

1

2
Eqσ(x̃|x)pd(x)[‖sm(x̃;θ) − ∇x log qσ(x̃ | x)‖22],

which can be estimated without computing any Hessian.
Although denoising score matching is much faster than
score matching, it has obvious drawbacks. First, it can
only recover the noise corrupted data distribution. Further-
more, choosing the parameters of the noise distribution
is highly non-trivial and in practice the performance can
be very sensitive to σ, and heuristics have to be used in
practice. For example, Saremi et al. (2018) propose a
heuristic for choosing σ based on Parzen windows.

Approximate Backpropagation. Kingma & LeCun
(2010) propose a backpropagation method to approxi-
mately compute the trace of the Hessian. Because the
backpropagation of the full Hessian scales quadratically
w.r.t. the layer size, the authors limit backpropagation only
to the diagonal so that it has the same cost as the usual
backpropagation for computing loss gradients. However,
there are no theoretical guarantees for the approxima-
tion errors. In fact, the authors only did experiments on
networks with a single hidden layer, in which case the ap-
proximation is exact. Moreover, there is no direct support
for the proposed approximate backpropagation method in
modern automatic differentiation frameworks.

Curvature Propagation. Martens et al. (2012) esti-
mate the trace term in score matching by applying curva-
ture propagation to compute an unbiased, complex-valued
estimator of the diagonal of the Hessian. The work claims
that curvature propagation will have the smallest vari-
ance among a class of estimators, which includes the
Hutchinson’s estimator. However, their proof evaluates
the pseudo-variance of the complex-valued estimator in-
stead of the variance. In practice, curvature propagation
can have large variance when the number of nodes in
the network is large, because it introduces noise for each
node in the network. Finally, implementing curvature
propagation also requires manually modifying the back-
propagation code, handling complex numbers in neural
networks, and will be inefficient for networks of more
general structures, such as recurrent neural networks.

5.2 KERNEL SCORE ESTIMATORS

Two prior methods for score estimation are based on a
generalized form of Stein’s identity (Stein, 1981; Gorham
& Mackey, 2017):

Eq(x)[h(x)∇x log q(x)ᵀ +∇xh(x)] = 0, (12)

where q(x) is a continuously differentiable density and
h(x) is a function satisfying some regularity conditions.
Li & Turner (2018) propose to set h(x) as the feature
map of some kernel in the Stein class (Liu et al., 2016)
of q, and solve a finite-sample version of (12) to obtain
estimates of ∇x log q(x) at the sample points. We re-
fer to this method as Stein in the experiments. Shi et al.
(2018) adopt a different approach but also exploit (12).
They build their estimator by expanding ∇x log q(x) as
a spectral series of eigenfunctions and solve for the co-
efficients using (12). Compared to Stein, their method
is argued to have theoretical guarantees and principled
out-of-sample estimation at an unseen test point. We refer
to their method as Spectral in the experiments.

6 EXPERIMENTS

Our experiments include two parts: (1) to test the effec-
tiveness of sliced score matching (SSM) in learning deep
models for density estimation, and (2) to test the ability of
SSM in providing score estimates for applications such as
VAEs with implicit encoders and WAEs. Unless specified
explicitly, we choose M = 1 by default.

6.1 DENSITY ESTIMATION

We evaluate SSM and its variance-reduced version (SSM-
VR) for density estimation and compare against score
matching (SM) and its three scalable baselines: denois-
ing score matching (DSM), approximate backpropagation
(approx BP), and curvature propagation (CP). All SSM
methods in this section use the multivariate Rademacher
distribution as pv. Our results demonstrate that: (1) SSM
is comparable in performance to SM, (2) SSM outper-
forms other computationally efficient approximations to
SM, and (3) unlike SM, SSM scales effectively to high
dimensional data.

6.1.1 Deep Kernel Exponential Families

Model. Deep kernel exponential families (DKEF) are
unnormalized density models trained using SM (Wenliang
et al., 2019). DKEFs parameterize the unnormalized log
density as log p̃f (x) = f(x) + log q0(x), where f is
a mixture of Gaussian kernels evaluated at different in-
ducing points: f(x) =

∑L
l=1 αlk(x, zl). The kernel is

defined on the feature space of a neural network, and the



Figure 1: SM loss after training DKEF models on UCI datasets with different loss functions; lower is better. Results for
approximate backprapogation are not shown because losses were larger than 109.

Figure 2: SM performance degrades linearly with the
data dimension, while efficient approaches have relatively
similar performance.

network parameters are trained along with the inducing
points zl. Further details of the model, which is iden-
tical to that in Wenliang et al. (2019), are presented in
Appendix C.1.

Setup. Following the settings of Wenliang et al. (2019),
we trained models on three UCI datasets: Parkinsons,
RedWine, and WhiteWine (Dua & Graff, 2017), and used
their original code for SM. To compute the trace term
exactly, Wenliang et al. (2019)’s manual implementation
of backpropagation takes over one thousand lines for a
model that is four layers deep, while the implementation
of SSM only takes several lines. For DSM, the value of σ
is chosen by grid search using the SM loss on a validation
dataset. All models are trained with 15 different random
seeds and training is stopped when validation loss does
not improve for 200 steps.

Results. Results in Fig. 1 demonstrate that SSM-VR
performs comparably to SM, when evaluated using the
SM loss on a held-out test set. We observe that variance
reduction substantially improves the performance of SSM.
In addition, SSM outperforms other computationally effi-
cient approaches. DSM can perform comparably to SSM
on RedWine. However, it is challenging to select σ for
DSM. Models trained using σ from the heuristic in Saremi

Test SM Loss Test LL

MLE -579 -791
SSM-VR -8054 -3355
SSM -2428 -2039
DSM (σ = 0.10) -3035 -4363
DSM (σ = 1.74) -97 -8082
CP -1694 -1517
Approx BP -48 -2288

Table 1: Score matching losses and log-likelihoods for
NICE models on MNIST. σ = 0.1 is by grid search and
σ = 1.74 is from the heuristic of Saremi et al. (2018).

et al. (2018) are far from optimal (on both SM losses and
likelihoods), and extensive grid search is needed to find
the best σ. CP performs substantially worse, which is
likely because it injects noise for each node in the com-
putation graph, and the amount of noise introduced is too
large for a neural-network-based kernel evaluated at 200
inducing points, which supports our hypothesis that CP
does not work effectively for deep models. Results for
approx BP are omitted because the losses exceeded 109

on all datasets. This is because approx BP provides a bi-
ased estimate of the Hessian without any error guarantees.
All the results are similar when evaluating according to
log-likelihood metric (Appendix C.1).

Scalability to High Dimensional Data. We evaluate
the computational efficiency of different losses on data
of increasing dimensionality. We fit DKEF models to a
multivariate standard normal in high dimensional spaces.
The average running time per minibatch of 100 examples
is reported in Fig. 2. SM performance degrades linearly
with the dimension of the input data due to the computa-
tion of the Hessian, and creates out of memory errors for
a 12GB GPU after the dimension increases beyond 400.
SSM performs similarly to DSM, approx BP and CP, and
they are all scalable to large dimensions.



6.1.2 Deep Flow Models

Setup. As a sanity check, we also evaluate SSM by
training a NICE flow model (Dinh et al., 2015), whose
likelihood is tractable and can be compared to results
obtained by MLE. The model we use has 20 hidden layers,
and 1000 units per layer. Models are trained to fit MNIST
handwritten digits, which are 784 dimensional images.
Data are dequantized by adding uniform noise in the range
[− 1

512 ,
1

512 ], and transformed using a logit transformation,
log(x) − log(1 − x). We provide additional details in
Appendix C.2.

Training with SM is extremely computationally expen-
sive in this case. Our SM implementation based on auto-
differentiation takes around 7 hours to finish one epoch
of training, and 12 GB GPU memory cannot hold a batch
size larger than 24, so we do not include these results.
Since NICE has tractable likelihoods, we also evaluate
MLE as a surrogate objective for minimizing the SM loss.
Notably, likelihoods and SM losses might be uncorrelated
when the model is mis-specified, which is likely to be the
case for a complex dataset like MNIST.

Results. SM losses and log-likelihoods on the test
dataset are reported in Tab. 1, where models are evaluated
using the best checkpoint in terms of the SM loss on a
validation dataset over 100 epochs of training. SSM-VR
greatly outperforms all the other methods on the SM loss.
DSM performs worse than SSM-VR, and σ is still hard to
tune. Specifically, following the heuristic in Saremi et al.
(2018) leads to σ = 1.74, which performed the worst (on
both log-likelihood and SM loss) of the eight choices of σ
in our grid search. Approx BP has more success on NICE
than for training DKEF models. This might be because
the Hessians of hidden layers of NICE are closer to a
diagonal matrix, which results in a smaller approximation
error for approx BP. As in the DKEF experiments, CP
performs worse. This is likely due to injecting noise to
all hidden units, which will lead to large variance for a
network as big as NICE. Unlike the DKEF experiments,
we find that good log-likelihoods are less correlated with
good SM loss, probably due to model mis-specification.

6.2 SCORE ESTIMATION

We consider two typical tasks that require accurate score
estimations: (1) training VAEs with an implicit encoder
and (2) training Wasserstein Auto-Encoders. We show in
both tasks SSM outperforms previous score estimators.
Samples generated by various algorithms can be found in
Appendix A.

VAE WAE

Latent Dim 8 32 8 32

ELBO 96.87 89.06 N/A N/A
SSM 95.50 89.25 (88.29†) 98.24 90.37
Stein 96.71 91.84 99.05 91.70

Spectral 96.60 94.67 98.81 92.55

Table 2: Negative log-likelihoods on MNIST, estimated
by AIS. †The result of SSM withM = 100, in which case
SSM matches the computational cost of kernel methods,
which used 100 samples for each data point.

Method
Iteration

10k 40k 70k 100k

VAE

ELBO 96.20 73.70 69.42 66.32

SSM 108.52 70.28 66.52 62.50
Stein 126.60 118.87 120.51 126.76

Spectral 131.90 125.04 128.36 133.93

WAE

SSM 84.11 61.09 56.23 54.33
Stein 82.93 63.46 58.53 57.61

Spectral 82.30 62.47 58.03 55.96

Table 3: FID scores of different methods versus number
of training iterations on CelebA dataset.

6.2.1 VAE with Implicit Encoders

Background. Consider a latent variable model p(x, z),
where x and z denote observed and latent variables re-
spectively. A variational auto-encoder (VAE) is composed
of two parts: 1) an encoder pθ(x | z) modeling the condi-
tional distribution of x given z; and a decoder qφ(z | x)
that approximates the posterior distribution of the latent
variable. A VAE is typically trained by maximizing the
following evidence lower bound (ELBO)

Epd [Eqφ(z|x) log pθ(x | z)p(z)− Eqφ(z|x) log qφ(z | x)],

where p(z) denotes a pre-specified prior distribution. The
expressive power of qφ(z | x) is critical to the success
of variational learning. Typically, qφ(z | x) is chosen
to be a simple distribution with tractable densities so
that H(qφ) , −Eqφ(z|x) log qφ(z | x) is tractable. We
call this traditional approach “ELBO” in the experiments.
With score estimation techniques, we can directly com-
pute ∇φH(qφ) for implicit distributions, which enables
more flexible options for qφ. We consider 3 score esti-
mation techniques: SSM, Stein (Li & Turner, 2018) and
Spectral (Shi et al., 2018).

For a single data point x, kernel score estimators need
multiple samples from qφ(z | x) to estimate its score. On
MNIST, we use 100 samples, as done in Shi et al. (2018).
On CelebA, however, we can only take 20 samples due to
GPU memory limitations. In contrast, SSM learns a score



network h(z | x) along with qφ(z | x), which amortizes
the cost of score estimation. Unless noted explicitly, we
use one projection per data point (M = 1) for SSM,
which is scalable to deep networks.

Setup. We consider VAE training on MNIST and
CelebA (Liu et al., 2015). All images in CelebA are
first cropped to a patch of 140× 140 and then resized to
64 × 64. We report negative likelihoods on MNIST, as
estimated by AIS (Neal, 2001) with 1000 intermediate
distributions. We evaluate sample quality on CelebA with
FID scores (Heusel et al., 2017). For fast AIS evalua-
tion on MNIST, we use shallow fully-connected networks
with 3 hidden layers. For CelebA experiments we use
deep convolutional networks. The architectures of im-
plicit encoders and score networks are straightforward
modifications to the encoders of ELBO. More details are
provided in Appendix C.3.

Results. The negative likelihoods of different methods
on MNIST are reported in the left part of Tab. 2. We
note that SSM outperforms Stein and Spectral in all cases.
When the latent dimension is 8, SSM outperforms ELBO,
which indicates that the expressive power of implicit
qφ(z | x) pays off. When the latent dimension is 32, the
gaps between SSM and kernel methods are even larger,
and the performance of SSM is still comparable to ELBO.
Moreover, when M = 100 (matching the computation of
kernel methods), SSM outperforms ELBO.

For CelebA, we provide FID scores of samples in the
top part of Tab. 3. We observe that after 40k training
iterations, SSM outperforms all other baselines. Kernel
methods perform poorly in this case because only 20 sam-
ples per data point can be used due to limited amount
of GPU memory. Early during training, SSM does not
perform as well. Since the score network is trained along
with the encoder and decoder, a moderate number of train-
ing steps is needed to give an accurate score estimation
(and better learning of the VAE).

6.2.2 WAEs

Background. WAE is another method to learn latent
variable models, which generally produces better samples
than VAEs. Similar to a VAE, it contains an encoder
qφ(z | x) and a decoder pθ(x | z) and both can be
implicit distributions. Let p(z) be a pre-defined prior
distribution, and qφ(z) ,

∫
qφ(z | x)pd(x)dx denote the

aggregated posterior distribution. Using a metric function
c(·, ·) and KL divergence between qφ(z) and p(z), WAE
minimizes the following objective

Epd [Eqφ(z|x)[c(x, pθ(x | z))− λ log p(z)]]− λH(qφ(z)).

Compared to ∇φH(qφ(z | x)), it is easier to esti-
mate ∇φH(qφ(z)) for kernel methods, because the
samples of qφ(z) can be collected by first sampling

x1,x2, · · · ,xN
i.i.d.∼ pd(x) and then sample one z for

each xi from qφ(z | xi). In constrast, multiple z’s need to
be sampled for each xi when estimating∇φH(qφ(z | x))
with kernel approaches. For SSM, we use a score network
h(z) and train it alongside qφ(z | x).

Setup. The setup for WAE experiments is largely the
same as VAE. The architectures are very similar to those
used in the VAE experiments, and the only difference is
that we made decoders implicit, as suggested in Tolstikhin
et al. (2018). More details can be found in Appendix C.3.

Results. The negative likelihoods on MNIST are pro-
vided in the right part of Tab. 2. SSM outperforms both
kernel methods, and achieves a larger performance gap
when the latent dimension is higher. The likelihoods are
lower than the VAE results as the WAE objective does not
directly maximize likelihoods.

We show FID scores for CelebA experiments in the bot-
tom part of Tab. 3. As expected, kernel methods perform
much better than before, because it is faster to sample
from qφ(z). The FID scores are generally lower than
those in VAE experiments, which supports previous re-
sults that WAEs generally obtain better samples. SSM
outperforms both kernel methods when the number of
iterations is more than 40k. This shows the advantages
of training a deep, expressive score network compared to
using a fixed kernel in score estimation tasks.

7 CONCLUSION

We propose sliced score matching, a scalable method for
learning unnormalized statistical models and estimating
scores for implicit distributions. Compared to the original
score matching and its variants, our estimator can scale to
deep models on high dimensional data, while remaining
easy to implement in modern automatic differentiation
frameworks. Theoretically, our estimator is consistent
and asymptotically normal under some regularity condi-
tions. Experimental results demonstrate that our method
outperforms competitors in learning deep energy-based
models and provides more accurate estimates than kernel
score estimators in training implicit VAEs and WAEs.

Acknowledgements

This research was supported by Intel Corporation, TRI,
NSF (#1651565, #1522054, #1733686 ), ONR (N00014-
19-1-2145), AFOSR (FA9550- 19-1-0024).



References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,

Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., et al. Tensorflow: A system for large-scale machine
learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pp.
265–283, 2016.

Adam, P., Soumith, C., Gregory, C., Edward, Y., Zachary,
D., Zeming, L., Alban, D., Luca, A., and Adam, L.
Automatic differentiation in pytorch. In NIPS Autodiff
Workshop, 2017.

Canu, S. and Smola, A. Kernel methods and the exponen-
tial family. Neurocomputing, 69(7):714 – 720, 2006.
ISSN 0925-2312. New Issues in Neurocomputing: 13th
European Symposium on Artificial Neural Networks.

Dinh, L., Krueger, D., and Bengio, Y. NICE: Non-
linear independent components estimation. Interna-
tional Conference in Learning Representations Work-
shop Track, 2015.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/
ml.

Dudley, R. M. The sizes of compact subsets of Hilbert
space and continuity of Gaussian processes. Journal of
Functional Analysis, 1(3):290–330, 1967.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in Neural
Information Processing Systems, pp. 2672–2680, 2014.

Gorham, J. and Mackey, L. Measuring sample qual-
ity with kernels. In Proceedings of the 34th Inter-
national Conference on Machine Learning, pp. 1292–
1301, 2017.

Gutmann, M. and Hyvärinen, A. Noise-contrastive esti-
mation: A new estimation principle for unnormalized
statistical models. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and
Statistics, pp. 297–304, 2010.

Gutmann, M. U. and Hirayama, J.-i. Bregman divergence
as general framework to estimate unnormalized statis-
tical models. In Proceedings of the Twenty-Seventh
Conference on Uncertainty in Artificial Intelligence,
pp. 283–290. AUAI Press, 2011.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B.,
and Hochreiter, S. GANs trained by a two time-scale
update rule converge to a local Nash equilibrium. In
Advances in Neural Information Processing Systems,
pp. 6626–6637, 2017.

Huszár, F. Variational inference using implicit distribu-
tions. arXiv preprint arXiv:1702.08235, 2017.

Hutchinson, M. F. A stochastic estimator of the trace of
the influence matrix for Laplacian smoothing splines.
Communications in Statistics-Simulation and Compu-
tation, 19(2):433–450, 1990.

Hyvärinen, A. Estimation of non-normalized statistical
models by score matching. Journal of Machine Learn-
ing Research, 6(Apr):695–709, 2005.

Kingma, D. P. and LeCun, Y. Regularized estimation
of image statistics by score matching. In Advances
in Neural Information Processing Systems, pp. 1126–
1134, 2010.

Kingma, D. P. and Welling, M. Auto-encoding varia-
tional Bayes. International Conference on Learning
Representations, 2014.

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M. A., and
Huang, F. J. A tutorial on energy-based learning. In
Predicting structured data. MIT Press, 2006.

Li, Y. and Turner, R. E. Gradient estimators for implicit
models. In International Conference on Learning Rep-
resentations, 2018.

Liu, Q., Lee, J., and Jordan, M. A kernelized Stein dis-
crepancy for goodness-of-fit tests. In Proceedings of
The 33rd International Conference on Machine Learn-
ing, pp. 276–284, 2016.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning
face attributes in the wild. In Proceedings of Interna-
tional Conference on Computer Vision (ICCV), 2015.

Martens, J., Sutskever, I., and Swersky, K. Estimating
the Hessian by back-propagating curvature. Proceed-
ings of the 29th International Conference on Machine
Learning, 2012.

Neal, R. M. Annealed importance sampling. Statistics
and computing, 11(2):125–139, 2001.

Owen, A. B. Monte Carlo theory, methods and examples.
2013.

Rabin, J., Peyré, G., Delon, J., and Bernot, M. Wasserstein
barycenter and its application to texture mixing. In
Bruckstein, A. M., ter Haar Romeny, B. M., Bronstein,
A. M., and Bronstein, M. M. (eds.), Scale Space and
Variational Methods in Computer Vision, pp. 435–446,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
ISBN 978-3-642-24785-9.

Saremi, S., Mehrjou, A., Schölkopf, B., and Hyvärinen,
A. Deep energy estimator networks. arXiv preprint
arXiv:1805.08306, 2018.

Sasaki, H., Hyvärinen, A., and Sugiyama, M. Clustering
via mode seeking by direct estimation of the gradi-
ent of a log-density. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pp. 19–34. Springer, 2014.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Shi, J., Sun, S., and Zhu, J. A spectral approach to gra-
dient estimation for implicit distributions. In Proceed-
ings of the 35th International Conference on Machine
Learning, pp. 4651–4660, 2018.

Sriperumbudur, B., Fukumizu, K., Gretton, A., Hyväri-
nen, A., and Kumar, R. Density estimation in infinite
dimensional exponential families. Journal of Machine
Learning Research, 18(57):1–59, 2017.

Stein, C. M. Estimation of the mean of a multivariate
normal distribution. The annals of Statistics, pp. 1135–
1151, 1981.

Strathmann, H., Sejdinovic, D., Livingstone, S., Szabo,
Z., and Gretton, A. Gradient-free Hamiltonian monte
carlo with efficient kernel exponential families. In
Advances in Neural Information Processing Systems,
pp. 955–963, 2015.

Sun, S., Zhang, G., Shi, J., and Grosse, R. Functional
variational Bayesian neural networks. In International
Conference on Learning Representations, 2019.

Sutherland, D., Strathmann, H., Arbel, M., and Gretton,
A. Efficient and principled score estimation with Nys-
tröm kernel exponential families. In Proceedings of
the Twenty-First International Conference on Artificial
Intelligence and Statistics, pp. 652–660, 2018.

Tolstikhin, I., Bousquet, O., Gelly, S., and Schoelkopf,
B. Wasserstein auto-encoders. In International Confer-
ence on Learning Representations, 2018.

Tran, D., Ranganath, R., and Blei, D. Hierarchical im-
plicit models and likelihood-free variational inference.
In Advances in Neural Information Processing Systems,
pp. 5523–5533, 2017.

van der Vaart, A. W. Asymptotic Statistics. Cam-
bridge Series in Statistical and Probabilistic Math-
ematics. Cambridge University Press, 1998. doi:
10.1017/CBO9780511802256.

Vincent, P. A connection between score matching and
denoising autoencoders. Neural computation, 23(7):
1661–1674, 2011.

Wenliang, L., Sutherland, D., Strathmann, H., and
Gretton, A. Learning deep kernels for exponential
family densities. In Chaudhuri, K. and Salakhut-
dinov, R. (eds.), Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pp.
6737–6746, Long Beach, California, USA, 09–15 Jun
2019. PMLR. URL http://proceedings.mlr.
press/v97/wenliang19a.html.

http://proceedings.mlr.press/v97/wenliang19a.html
http://proceedings.mlr.press/v97/wenliang19a.html


A Samples

A.1 VAE WITH IMPLICIT ENCODERS

A.1.1 MNIST

Latent Dim 8 Latent Dim 32

ELBO

SSM

Stein

Spectral

Table 4: VAE samples on MNIST.



A.1.2 CelebA

(a) ELBO (b) SSM

(c) Stein (d) Spectral

Table 5: VAE samples on CelebA.



A.2 WAE

A.2.1 MNIST

Latent Dim 8 Latent Dim 32

SSM

Stein

Spectral

Table 6: WAE samples on MNIST.



A.2.2 CelebA

SSM

Stein

Spectral

Table 7: WAE samples on CelebA.



B PROOFS

B.1 NOTATIONS

Below we provide a summary of the most commonly used notations used in the proofs. First, we denote the data
distribution as pd(x) and assume that the training/test data {x1,x2, · · · ,xN} are i.i.d. samples of pd(x). The model
is denoted as pm(x;θ), where θ is restricted to a parameter space Θ. Note that pm(x;v) can be an unnormalized
energy-based model. We use v to represent a random vector with the same dimension of input x. This vector v is often
called the projection vector, and we use pv to denote its distribution.

Next, we introduce several shorthand notations for quantities related to pm(x;θ) and pd(x). The log-likelihood
log pm(x;θ) and log pd(x) are respectively denoted as lm(x;θ) and ld(x). The (Stein) score function∇x log pm(x;θ)
and ∇x log pd(x) are written as sm(x;θ) and sd(x), and finally the Hessian of log pm(x;θ) w.r.t. x is denoted as
∇xsm(x;θ).

We also adopt some convenient notations for collections. In particular, we use xN1 to denote a col-
lection of N vectors {x1,x2, · · · ,xN} and use vNM11 to denote N × M vectors {v11,v12, · · · ,v1M ,v21,
v22, · · · ,v2M , · · · ,vN1,vN2, · · · ,vNM}.

B.2 BASIC PROPERTIES

The following regularity conditions are needed for integration by parts and identifiability.

Assumption 1 (Regularity of score functions). The model score function sm(x) and data score function sd(x) are both
differentiable. They additionally satisfy Epd [‖sm(x)‖22] <∞ and Epd [‖sd(x)‖22] <∞.

Assumption 2 (Regularity of projection vectors). The projection vectors satisfy Epv [‖v‖22] <∞, and Epv [vvᵀ] � 0.

Assumption 3 (Boundary conditions). ∀θ ∈ Θ, lim‖x‖→∞ sm(x;θ)pd(x) = 0.

Assumption 4 (Identifiability). The model family {pm(x;θ) | θ ∈ Θ} is well-specified, i.e., pd(x) = pm(x;θ∗).
Furthermore, pm(x;θ) 6= pm(x;θ∗) whenever θ 6= θ∗.

Assumption 5 (Positiveness). pm(x;θ) > 0,∀θ ∈ Θ and ∀x.

Theorem 1. Assume sm(x;θ), sd(x) and pv satisfy some regularity conditions (Assumption 1, Assumption 2). Under
proper boundary conditions (Assumption 3), we have

L(θ; pv) ,
1

2
EpvEpd

[
(vᵀsm(x;θ)− vᵀsd(x))2

]
= EpvEpd

[
vᵀ∇xsm(x;θ)v +

1

2
(vᵀsm(x;θ))

2

]
+ C, (13)

where C is a constant w.r.t. θ.

Proof. The basic idea of this proof is similar to that of Theorem 1 in Hyvärinen (2005). First, note that L(θ, pv) can be
expanded to

L(θ, pv) =
1

2
EpvEpd

[
(vᵀsm(x;θ)− vᵀsd(x))2

]
(i)
=

1

2
EpvEpd [(vᵀsm(x;θ))2 + (vᵀsd(x))2 − 2(vᵀsm(x;θ))(vᵀsd(x;θ))] (14)

= EpvEpd
[
− (vᵀsm(x;θ))(vᵀsd(x;θ)) +

1

2
(vᵀsm(x;θ))

2

]
+ C, (15)

where (i) is due to the assumptions of bounded expectations. We have absorbed the second term in the bracket of (14)
into C since it does not depend on θ. Now what we need to prove is

−EpvEpd [(vᵀsm(x;θ))(vᵀsd(x;θ))] = EpvEpd [vᵀ∇xsm(x;θ)v]. (16)

This can be shown by first observing that

− EpvEpd [(vᵀsm(x;θ))(vᵀsd(x;θ))]



=− Epv
∫
pd(x)(vᵀsm(x;θ))(vᵀsd(x;θ))dx

=− Epv
∫
pd(x)(vᵀ∇x log pm(x;θ))(vᵀ∇x log pd(x))dx

=− Epv
∫

(vᵀ∇x log pm(x;θ))(vᵀ∇xpd(x))dx

=− Epv
D∑
i=1

∫
(vᵀ∇x log pm(x;θ))vi

∂pd(x)

∂xi
dx, (17)

where we assume x ∈ RD. Then, applying multivariate integration by parts (cf ., Lemma 4 in Hyvärinen (2005)), we
obtain ∣∣∣∣Epv D∑

i=1

∫
(vᵀsm(x;θ))vi

∂pd(x)

∂xi
dx + Epv

D∑
i=1

∫
vipd(x)vᵀ ∂sm(x;θ)

∂xi
dx

∣∣∣∣
=

∣∣∣∣Epv[ D∑
i=1

lim
xi→∞

(vᵀsm(x;θ))vipd(x)−
D∑
i=1

lim
xi→−∞

(vᵀsm(x;θ))vipd(x)

]∣∣∣∣
≤

D∑
i=1

lim
xi→∞

D∑
j=1

Epv |vivj ||sm,j(x;θ)pd(x)|+
D∑
i=1

lim
xi→−∞

D∑
j=1

Epv |vivj ||sm,j(x;θ)pd(x)|

(i)

≤
D∑
i=1

lim
xi→∞

D∑
j=1

√
Epvv2

i Epvv2
j |sm,j(x;θ)pd(x)|+

D∑
i=1

lim
xi→−∞

D∑
j=1

√
Epvv2

i Epvv2
j |sm,j(x;θ)pd(x)|

(ii)
= 0,

where sm,j(x;θ) denotes the j-th component of sm(x;θ). In the above derivation, (i) is due to Cauchy-Schwarz
inequality and (ii) is from the assumption that Epv [‖v‖2] <∞ and s(x;θ)pd(x) vanishes at infinity.

Now returning to (17), we have

−Epv
D∑
i=1

∫
(vᵀ∇x log pm(x;θ))vi

∂pd(x)

∂xi
dx = Epv

D∑
i=1

∫
vipd(x)vᵀ ∂sm(x;θ)

∂xi
dx

= Epv
∫
pd(x)vᵀ∇xsm(x;θ)vdx,

which proves (16) and the proof is completed.

Lemma 1. Assume our model family is well-specified and identifiable (Assumption 4). Assume further that the densities
are all positive (Assumption 5). When pv satisfies some regularity conditions (Assumption 2), we have

L(θ; pv) = 0⇔ θ = θ∗.

Proof. First, since pd(x) = pm(x;θ∗) > 0, L(θ; pv) = 0 implies

1

2
Epv(vᵀ(sm(x;θ)− sd(x)))2 = 0

⇔ Epvvᵀ(sm(x;θ)− sd(x))(sm(x;θ)− sd(x))ᵀv = 0

⇔ (sm(x;θ)− sd(x))ᵀEpv [vvᵀ](sm(x;θ)− sd(x)) = 0

(i)⇔ sm(x;θ)− sd(x) = 0

⇔ log pm(x;θ) = log pd(x) + C

where (i) holds because Epv [vvᵀ] is positive definite. Because pm(x;θ) and pd(x) are normalized probability density
functions, we have pm(x;θ) = pd(x). The identifiability assumption gives θ = θ∗. This concludes the left to right
direction of the implication and the converse direction is trivial.



B.3 CONSISTENCY

In addition to the assumptions in Theorem 1 and Lemma 1, we need the following regularity conditions to prove the
consistency of θ̂N,M , arg minθ∈Θ Ĵ(θ;xN1 ,v

NM
11 ).

Assumption 6 (Compactness). The parameter space Θ is compact.
Assumption 7 (Lipschitz continuity). Both ∇xsm(x;θ) and sm(x;θ)sm(x;θ)ᵀ are Lipschitz continuous in terms
of Frobenious norm, i.e., ∀θ1 ∈ Θ,θ2 ∈ Θ, ‖∇xsm(x;θ1)−∇xsm(x;θ2)‖F ≤ L1(x) ‖θ1 − θ2‖2 and
‖sm(x;θ1)sm(x;θ1)ᵀ − sm(x;θ2)sm(x;θ2)ᵀ‖F ≤ L2(x) ‖θ1 − θ2‖2. In addition, we require Epd [L2

1(x)] < ∞
and Epd [L2

2(x)] <∞.

Assumption 8 (Bounded moments of projection vectors). Epv [‖vvᵀ‖2F ] <∞.
Lemma 2. Suppose sm(x;θ) is sufficiently smooth (Assumption 7) and pv has bounded higher-order moments
(Assumption 8). Let f(θ;x,v) , vᵀ∇xsm(x;θ)v + 1

2 (vᵀsm(x;θ))2. Then f(θ;x,v) is Lipschitz continuous with
constant L(x,v) and Epd,pv [L2(x,v)] <∞.

Proof. Let A(θ) , ∇xsm(x;θ) and B(θ) , sm(x;θ)sm(x;θ)ᵀ. Consider θ1 ∈ Θ,θ2 ∈ Θ and let D be the
dimension of v, we have

|f(θ1;x,v)− f(θ2;x,v)|

=

D∑
i=1

D∑
j=1

[
vivj(A(θ1)ij −A(θ2)ij) +

1

2
vivj(B(θ1)ij −B(θ2)ij)

]
(i)

≤

√√√√ D∑
i=1

D∑
j=1

v2
i v

2
j

√√√√ D∑
i=1

D∑
j=1

[
(A(θ1)ij −A(θ2)ij) +

1

2
(B(θ1)ij −B(θ2)ij)

]2

(ii)

≤

√√√√ D∑
i=1

D∑
j=1

v2
i v

2
j

√√√√ D∑
i=1

D∑
j=1

2(A(θ1)ij −A(θ2)ij)2 +
1

2
(B(θ1)ij −B(θ2)ij)2

(iii)

≤

√√√√ D∑
i=1

D∑
j=1

v2
i v

2
j

√
2L2

1(x) ‖θ1 − θ2‖22 +
1

2
L2

2(x) ‖θ1 − θ2‖22

=

√√√√ D∑
i=1

D∑
j=1

v2
i v

2
j

√
2L2

1(x) +
1

2
L2

2(x) ‖θ1 − θ2‖2 ,

where (i) is Cauchy-Schwarz inequality, (ii) is Jensen’s inequality, and (iii) is due to Assumption 7. Now let

L(x,v) ,

√√√√ D∑
i=1

D∑
j=1

v2
i v

2
j

√
2L2

1(x) +
1

2
L2

2(x).

Then

Epd,pv [L2(x,v)]
(i)
= Epv

[ D∑
i=1

D∑
j=1

v2
i v

2
j

]
Epd
[
2L2

1(x) +
1

2
L2

2(x)

]
(ii)
< ∞,

where (i) results from the independence of v,x, and (ii) is due to Assumption 7 and Assumption 8.

Lemma 3 (Uniform convergence of the expected error). Under Assumption 6-8, we have

Epv,pd
[

sup
θ∈Θ

∣∣Ĵ(θ;xN1 ,v
NM
11 )− J(θ; pv)

∣∣] ≤ O(diam(Θ)

√
D

N

)
(18)

where diam(·) denotes the diameter and D is the dimension of Θ.



Proof. The proof consists of 3 steps. First, we use the symmetrization trick to get rid of the inner expectation term
J(θ; pv) = Epv,pd [Ĵ(θ;xN1 ,v

NM
11 )]. Second, we use chaining to get an upper bound that involves integration of the

metric entropy. Finally, we upper bound the metric entropy to obtain the uniform convergence bound.

Step 1: From Jensen’s inequality, we obtain

Epv,pd
[

sup
θ∈Θ

∣∣Ĵ(θ;xN1 ,v
NM
11 )− J(θ; pv)

∣∣]
=Epv,pd

[
sup
θ∈Θ

∣∣Ĵ(θ;xN1 ,v
NM
11 )− Epv,pd [Ĵ(θ;xN1 ,v

NM
11 )]

∣∣]
=Epv,pd

[
sup
θ∈Θ

∣∣Ĵ(θ;xN1 ,v
NM
11 )− Epv,pd [Ĵ(θ;x′

N
1 ,v

′NM
11 ]

∣∣]
≤Epv,pd

[
sup
θ∈Θ

∣∣Ĵ(θ;xN1 ,v
NM
11 )− Ĵ(θ;x′

N
1 ,v

′NM
11 )

∣∣],
where x′

N
1 ,v

′NM
11 are independent copies of xN1 and vNM11 . Let {εi}Ni=1 be a set of independent Rademacher random

variables, we have

Epv,pd
[

sup
θ∈Θ

∣∣Ĵ(θ;xN1 ,v
NM
11 )− Ĵ(θ;x′

N
1 ,v

′NM
11 )

∣∣]
=Epv,pd

[
sup
θ∈Θ

1

N

1

M

∣∣∣∣ N∑
i=1

M∑
j=1

vᵀ
ij∇xsm(xi;θ)vij +

1

2

(
vᵀ
ijsm(xi;θ)

)2︸ ︷︷ ︸
,f(θ;xi,vij)

−
[
v′

ᵀ
ij∇xsm(x′i;θ)v′ij +

1

2

(
v′

ᵀ
ijsm(x′i;θ)

)2︸ ︷︷ ︸
,f(θ;x′i,v

′
ij)

]∣∣∣∣]

=Epv,pd
[

sup
θ∈Θ

1

N

1

M

∣∣∣∣ N∑
i=1

M∑
j=1

f(θ;xi,vij)− f(θ;x′i,v
′
ij)

∣∣∣∣]
(i)
=E
[

sup
θ∈Θ

∣∣∣∣ 1

N

1

M

N∑
i=1

M∑
j=1

εi(f(θ;xi,vij)− f(θ;x′i,v
′
ij))

∣∣∣∣]
(ii)

≤ E
[

sup
θ∈Θ

∣∣∣∣ 1

N

1

M

N∑
i=1

M∑
j=1

εif(θ;xi,vij)

∣∣∣∣]+ E
[

sup
θ∈Θ

∣∣∣∣ 1

N

1

M

N∑
i=1

M∑
j=1

εif(θ;x′i,v
′
ij)

∣∣∣∣]

=2E
[

sup
θ∈Θ

∣∣∣∣ 1

N

1

M

N∑
i=1

M∑
j=1

εif(θ;xi,vij)

∣∣∣∣], (19)

where (i) is because the quantity is symmetric about 0 in distribution, and (ii) is due to Jensen’s inequality.

Step 2: First note that given xi,vij , εiM
∑M
j=1 f(θ;xi,vij) is a zero-mean sub-Gaussian process w.r.t. θ. This can be

observed from

Eεi
[
eλ

εi
M

∑M
j=1[f(θ1;xi,vij)−f(θ2;xi,vij)]

]
(i)

≤ exp

 λ2

2M2

( M∑
j=1

[f(θ1;xi,vij)− f(θ2;xi,vij)]

)2


(ii)

≤ exp

 λ2

2M2
M

M∑
j=1

[f(θ1;xi,vij)− f(θ2;xi,vij)]
2


(iii)

≤ exp

 λ2

2M

M∑
j=1

L2(xi,vij) ‖θ1 − θ2‖2
 ,

where (i) holds because εi is a 1-sub-Gaussian random variable, (ii) is from Cauchy-Schwarz inequality and (iii)

is due to Lemma 2. As a result, 1
N

1
M

∑N
i=1

∑M
j=1 εif(θ;xi,vij) is a zero-mean sub-Gaussian random process with



metric

d(θ1,θ2) =
1√
N

√√√√ 1

NM

N∑
i=1

M∑
j=1

L2(xi,vij) ‖θ1 − θ2‖ .

Since Θ is compact, the diameter of Θ with respect to the Euclidean norm ‖·‖2 is finite and we denote it as diam(Θ) <
∞. Then, Dudley’s entropy integral (Dudley, 1967) gives

E
[

sup
θ∈Θ

∣∣∣∣ 1

N

1

M

N∑
i=1

M∑
j=1

εif(θ;xi,vij)

∣∣∣∣] ≤ O(1)E
[ ∫ 1√

N

√
1

NM

∑N
i=1

∑M
j=1 L

2(xi,vij) diam(Θ)

0

√
logN(Θ, d, ε)dε

]
.

(20)

Here logN(Θ, d, ε) is the metric entropy of Θ with metric d(θ1,θ2) =
1√
N

√
1

NM

∑N
i=1

∑M
j=1 L

2(xi,vij) ‖θ1 − θ2‖2 and size ε.

Step 3: When the dimension of θ ∈ Θ is D, it is known that the ε-covering number of Θ with Euclidean distance is

N(Θ, ‖·‖ , ε) ≤
(

1 +
diam(Θ)

ε

)D
.

Therefore, N(Θ, d, ε) can be bounded by

N(Θ, d, ε) ≤

1 +

√√√√ 1

NM

N∑
i=1

M∑
j=1

L2(xi,vij)
diam(Θ)√

Nε

D

.

Hence, the metric integral can be bounded

∫ 1√
N

√
1

NM

∑N
i=1

∑M
j=1 L

2(xi,vij) diam(Θ)

0

√
logN(Θ, d, ε)dε

≤
∫ 1√

N

√
1

NM

∑N
i=1

∑M
j=1 L

2(xi,vij) diam(Θ)

0

√√√√√D log

(
1 +

√√√√ 1

NM

N∑
i=1

M∑
j=1

L2(xi,vij)
diam(Θ)√

Nε

)
dε

≤
∫ 1√

N

√
1

NM

∑N
i=1

∑M
j=1 L

2(xi,vij) diam(Θ)

0

√√√√√
√√√√ 1

NM

N∑
i=1

M∑
j=1

L2(xi,vij)
D diam(Θ)√

Nε
dε

= 2

√√√√ 1

NM

N∑
i=1

M∑
j=1

L2(xi,vij)

√
D

N
diam(Θ) (21)

Finally, combining (19), (20) and (21) gives us

Epv,pd
[

sup
θ∈Θ

∣∣Ĵ(θ;xN1 ,v
NM
11 )− J(θ; pv)

∣∣]

≤4O(1)Epv,pd

√√√√ 1

NM

N∑
i=1

M∑
j=1

L2(xi,vij)

√
D

N
diam(Θ)


(i)

≤O(1)

√
D

N
diam(Θ)

√√√√Epv,pd
[

1

NM

N∑
i=1

M∑
j=1

L2(xi,vij)

]



(ii)

≤O(1) diam(Θ)

√
D

N
,

where (i) is due to Jensen’s inequality and (ii) results from E[L2(x,v)] <∞, and the compactness of Θ guarantees
that the bound is finite.

Theorem 2. Suppose all the previous assumptions hold (Assumption 1-Assumption 8). Assume further the conditions of
Theorem 1 and Lemma 1 are satisfied. Let θ∗ be the true parameter of the data distribution, and θ̂N,M be the empirical
estimator defined by

θ̂N,M , arg min
θ∈Θ

Ĵ(θ;xN1 ,v
NM
11 )

Then, θ̂N,M is consistent, meaning that

θ̂N,M
p→ θ∗

as N →∞.

Proof. Note that Theorem 1 and Lemma 1 together imply that θ∗ = arg minθ∈Θ J(θ; pv). Then, we will show
J(θ̂N,M ; pv)

p→ J(θ∗; pv) when N →∞. This can be done by noticing

J(θ̂N,M ; pv)− J(θ∗; pv) =J(θ̂N,M ; pv)− Ĵ(θ̂N,M ;xN1 ,v
NM
11 ) + Ĵ(θ̂N,M ;xN1 ,v

NM
11 )− Ĵ(θ∗;xN1 ,v

NM
11 )

+ Ĵ(θ∗;xN1 ,v
NM
11 )− J(θ∗; pv)

≤ sup
θ∈Θ
|Ĵ(θ;xN1 ,v

NM
11 )− J(θ; pv)|+ |Ĵ(θ∗;xN1 ,v

NM
11 )− J(θ∗; pv)|

≤2 sup
θ∈Θ
|Ĵ(θ;xN1 ,v

NM
11 )− J(θ; pv)| (22)

We can easily conclude that (22) is op(1) with the help of Lemma 3, because

P

(
sup
θ∈Θ
|Ĵ(θ;xN1 ,v

NM
11 )− J(θ; pv)| > t

)
≤ E

[
sup
θ∈Θ
|Ĵ(θ;xN1 ,v

NM
11 )− J(θ; pv)||

]
/t ≤ O(1)

√
1

Nt2
→ 0,

as N →∞. From Lemma 1 we also have L(θ̂N,M ; pv)− L(θ∗; pv) > 0 if θ̂N,M 6= θ. As shown by Theorem 1, this
is the same as J(θ̂N,M ; pv)− J(θ∗; pv) > 0 if θ̂N,M 6= θ. Therefore (22) = op(1) gives J(θ̂N,M ; pv)

p→ J(θ∗; pv).

Next, we show θ̂N,M
p→ θ∗. This can be inferred from J(θ̂N,M ; pv)

p→ J(θ∗; pv) because J(θ; pv) is continuous
(Assumption 7) and Θ is compact (Assumption 6). The proof is reductio ad absurdum. Specifically, assume that
θ̂N,M 6

p→ θ∗. We know ∃ε > 0, δ > 0,∀K > 0,∃N > K,M > 0 such that P (‖θ̂N,M − θ∗‖ ≥ ε) ≥ δ. Note
that J(θ; pv) = E[f(θ;x,v)], f(θ;x,v) is Lipschitz continuous and E[L(θ;x,v)] ≤

√
E[L2(θ;x,v)] < ∞. This

implies that J(θ; pv) is continuous w.r.t. θ. Since Θ is compact and J(θ; pv) is continuous, we can define a compact
set Sε , {θ ∈ Θ|‖θ − θ∗‖ ≥ ε} and let θSε , arg minθ∈Sε J(θ; pv). Observe that

p(J(θ̂N,M ; pv) ≥ J(θSε ; pv)) = p(|J(θ̂N,M ; pv)− J(θ∗; pv)| ≥ J(θSε ; pv)− J(θ∗; pv))

≥ p(‖θ̂N,M − θ∗‖ ≥ ε) ≥ δ.

However, the fact that p(|J(θ̂N,M ; pv) − J(θ∗; pv)| ≥ J(θSε ; pv) − J(θ∗; pv)) ≥ δ holds for arbitrarily large N
contradicts J(θ̂N,M ; pv)

p→ J(θ∗; pv).

B.4 ASYMPTOTIC NORMALITY

Notations. To simplify notations we use ∂i∂jh(·) , (∇2
xh(·))ij , ∂ih(·) , (∇xh(·))i, and denote ∇xh(x)|x=x′ as

∇xh(x′). Here h(·) denotes some arbitrary function. Let lm , log pm(x;θ), lm(x;θ) , log pm(x;θ) and further
adopt the following notations

J(θ) , Epd
[

tr(∇xsm(x;θ)) +
1

2
‖sm(x;θ)‖22

]



f(θ;x,v) , vᵀ∇xsm(x;θ)v +
1

2
(vᵀsm(x;θ))2

f(θ;x,vM1 ) ,
1

M

M∑
j=1

f(θ;x,vj) =
1

M

M∑
j=1

vᵀ
j∇xsm(x;θ)vj +

1

2
(vᵀ
j sm(x;θ))2

f(θ;x) , tr(∇xsm(x;θ)) +
1

2
‖sm(x;θ)‖22

Σij , (Epv [vvᵀ])ij

Sijpq , Epv [vivjvpvq]

Vijpq , Epd
[(
∇θ∂i∂j lm +

1

2
∇θ(∂ilm∂j lm)

)(
∇θ∂p∂qlm +

1

2
∇θ(∂plm∂qlm)

)ᵀ] ∣∣∣∣
θ=θ∗

Vij , Viijj

Wij , Vijij

For the proof of asymptotic normality we need the following extra assumptions.

Assumption 9 (Lipschitz smoothness on second derivatives). For θ1, θ2 near θ∗, and ∀i, j,∥∥∇2
θ∂i∂j lm(x;θ1)−∇2

θ∂i∂j lm(x;θ2)
∥∥
F
≤Mij(x) ‖θ1 − θ2‖2∥∥∇2

θ∂ilm(x;θ1)∂j lm(x;θ1)−∇2
θ∂ilm(x;θ2)∂j lm(x;θ2)

∥∥
F
≤ Nij(x) ‖θ1 − θ2‖2

and

Epd [M2
ij(x)] <∞, Epd [N2

ij(x)] <∞, ∀i, j.

Lemma 4. Suppose lm(x;θ) is sufficiently smooth (Assumption 9) and pv has bounded moments (Assumption 2 and
Assumption 8). Let ∇2

θf(θ;x,vM1 ) , 1
M

∑M
i=1∇2

θv
ᵀ
i∇xsm(x;θ)vi + 1

2∇
2
θ(vᵀ

i sm(x;θ))2. Then ∇2
θf(θ;x,v) is

Lipschitz continuous, i.e., for θ1 and θ2 close to θ∗, there exists a Lipschitz constant L(x,vM1 ) such that∥∥∇2
θf(θ1;x,vM1 )−∇2

θf(θ2;x,vM1 )
∥∥
F
≤ L(x,vM1 ) ‖θ1 − θ2‖2 ,

and Epd,pv [L2(x,vM1 )] <∞.

Proof. First, we write out ∇2
θf(θ1;x,vM1 ) − ∇2

θf(θ2;x,vM1 ) according to the definitions. Let Aij(θ) ,
∇2

θ∂i∂j lm(x;θ) and Bij(θ) , ∇2
θ∂ilm(x;θ)∂j lm(x;θ). Then,

∇2
θf(θ1;x,vM1 )−∇2

θf(θ2;x,vM1 ) =
1

M

∑
i,j,k

vk,ivk,j

[
Aij(θ1)−Aij(θ2) +

1

2
(Bij(θ1)−Bij(θ2))

]
.

Then, Cauchy-Schwarz and Jensen’s inequality give∥∥∇2
θf(θ1;x,vM1 )−∇2

θf(θ2;x,vM1 )
∥∥2

F

=
∑
l,m

(
1

M

∑
i,j,k

vk,ivk,j

[
Aij(θ1)lm −Aij(θ2)lm +

1

2
(Bij(θ1)lm −Bij(θ2))lm

])2

≤
∑
l,m

 1

M

√√√√∑
i,j

(∑
k

vk,ivk,j

)2

·

√√√√∑
i,j

[
Aij(θ1)lm −Aij(θ2)lm +

1

2
(Bij(θ1)lm −Bij(θ2))lm

]2


2

≤
∑
l,m

1

M2

(∑
i,j

(∑
k

vk,ivk,j

)2
)(∑

i,j

(
2

[
Aij(θ1)lm −Aij(θ2)lm

]2

+
1

2

[
(Bij(θ1)lm −Bij(θ2))lm

]2))



=
1

M2

(∑
i,j

(∑
k

vk,ivk,j

)2
)(∑

i,j

(∑
l,m

2

[
Aij(θ1)lm −Aij(θ2)lm

]2

+
∑
l,m

1

2

[
(Bij(θ1)lm −Bij(θ2))lm

]2))

=
1

M2

( ∑
i,j,p,q

vp,ivp,jvq,ivq,j

)(∑
i,j

(
2 ‖Aij(θ1)−Aij(θ2)‖2F +

1

2
‖Vij(θ1)− Vij(θ2)‖2F

))

≤ 1

M2

( ∑
i,j,p,q

vp,ivp,jvq,ivq,j

)(∑
i,j

(
2M2

ij +
1

2
N2
ij

))
︸ ︷︷ ︸

,L2(x,vM1 )

‖θ1 − θ2‖22

Next, we bound the expectation

Epd,pv [L2(x,vM1 )] =
1

M2
Epv

[ ∑
i,j,p,q

vp,ivp,jvq,ivq,j

]
Epd
[∑

ij

2M2
ij(x) +

1

2
N2
ij(x)

]
(i)

≤ O(1)Epv
[ ∑
i,j,p,q

vp,ivp,jvq,ivq,j

]
= O(1)

(∑
ij

M(M − 1)Epv [vivj ]
2 +MEpv [(vivj)

2]
)

= O(1)
(
M(M − 1) ‖Epv [vvᵀ]‖2F +MEpv [‖vvᵀ‖2F

)
(ii)

≤ O(1)
(
M(M − 1)Epv [‖vvᵀ‖2F ] +MEpv [‖vvᵀ‖2F

) (iii)
< ∞,

where (i) is due to Assumption 9, (ii) is Jensen’s, and (iii) is because of Assumption 2 and 8.

Lemma 5. Assume that conditions in Theorem 1 and Lemma 1 hold, and pv has bounded higher-order moments
(Assumption 8). Then

Varpd,pv
[
∇θf(θ∗;x,vM1 )

]
=
∑
i,j,p,q

[(
1− 1

M

)
ΣijΣpq +

1

M
Sijpq

]
Vijpq, (23)

where∇θf(θ∗;x,vM1 ) = ∇θf(θ;x,vM1 )
∣∣
θ=θ∗

In particular, if pv ∼ N (0, I), we have

Varpd,pv
[
∇θf(θ∗;x,vM1 )

]
=
∑
ij

Vij +
2

M

∑
i

Vii +
2

M

∑
i 6=j

Wij .

If pv is the distribution of multivariate Rademacher random variables, we have

Varpd,pv
[
∇θf(θ∗;x,vM1 )

]
=
∑
ij

Vij +
2

M

∑
i 6=j

Wij .

Proof. Since θ∗ is the true parameter of the data distribution, we have

Epd,pv [∇θf(θ∗;x,vM1 )] = ∇θEpd,pv [f(θ∗;x,vM1 )] = ∇θJ(θ∗; pv) = 0.

Therefore, (23) can be expanded as

Varpd,pv
[
∇θf(θ∗;x,vM1 )

]
=Epd,pv

[
∇θf(θ∗;x,vM1 )∇θf(θ∗;x,vM1 )ᵀ

]
=E

 ∑
i,j,p,q

 1

M2

∑
k,l

vk,ivk,jvl,pvl,q

(∇θ∂i∂j lm +
1

2
∇θ(∂ilm∂j lm)

)(
∇θ∂p∂qlm +

1

2
∇θ(∂plm∂qlm)

)ᵀ




=
∑
i,j,p,q

E

 1

M2

∑
k,l

vk,ivk,jvl,pvl,q


︸ ︷︷ ︸

,E1

E
[(
∇θ∂i∂j lm +

1

2
∇θ(∂ilm∂j lm)

)(
∇θ∂p∂qlm +

1

2
∇θ(∂plm∂qlm)

)ᵀ]
︸ ︷︷ ︸

Vijpq

.

Continuing on E1, we have that

E1 =
1

M2

∑
k 6=l

E[vk,ivk,j ]E[vl,pvl,q] +
1

M2

∑
k

E[vk,ivk,jvk,pvk,q]

=

(
1− 1

M

)
ΣijΣpq +

1

M
Sijpq,

which leads to (23). Note that Assumption 2 guarantees that |Σij | <∞ and Assumption 8 ensures |Sijpq| <∞.

If pv ∼ N (0, I), S and Σ have the following simpler forms

Σij = δij

Sijpq =


3, i = j = p = q

1, i = j 6= p = q or i = p 6= j = q or i = q 6= j = p

0, otherwise
.

Then, if we assume that the second derivatives of lm are continuous, we have ∂i∂j lm = ∂j∂ilm, and the variance (23)
can also be simplified to

Varpd,pv
[
∇θf(θ∗;x,vM1 )

]
=
∑
i 6=j

Vij +
M + 2

M

∑
i

Vii +
2

M

∑
i 6=j

Wij =
∑
ij

Vij +
2

M

∑
i

Vii +
2

M

∑
i6=j

Wij .

Similarly, if pv ∼ U({±1}D), (23) has the simplified form

Varpd,pv
[
∇θf(θ∗;x,vM1 )

]
=
∑
ij

Vij +
2

M

∑
i 6=j

Wij .

Theorem 3. With the notations and assumptions in Lemma 4, Lemma 5 and Theorem 2, we have
√
N(θ̂N,M − θ∗)

d→

N

(
0,

(
∇2

θJ(θ∗; pv)

)−1( ∑
i,j,p,q

[(
1− 1

M

)
ΣijΣpq +

1

M
Sijpq

]
Vijpq

)(
∇2

θJ(θ∗; pv)

)−1
)
.

In particular, if pv ∼ N (0, I), then the asymptotic variance is(
∇2

θJ(θ∗)

)−1(∑
ij

Vij +
2

M

∑
i

Vii +
2

M

∑
i 6=j

Wij

)(
∇2

θJ(θ∗)

)−1

.

If pv is the distribution of multivariate Rademacher random variables, the asymptotic variance is(
∇2

θJ(θ∗)

)−1(∑
ij

Vij +
2

M

∑
i 6=j

Wij

)(
∇2

θJ(θ∗)

)−1

.

Proof. To simplify notations, we use PNh(x) , 1
N

∑N
i=1 h(xi, ·), where h(x, ·) is some arbitrary function.

For example, Ĵ(θ;xN1 ,v
NM
11 ) can be written as PNf(θ;x,vM1 ). By Taylor expansion, we can approximate

PN∇θf(θ̂N,M ;x,vM1 ) around θ∗:

0 = ∇θPNf(θ̂N,M ;x,vM1 )



= PN∇θf(θ∗;x,vM1 ) + PN

(
∇2

θf(θ∗;x,vM1 ) + Eθ̂N,M ,x,vM1

)
(θ̂N,M − θ∗), (24)

where ‖Eθ̂N,M ,x,vM1
‖F ≤ L(x,vM1 )‖θ̂N,M − θ∗‖2 from Lemma 4 and Taylor expansion of vector-valued functions.

Combining with the law of large numbers, we have

PN∇2
θf(θ∗;x,vM1 ) = Epd,pv [∇2

θf(θ∗;x,vM1 )] + op(1)

and ∥∥∥PNEθ̂N,M

∥∥∥
F
≤ Epd,pv [L(x,vM1 )]

∥∥∥θ̂N,M − θ∗∥∥∥
2

+ op(1) = op(1) + op(1) = op(1),

where we used E[L(x,vM1 )] ≤
√

E[L2(x,vM1 )] < ∞ (Lemma 4) and the consistency of θ̂N,M (Theorem 2). Now
returning to (24), we get

0 = PN∇θf(θ∗;x,vM1 ) +

(
Epd,pv [∇2

θf(θ∗;x,vM1 )] + op(1)

)
(θ̂N,M − θ∗)

⇔
(
∇2

θJ(θ∗; pv) + op(1)

)√
N(θ̂N,M − θ∗) = −

√
NPN∇θf(θ∗;x,vM1 ).

But of course, the central limit theorem and Lemma 5 yield

−
√
NPN∇θf(θ∗;x,vM1 )

d→ N (0,Varpd,pv
[
∇θf(θ∗;x,vM1 )

]
)

= N
(

0,
∑
i,j,p,q

[(
1− 1

M

)
ΣijΣpq +

1

M
Sijpq

]
Vijpq

)
.

Then, Slutsky’s theorem gives the desired result
√
N(θ̂N,M − θ∗)

d→

N

(
0,

(
∇2

θJ(θ∗; pv)

)−1( ∑
i,j,p,q

[(
1− 1

M

)
ΣijΣpq +

1

M
Sijpq

]
Vijpq

)(
∇2

θJ(θ∗; pv)

)−1
)
.

In particular, if pv ∼ N (0, I) or pv ∼ U({±1}D), we have J(θ∗; pv) = J(θ∗), and therefore ∇2
θJ(θ∗; pv) =

∇2
θJ(θ∗). We can apply Lemma 5 to conclude the simplified expressions for the asymptotic variance.

Corollary 1 (Consistency and asymptotic normality of score matching). Under similar assumptions used in Theorem 2
and Theorem 3, we can also conclude that the score matching estimator θ̂N , arg minθ∈Θ Ĵ(θ;x) is consistent

θ̂N
p→ θ∗

and asymptotically normal

√
N(θ̂N − θ∗)

d→ N
(

0,

(
∇2

θJ(θ∗)

)−1(∑
ij

Vij

)(
∇2

θJ(θ∗)

)−1)
.

Proof. Note that

Varpd [∇θf(θ∗;x)] = Epd [∇θf(θ∗;x)∇θf(θ∗;x)ᵀ]

= Epd

(∑
i

∇θ∂i∂ilm +
1

2
∇θ(∂ilm∂ilm)

)∑
j

∇θ∂j∂j lm +
1

2
∇θ(∂j lm∂j lm)

ᵀ
=
∑
ij

Epd
[(
∇θ∂i∂ilm +

1

2
∇θ(∂ilm∂ilm)

)(
∇θ∂j∂j lm +

1

2
∇θ(∂j lm∂j lm)

)ᵀ]
=
∑
ij

Vij

The other part of the proof is similar to that of Theorem 2 and Theorem 3 and is thus obmitted.



B.5 NOISE CONTRASTIVE ESTIMATION

Proposition 1. Define

JNCE(θ) , −Epd [log h(x;θ)]− Epn [log(1− h(x;θ))]

where

h(x;θ) ,
pm(x;θ)

pm(x;θ) + pm(x− v;θ)

pn(x) = pd(x + v).

Then when ‖v‖2 → 0, we have

JNCE(θ) = 2 log 2 +
1

4
Epd

[
vᵀ∇2 log pm(x;θ)v +

1

2
(∇ log pm(x;θ)ᵀv)2

]
+ o(‖v‖22)

Proof. Using Taylor expansion, we can immediately get

log pm(x + v;θ) = log pm(x;θ) +∇ log pm(x;θ)ᵀv +
1

2
vᵀ∇2 log pm(x;θ)v + o(‖v‖22).

Next, observe that

log(pm(x;θ) + pm(x + v;θ)) = log pm(x;θ) + log (1 + exp{log pm(x + v;θ)− log pm(x;θ)})

= log pm(x;θ) + log

(
1 + exp

{
∇ log pm(x;θ)ᵀv +

1

2
vᵀ∇2 log pm(x;θ)v + o(‖v‖22)

})
= log pm(x;θ) + log 2 +

1

2

[
∇ log pm(x;θ)ᵀv +

1

2
vᵀ∇2 log pm(x;θ)v

]
+

1

8
(∇ log pm(x;θ)ᵀv)2 + o(‖v‖22).

Similarly, we have

log(pm(x;θ) + pm(x− v;θ))

= log pm(x;θ) + log 2 +
1

2

[
−∇ log pm(x;θ)ᵀv +

1

2
vᵀ∇2 log pm(x;θ)v

]
+

1

8
(∇ log pm(x;θ)ᵀv)2 + o(‖v‖22).

Finally, note that

JNCE(θ) = −Epd [log h(x;θ) + log(1− h(x + v;θ))]

= −Epd [log pm(x;θ)− log(pm(x;θ) + pm(x− v;θ))]− Epd [log pm(x;θ)− log(pm(x;θ) + pm(x + v;θ))]

= 2 log 2 +
1

4
Epd

[
vᵀ∇2 log pm(x;θ)v +

1

2
(∇ log pm(x;θ)ᵀv)2

]
+ o(‖v‖22),

as desired.

C ADDITIONAL DETAILS OF EXPERIMENTS

C.1 KERNEL EXPONENTIAL FAMILIES

Model. The kernel exponential family is a class of densities with unnormalized log density given by log p̃f (x) =
f(x) + log q0(x). Here, q0 is a fixed function and f belongs to a reproducing kernel Hilbert space H, with kernel
k (Canu & Smola, 2006; Sriperumbudur et al., 2017). We see this is a member of the exponential family by using
reproducing property, f(x) = 〈f, k(x, ·)〉H). Rewriting the density, the model has natural parameter f and sufficient
statistic k(x, ·):

p̃f (x) = exp(f(x))q0(x) = exp(〈f, k(x, ·)〉H))q0(x)



To improve computational cost of learning f, Sutherland et al. (2018) use a Nyström-type lite approximation, selecting
L inducing points zl, and f of the form:

f(x) =

L∑
l=1

αlk(x, zl)

We compare training using our objective against deep kernel exponential family (DKEF) models trained using exact
score matching in Wenliang et al. (2019).

The kernel k(x,y) is a mixture of R = 3 Gaussian kernels, with features extracted by a neural network, φwr (·), length
scales σr, and nonnegative mixture coefficients ρr. The neural network is a three layer fully connected network with a
skip connection from the input to output layers and softplus nonlinearities. Each hidden layer has 30 neurons. We have:

kw(x,y) =

R∑
r=1

ρrexp
(
− 1

2σ2
r

‖φwr (x)− φwr (y)‖2
)
.

When training DKEF models, Wenliang et al. (2019) note that it is possible to analytically minimize the score matching
loss over α because the objective is quadratic in α. As a result, models are trained in a two step procedure: α is
analytically minimized over a training minibatch, then the loss is computed over a validation minibatch. When training
models, the analytically minimized α is treated as function of the other parameters. By doing this, Wenliang et al.
(2019) can also directly optimize the coefficient λα of a `2 regularization loss on α. This regularization coefficient is
initalized to 0.01, and is trained. (More details about the two-step optimization procedure can be found in Wenliang
et al. (2019), which also includes a finalization stage for α).

A similar closed form for sliced score matching, denoising score matching, approximate backpropogation, and curvature
propagation can be derived. The derivation for sliced score matching is presented below for completeness.

Proposition 2. Consider the loss

Ĵ(θ, λα;xN1 ,v
NM
11 ) = Ĵ(θ;xN1 ,v

NM
11 ) +

1

2
λα ‖α‖22

where

Ĵ(θ;xN1 ,v
NM
11 ) =

1

N

1

M

N∑
i=1

M∑
j=1

[
vᵀ
ij∇

2 log pm(xi)vij +
1

2

(
vᵀ
ij∇ log pm(xi)

)2]
.

For fixed k, z, and λα, as long as λα > 0 then the optimal α is

α(λα, k, z,x
N
1 ,v

NM
11 ) = arg min

α
Ĵ(θ, λα;xN1 ,v

NM
11 ) = − (G+ λαI)

−1
b

Gl,l′ =
1

N

1

M

N∑
i=1

M∑
j=1

(
vᵀ
ij∇k(xi, zl)

) (
vᵀ
ij∇k(xi, zl′)

)
bl =

1

N

1

M

N∑
i=1

M∑
j=1

vᵀ
ij∇

2k(xi, zl)vij +
(
vᵀ
ij∇ log q0(xi)

) (
vᵀ
ij∇k(xi, zl)

)
.

Proof. The derivation follows very similarly to Proposition 3 in Wenliang et al. (2019). We will show that the loss is
quadratic in α. Note that

1

N

1

M

N∑
i=1

M∑
j=1

vᵀ
ij∇

2 log pm(xi)vij =
1

N

1

M

N∑
i=1

M∑
j=1

[
M∑
m=1

αlv
ᵀ
ij∇

2k(xi, zl)vij

]
+ C

= αT

 1

N

1

M

N∑
i=1

M∑
j=1

vᵀ
ij∇

2k(xi, zl)vij


l

+ C



1

N

1

M

N∑
i=1

M∑
j=1

1

2

(
vᵀ
ij∇ log pm(xi)

)2
=

1

N

1

M

N∑
i=1

M∑
j=1

1

2

 M∑
m,m′=1

αlαm′
(
vᵀ
ij∇k(xi, zl)

) (
vᵀ
ij∇k(xi, zl′)

)
+2

M∑
m=1

αl
(
vᵀ
ij∇ log q0(xi)

) (
vᵀ
ij∇k(xi, zl)

)
+
(
vᵀ
ij∇ log q0(xi)

)2)

=
1

2
αTGα+αT

 1

N

1

M

N∑
i=1

M∑
j=1

(
vᵀ
ij∇ log q0(xi)

) (
vᵀ
ij∇k(xi, zl)

)+ C.

Thus the overall optimization problem is

α(λα, k, z,x
N
1 ,v

NM
11 ) = arg min

α
Ĵ(θ, λα;xN1 ,v

NM
11 )

= arg min
α

1

2
αT (G+ λαI)α+αTb.

Because λα > 0 andG is positive semidefinite, the matrix in parentheses is strictly positive definite, and the claimed
result follows directly from standard vector calculus.

Hyperparameters. RedWine and WhiteWine are dequantized by adding uniform noise to each dimension in the
range [−d, d] where d is the median distance between two values for that dimension. For each dataset, 10% of the
entire data was used as testing, and 10% of the remaining was used for validation. PCA whitening is applied to the data.
Noise of standard deviation 0.05 is added as part of preprocessing.

The DKEF models have R = 3 Gaussian kernels. Each feature extractor is a 3-layer neural network with a skip
connection from the input to output, with 30 hidden neurons per layer. Weights were initialized from a Gaussian
distribution with standard deviation equal to 1√

30
. Length scales σr were initialized to 1.0, 3.3 and 10.0. We use

L = 200 trainable inducing points, which were initialized from training data.

Models are trained using an Adam optimizer, with learning rate 10−2. A batch size of 200 is used, with 100 points for
computing α, and 100 for computing the loss. Models are stopped after validation loss does not improve for 200 steps.

For denoising score matching, we perform a grid search with values [0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.20,
0.24, 0.28, 0.32, 0.40, 0.48, 0.56, 0.64, 1.28]. We train models for each value of σ using two random seeds, and pick the
σ with the best average validation score matching loss. For curvature propagation, one noise sample is used to match
the performance of sliced score matching.

Log-likelihoods. Log-likelihoods are presented below. They are estimated using AIS, using a proposal distribution
N (0, 2I), using 1,000,000 samples.

Figure 3: Log-likelihoods after training DKEF models on UCI datasets with different loss functions; higher is better.
Results for approximate backpropagation are not shown because log-likelihoods were smaller than −106.



Name Configuration Algorithm

Encoder
Linear(784, 256), Tanh

ELBO VAE, WAELinear(256, 256), Tanh
Linear(256, Dz)

Implicit Encoder
Linear(784 + Dε, 256), Tanh

Implicit VAELinear(256, 256), Tanh
Linear(256, Dz)

Decoder
Linear(Dz, 256), Tanh

AllLinear(256, 256), Tanh
Linear(256, 784), Sigmoid

Score Estimator
Linear(784 + Dz, 256), Tanh

Implicit VAELinear(256, 256), Tanh
Linear(256, Dz)

Score Estimator
Linear(Dz, 256), Tanh

WAELinear(256, 256), Tanh
Linear(256, Dz)

Table 8: Architectures on MNIST. In our models, Dε = Dz. Dz takes the values 8 and 32 in different experiments.

C.2 NICE

Hyperparameters and Model Architecture. The model has four coupling layers, each with five hidden layers, for a
total of 20 hidden layers, as well as a final scale layer (Dinh et al., 2015). Softplus nonlinearities are used between
hidden layers.

Models are trained using the Adam optimizer with learning rate 10−3 for 100 epochs. The best checkpoint on exact
score matching loss, evaluation every 100 iterations, is used to report test set performance. We use a batch size of 128.

Data are dequantized by adding uniform noise in the range [− 1
512 ,

1
512 ], clipped to be in the range [−0.001, 0.001], and

then transformed using a logit transformation log(x)− log(1− x). 90% of the training set is used for training, and 10%
for validation, and the standard test set is used.

For grid search for the optimal value of σ, eight values are used: [0.01, 0.05, 0.10, 0.20, 0.28, 0.50, 1.00, 1.50]. We also
evaluate σ = 1.74, chosen by the heuristic in Saremi et al. (2018). The model with the best performance on validation
score matching loss is used. Only nine values of σ are evaluated because training each model takes approximately two
hours.

C.3 SCORE ESTIMATION FOR IMPLICIT DISTRIBUTIONS

Architectures. We put the architectures of all networks used in the MNIST and CelebA experiments in Tab. 8 and
Tab. 9 respectively.

Training. For MNIST experiments, we use RMSProp optimizer with a learning rate of 0.001 for all methods. On
CelebA, the learning rate is changed to 0.0001. All algorithms are trained for 100000 iterations with a batch size of 128.

Samples. All samples are generated after 100000 training iterations.

D VARIANCE REDUCTION

Below we discuss approaches to reduce the variance of Ĵ(θ;xN1 ,v
NM
11 ), which can lead to better performance in

practice. The most naïve approach, of course, is using a larger M to compute Ĵ(θ;xN1 ,v
NM
11 ). However, this requires

more computation and when M is close to the data dimension, sliced score matching will lose its computational
advantage over score matching.

An alternative approach is to leverage control variates (Owen, 2013). A control variate is a random variable whose
expectation is tractable, and is highly correlated with another random variable without a tractable expectation. Define



Name Configuration Algorithm

Encoder

5× 5 conv; m maps; stride 2× 2; padding 2, ReLU

ELBO VAE, WAE
5× 5 conv; 2m maps; stride 2× 2; padding 2, ReLU
5× 5 conv; 4m maps; stride 2× 2; padding 2, ReLU
5× 5 conv; 8m maps; stride 2× 2; padding 2, ReLU

512 Dense, ReLU
Dz Dense

Implicit Encoder

concat [x, ReLU(Dense(ε))] along channels

Implicit VAE

5× 5 conv; m maps; stride 2× 2; padding 2, ReLU
5× 5 conv; 2m maps; stride 2× 2; padding 2, ReLU
5× 5 conv; 4m maps; stride 2× 2; padding 2, ReLU
5× 5 conv; 8m maps; stride 2× 2; padding 2, ReLU

512 Dense, ReLU
Dz Dense

Decoder

Dense, ReLU

All
5× 5 convᵀ; 4m maps; stride 2× 2; padding 2; out padding 1, ReLU
5× 5 convᵀ; 2m maps; stride 2× 2; padding 2; out padding 1, ReLU
5× 5 convᵀ; 1m maps; stride 2× 2; padding 2; out padding 1, ReLU
5× 5 convᵀ; c maps; stride 2× 2; padding 2; out padding 1, Tanh

Score Estimator

concat [x, ReLU(Dense(z))] along channels

Implicit VAE

5× 5 conv; m maps; stride 2× 2; padding 2, ReLU
5× 5 conv; 2m maps; stride 2× 2; padding 2, ReLU
5× 5 conv; 4m maps; stride 2× 2; padding 2, ReLU
5× 5 conv; 8m maps; stride 2× 2; padding 2, ReLU

512 Dense, ReLU
Dz Dense

Score Estimator

Reshape(ReLU(Dense(z))]) to 1 channel

WAE

5× 5 conv; m maps; stride 2× 2; padding 2, ReLU
5× 5 conv; 2m maps; stride 2× 2; padding 2, ReLU
5× 5 conv; 4m maps; stride 2× 2; padding 2, ReLU
5× 5 conv; 8m maps; stride 2× 2; padding 2, ReLU

512 Dense, ReLU
Dz Dense

Table 9: Architectures on CelebA. In our models, Dε = Dz. Dz takes the values 8 or 32 in different experiments.

c(θ;x,v) , 1
2 (vᵀsm(x;θ))2. Note that when pv is a multivariate standard normal or multivariate Rademacher

distribution, c(θ;x,v) will have a tractable expectation, i.e.,

Epv [c(θ;x,v)] =
1

2
‖sm(x;θ)‖22 ,

which is easily computable. Now let β(x)c(θ;x,v) be our control variate, where β(x) is a function to be determined.
Due to the structural similarity between β(x)c(θ;x,v) and Ĵ(θ;xN1 ,v

NM
11 ), it is easy to believe that β(x)c(θ;x,v)

can be a correlated control variate with an appropriate β(x). We thus consider the following objective

Ĵvr(θ;xN1 ,v
NM
11 ) , Ĵ(θ;xN1 ,v

NM
11 )− 1

N

N∑
i=1

β(xi)

(
1

M

M∑
j=1

c(θ;xi,vij)−
1

2
‖sm(xi;θ)‖22

)
.

Note that E[Ĵvr(θ;xN1 ,v
NM
11 )] = J(θ; pv). The theory of control variates guarantees the existence of β(x) that can

reduce the variance. In practice, there can be many heuristics of choosing β(x), and we found that β(x) ≡ 1 can often
be a good choice in our experiments.



E PSEUDOCODE

Algorithm 2 Score Matching
Input: p̃m(·;θ),x

1: sm(x;θ)← grad(log p̃m(x;θ),x)

2: J ← 1
2 ‖sm(x;θ)‖22

3: for d← 1 to D do . For each diagonal entry
4: (∇xsm(x;θ))d ← grad((sm(x;θ))d,x)d
5: J ← J + (∇xsm(x;θ))d
6: end for

return J


	INTRODUCTION
	BACKGROUND
	SCORE MATCHING
	SCORE ESTIMATION FOR IMPLICIT DISTRIBUTIONS

	DENSITY AND SCORE ESTIMATION WITH SLICED SCORE MATCHING
	SLICED SCORE MATCHING
	SLICED SCORE ESTIMATION

	THEORETICAL ANALYSIS
	CONSISTENCY
	ASYMPTOTIC NORMALITY
	CONNECTION TO OTHER METHODS

	RELATED WORK
	SCALABLE SCORE MATCHING
	KERNEL SCORE ESTIMATORS

	EXPERIMENTS
	DENSITY ESTIMATION
	Deep Kernel Exponential Families
	Deep Flow Models

	SCORE ESTIMATION
	VAE with Implicit Encoders
	WAEs


	CONCLUSION
	Samples
	VAE WITH IMPLICIT ENCODERS
	MNIST
	CelebA

	WAE
	MNIST
	CelebA


	PROOFS
	NOTATIONS
	BASIC PROPERTIES
	CONSISTENCY
	ASYMPTOTIC NORMALITY
	NOISE CONTRASTIVE ESTIMATION

	ADDITIONAL DETAILS OF EXPERIMENTS
	KERNEL EXPONENTIAL FAMILIES
	NICE
	SCORE ESTIMATION FOR IMPLICIT DISTRIBUTIONS

	VARIANCE REDUCTION
	PSEUDOCODE

